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Abstract

:

In this study, the electrochemical reduction of gaseous carbon dioxide (CO2) at low-intermediate temperatures (~250 °C) using a solid acid membrane cell was demonstrated, for the first time. Compared to solid oxide fuel cells, which operate at higher temperatures (>600 °C), this system can utilize the advantage of gaseous CO2 reduction, while being considerably more simply implemented. A Cu-based electrocatalyst was developed as a cathode side catalyst for electrochemical reduction of gaseous CO2 and specifically demonstrated its efficacy to produce hydrocarbons and liquid fuels. The result is significant in terms of resolving the challenges associated with producing hydrocarbons and liquid fuels from CO2 reduction. The present study introduced the novel system with the solid acid membrane cell and the Cu-based catalyst for electrochemically reducing gaseous CO2. This system showed a new possibility for electrochemical reduction of gaseous CO2, as it operates at lower temperatures, produces hydrocarbons and liquid fuels and has plenty of room for improvement.
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1. Introduction


Carbon dioxide (CO2) reduction has attracted enormous attention as a solution for the utilization of CO2, a greenhouse gas [1,2]. CO2 is an abundant and inexpensive carbon source for generating fuels and useful chemical products. The reduction of CO2 is a fundamental step of artificial photosynthesis, making it an important technology for a renewable energy-reliant society [3,4]. When compared to other CO2 reduction methods, electrochemical CO2 reduction has one advantage: it can be biased by the external voltage, allowing the reaction to take on multiple forms as different voltages are applied [5,6]. Recent reviews have focused on not only potential catalysts for the electrochemical reduction of CO2 [7,8,9], but also electrodes, reactor configurations, and techno–economic analysis [10,11,12,13].



Some studies have investigated the electrochemical reduction of CO2 in gaseous and aqueous phases, but, to the best of our knowledge, there have been very few studies on the electrochemical reduction of CO2 in the gas phase. Gas phase CO2 reduction has some definite merits, compared to aqueous phase CO2 reduction, due to the high capacity of CO2 and the absence of the competitive H2O reduction reaction. For that reason, studies have recently been conducted to understand the detailed sides of electrochemical reduction of gaseous CO2 and to develop more feasible systems for it [14,15,16,17,18].



Interestingly, most techniques for the electrochemical reduction of gaseous CO2 have utilized solid oxide fuel cells (SOFCs) at very high temperatures (>600 °C) [19,20]. Furthermore, mainly aqueous CO2 has been investigated for electrochemical reduction at ambient temperature [21,22,23,24]. Herein, we report the first ever electrochemical reduction of gaseous CO2 using a solid acid membrane cell at low-intermediate temperatures (150–250 °C). This system can utilize the benefits of gaseous CO2 reduction, including the high capacity of CO2 and absence of the competitive H2O reduction reaction, and can be realized much more easily, compared to SOFCs, which operate at higher temperatures. The system is described schematically in Figure 1. A solid acid membrane cell contains three parts: the proton conducting membrane (solid acid), the anode, and the cathode. Gaseous hydrogen and CO2 are oxidized and reduced at each electrode, respectively. Protons move from the anode side to the cathode side through the membrane as a result of hydrogen oxidation.



Cesium dihydrogen phosphate (CsH2PO4), a representative of superprotonic solid acids, was selected for this approach, owing to its high proton conductivity in the solid state. Superprotonic solid acids (MHnXO4, M = Na, K, Cs, X = P, S, and Se) are known for their high solid-state anhydrous proton conductivities at temperatures above their superprotonic transition temperature [25,26]. For CsH2PO4, the superprotonic transition temperature is ~241 °C [27,28]. The material exhibits a proton conductivity of ~10−2 S/cm above this temperature, owing to transition to a highly disordered cubic structure.



The anode and cathode side catalysts chosen for hydrogen oxidation and CO2 reduction were platinum (Pt) and Copper (Cu), respectively. Cu is one of the most efficient electrocatalysts for CO2 reduction [29,30]. In the present study, Cu showed its efficacy to produce hydrocarbons and liquid fuels from electrochemical CO2 reduction using a solid acid membrane cell. It is one of the first reported results by the present study, and it has some significance in terms of resolving the difficulty of producing hydrocarbons and liquid fuels from CO2 reduction.




2. Results


2.1. Characterization of the Solid Acid Membrane


First, CsH2PO4 was readily synthesized by a simple precipitation method, and its crystal structure was confirmed by X-ray diffraction (XRD) patterns (Figure S1, reference: JCPDS Card No. 76–1836) [25,31], and electrochemical impedance spectroscopy (EIS) was used to determine its proton conductivity (Figure 2A). The detailed test conditions are described in the experimental section. The conductivity was determined to be ~10−2 S·cm−2, which was consistent with the well-known value of CsH2PO4 [25].



Figure 2B shows the typical current density–voltage curves for the Pt/CsH2PO4/Cu and Pt/CsH2PO4/Pt membrane electrode assemblies (MEAs) at 250 °C supplied with humid (0.4 atm H2O) hydrogen and CO2 to its anode and cathode sides, respectively. The current increased exponentially as larger amounts of bias voltage were applied. For the Pt/CsH2PO4/Cu, the current rapidly began to increase at 0.5 V. This could be due to the activation of electrochemical reduction reactions [19]. Various CO2 reduction products formed, competing with proton reduction. The Pt/CsH2PO4/Pt current density–voltage curve, which had Pt as its cathode side catalyst, was also recorded (black solid line of Figure 2B). The properties were slightly different at voltages > 0.5 V. The curve for the Pt/CsH2PO4/Cu had an exponential shape, whereas that of the Pt/CsH2PO4/Pt had a linear shape. This was probably due to the nature of the electrochemical CO2 reduction products. As discussed later, CO (carbon monoxide) was the major product for the Pt/CsH2PO4/Pt, while several kinds of products (CO, CH4, C2H6, C2H4, C2H2, CH3OH, HCOOH) were somewhat evenly observed for the Pt/CsH2PO4/Cu (Tables S3 and S4). Various reaction pathways could be one reason for the various inflection points of the current density–voltage curves. In the current system, hydrogen was also produced via proton reduction. There have been investigations into different approaches for inhibiting proton reduction.




2.2. Analysis of CO2 Reduction Products


The products from the electrochemical reduction of gaseous CO2 were analyzed using the Pt/CsH2PO4/Cu and Pt/CsH2PO4/Pt MEAs under −2 V constant cell voltage for time durations ranging from 0 to 130 min. Tables S3 and S4 display the detailed information of the products, including the results in terms of mol per area and Faradaic efficiency. As shown in Table S3, some major products (CO and CH4) and minor products (C2H6, C2H4, C2H2, CH3OH, and HCOOH) were detected for the Pt/CsH2PO4/Cu. For the Pt/CsH2PO4/Pt, CO was predominantly detected, and minor products, such as C2H4, C2H2, and CH3OH, were not detected (Table S4). The result was significant for resolving the challenges associated with generating hydrocarbons and liquid fuels from CO2 reduction.



Figure 3A shows the evolution of the two major products (CO and CH4). The tendencies for Pt/CsH2PO4/Cu and Pt/CsH2PO4/Pt exhibited a substantial difference. A significant amount of CH4 was evolved for the Pt/CsH2PO4/Cu, compared to CO. On the other hand, CH4 evolution was negligible for the Pt/CsH2PO4/Pt, whereas CO accounted for most of the products. The tendency was more clearly revealed when Faradaic efficiencies were compared (Figure 3B). The Faradaic efficiency of CH4 increased by about 10 times when the cathode electrocatalyst was changed from Pt to Cu. Other hydrocarbons (C2H4 and C2H2) evolved only for the Pt/CsH2PO4/Cu (Table S3). According to these results, Cu was a better electrocatalyst for hydrocarbon production than CO, and Pt could hardly promote hydrocarbon production. Furthermore, the present study is the first to report the electrochemical reduction of CO2 using a solid acid membrane cell, producing CO, methanol, acetic acid, and various hydrocarbon products. According to previous studies, the possible mechanism could involve adsorbed anion radical CO2− as an intermediate [32,33]. When CO2 is reduced to radical CO2− through a mono-electron transfer at Cu, the radical is adsorbed at the surface of Cu. Unlike Pt, Cu suppresses proton reduction to increase the production of hydrocarbons rather than H2 or CO.



The stability of the Pt/CsH2PO4/Cu was investigated, as shown in Figure S2. The current density was recorded at a −2 V constant cell voltage during the electrochemical reduction of CO2. The current density maintained its original value of ~100 mA cm−2 for up to 6 h, demonstrating the good stability of the CsH2PO4 cell.





3. Discussion


According to the results, it was shown that a solid acid membrane cell operating at low-intermediate temperatures (~250 °C) could implement the novel system for electrochemically reducing gaseous CO2. The solid acid membrane cell became more feasible with H2 and Cu, because H2 and Cu are representative of proton source and catalyst for hydrocarbon production, respectively. A Cu-based electrocatalyst was prepared as the cathode side catalyst of the cell and demonstrated its efficacy in producing hydrocarbons (CH4, C2H6, C2H4, and C2H2) and liquid fuels (CH3OH and HCOOH). It is worth noting that liquid fuels have hardly been observed as products of electrochemical reduction of gaseous CO2 owing to the high operating temperatures of SOFCs (>600 °C) [1,19,20], but the temperature with the current cell could be reduced to ~250 °C, allowing for liquid fuels, such as CH3OH and HCOOH, to be observed with Cu as the cathode side catalyst.



On the other hand, the overall Faradaic Efficiency remained in low values and there are some possible reasons for this; competitive proton reduction, large catalytic particle size, and weak triple phase boundaries (boundaries among catalytic particles and electrolyte and reactant gas). To solve this problem, reducing catalytic particle size is the first possible solution so that the active catalytic area for CO2 reduction can be enlarged. Including this approach, attempts have been made to increase the overall efficiency.




4. Materials and Methods


4.1. MEA Synthesis


The CsH2PO4 was synthesized from a stoichiometric mixture of cesium carbonate (99.5% Cs2CO3, Fisher Scientific, Pittsburgh, PA, USA) and o-phosphoric acid (85% H3PO4, Fisher Scientific, Pittsburgh, PA, USA) in an aqueous solution. After 48 h of stirring, excess amounts of methanol were added to the solution to precipitate CsH2PO4. The precipitate was filtered and dried. To fabricate MEA with CsH2PO4, the mixtures of catalyst powders and CsH2PO4 were prepared (Table S1). In detail, the catalyst powder (Pt or Cu) of 0.4 mg and CsH2PO4 of 1.2 mg were dispersed in 2-propanol of 3 mL to be dropped on carbon paper (TGP-H-060, Toray, Tokyo, Japan). The target amount was 0.4 mg/cm2 for the Pt or Cu catalyst and 1.2 mg/cm2 for CsH2PO4. The carbon paper was cut into a circle (diameter ~1.3 cm) before dropping the mixture so that the electrode (carbon paper coated with the catalyst-CsH2PO4 mixture) could be placed in a die for pressing. To fabricate an MEA pellet, the MEA components were placed in a die in the following order: the anode, 0.5 g of CsH2PO4, and the cathode before pressing (20 MPa, 5 min). The thickness of the pellet was ~0.06 mm. Electrical contact was made using silver epoxy and wires at each side of the MEA pellet. The final cell had an active surface area of 1 cm2.




4.2. Electrochemical CO2 Reduction


The MEA was placed in the cell designed to feed gases to each side of the MEA separately (Figure 1). The solid acid membrane cell and 2 input lines of ~25 cm for each anode/cathode side (~50 cm in total) were buried in the tubular furnace and the system temperature was controlled within the furnace. The temperature was ramped up to the target temperature (250 °C) at 2 °C·min−1 under dry argon. Humid hydrogen and CO2 (0.4 atm H2O) started to flow to the anode and cathode sides of the MEA, respectively, after the system had reached the target temperature. All electrochemical measurements were carried out using a Metrohm Autolab PGSTAT128 potentiostat. AC impedance spectra were recorded at the open circuit voltage (OCV) of the cell and an AC potential frequency range of 100,000–0.1 Hz with an amplitude of 10 mV. Linear sweep voltammetry (LSV) was performed at a 10 mV·s−1 scan rate. For analysis of the CO2 reduction products, the cathode chamber was filled with CO2 before closing the inlet and outlet ports. We applied a −2 V constant cell voltage for various time durations during the electrochemical reduction of CO2. The CO2 reduction products were analyzed by gas chromatography (GC, GC-2014, Shimadzu Scientific Instruments Inc., Columbia, MD, USA) and GC–MS. The Faradaic efficiency of the CO2 reduction products was calculated using the following equation: Faradaic efficiency [%] = (moles of the product produced for the time duration) × (number of electrons required to produce one molecule of the product via CO2 reduction) × 100%/(moles of electrons passing through the cell for the time duration). The number of electrons required to produce one molecule of each product is shown in Table S2.





5. Conclusions


In conclusion, the solid acid membrane cell was introduced for the first time as a novel electrochemical system for gaseous CO2 reduction. It was demonstrated that a solid acid membrane cell could be utilized for electrochemically reducing gaseous CO2. operating at low-intermediate temperatures (~250 °C) A Cu-based electrocatalyst was successfully prepared as the cathode side catalyst of the cell and demonstrated that it was particularly effective at producing hydrocarbons (CH4, C2H6, C2H4, and C2H2) and liquid fuels (CH3OH and HCOOH). The result is significant in terms of resolving the challenges associated with producing hydrocarbons and liquid fuels from CO2 reduction. These results indicate that the electrochemical reduction of gaseous CO2 using a solid acid membrane cell is a promising approach for utilizing CO2 and obtaining useful gas products. This work is the first known example of such a CO2 reduction approach. On the other hand, the overall efficiency remained in low values. Some attempts have been made to inhibit proton reduction and increase the overall efficiency. There is plenty of room for improvement.
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Figure 1. Schematic of a solid acid membrane cell for electrochemical reduction of gaseous CO2. Gaseous hydrogen and CO2 oxidized and reduced, respectively, at each electrode. Protons move from the anode side to the cathode side through the membrane as a result of hydrogen oxidation. 
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Figure 2. (A): Impedance spectrum for the Pt/CsH2PO4/Cu MEA for determining the proton conductivity (surface area: 1 cm2, thickness: 0.06 mm); (B): Current density–voltage curves for the Pt/CsH2PO4/Cu and Pt/CsH2PO4/Pt MEAs recorded under the same environment for the analysis of CO2 reduction products (H2/CO2 (0.4 atm H2O for both), 250 °C, scan rate: 10 mV·s−1). 
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Figure 3. (A): Evolution curves for the two major products (CO and CH4) from the electrochemical reduction of gaseous CO2 with the Pt/CsH2PO4/Cu and Pt/CsH2PO4/Pt MEAs (surface area: 1 cm2, thickness: 0.06 mm); (B): Comparison diagram (Faradaic efficiency) for the two major products (CO and CH4) from the electrochemical reduction of gaseous CO2 with the Pt/CsH2PO4/Cu and Pt/CsH2PO4/Pt MEAs (H2/CO2 (0.4 atm H2O for both), 250 °C). 
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