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Abstract: The electrochemical nitrogen reduction reaction (NRR) using clean energy is considered
a promising alternative to the conventional Haber–Bosch process; however, developing a highly
active electrocatalyst is still a great challenge. In this study, ten metal dimers anchored in a defective
boron nitride (BN) monolayer as double-atom catalysts (DACs) with reverse sandwich structures
were screened for their stability and catalytic activity towards NRR by density functional theory
(DFT) calculations. Among them, three DACs (Rh2⊥vb-BN, Pt2⊥vb-BN and Rh2⊥vn-BN) were
confirmed to be stable and have high promise as NRR electrocatalysts, and Pt2⊥vb-BN particularly
distinguishes itself due to its very low limiting potential (−0.06 V). In addition, the electrocatalytic
performance of all three DACs prevailed over that of their single-atom catalyst counterparts. We
believe that the unique conformation of the reverse sandwich structure has impressive potential for
the development of DACs, and we hope that our study provides a new design strategy for DACs for
NRR and beyond.

Keywords: nitrogen reduction reaction; double-atom catalysts; reverse sandwich structure; metal
dimer; boron nitride monolayer; density functional theory

1. Introduction

Ammonia (NH3) has always been an indispensable substance for industry and agricul-
ture [1,2]. In contrast, nitrogen, an element present in the Earth’s atmosphere in the form of
nitrogen gas (N2), is not metabolized by most living organisms [3,4]. Therefore, the direct
reduction of N2 to ammonia (NH3) is one of the most important but challenging chemical
transformations [5]. Although humans have mastered the process of large-scale ammonia
synthesis for nearly a century, the traditional Haber–Bosch process has so far been relied
upon primarily to produce ammonia; however, the Haber–Bosch process requires harsh
reaction conditions, including high pressures and temperatures, indicating high energy
consumption [6–8]. Therefore, finding economical and environmentally friendly nitrogen
fixation routes as an alternative strategy to the Haber–Bosch process is essential.

Electrocatalytic nitrogen fixation using clean energy is a promising alternative ap-
proach due to its mild reaction conditions [9]. Therefore, it is crucial to design efficient
electrocatalysts for the electrochemical conversion of N2 to NH3 under mild conditions [10].
To date, many catalysts have been utilized to catalyze nitrogen reduction reactions (NRRs),
including transition metals (e.g., Fe, Co, Mo and Pt), transition metal alloys, nitrides, oxides,
carbides, borides, etc. [11–15]. Since the proposal of single-atom catalysts in 2011 [16], such
single- and double-atom catalysts (SACs/DACs) loaded on two-dimensional materials
have received widespread attention not only for their capability to maximize metal utiliza-
tion but also for their high activity and selectivity [17–19]. Various SACs and multi-atom
catalysts have been designed as electrocatalysts for nitrogen reduction, such as Fe@NC [20],
Pt-C3N4 [21], Mo-BN [22], M2-Pc [5], Fe3@C2N [23], Ru2@GY [24], etc.

With the development of experimental techniques, appropriate substrates are crucial
for the immobilization of single (double) metal atom(s). Among them, hexagonal boron
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nitride (h-BN) sheets have attracted the interest of researchers due to their honeycomb
lattice morphology, similar to that of graphene [25,26]. Unlike graphene, the B–N bonds
in h-BN sheets have a polar nature, and they have superior thermal and chemical sta-
bility, high thermal conductivity, superior optoelectronic properties and good oxidation
resistance [27–29]. Although h-BN has a wide band gap (~6 eV), suitable for by dop-
ing metals, h-BN can be transformed into a semiconductor or turned into a metal to be
used in electrocatalysis, such as the oxygen reduction reaction [30,31], the nitrogen reduc-
tion reaction [22,32], the carbon dioxide reduction reaction (CO2RR) [33,34] and methane
oxidation [35]. Using DFT calculations, Zhao and Chen demonstrated that single Mo
atoms supported by a defective boron nitride nanosheet exhibit very high catalytic activ-
ity for N2 immobilization through an enzymatic mechanism with a limiting potential of
−0.35 V [22]. Zhou and coworkers revealed that embedding double metal atoms in defec-
tive h-BN can completely modify h-BN to metal and exhibit excellent catalytic performance
for CO2RR [33].

Very recently, we theoretically designed a few metal dimers anchored perpendicularly
in defective graphene forming an inverse sandwich structure (M2⊥gra, M = Co, Ni, Rh, Ir
and Pt), and the computations indicated that these DACs have reasonable stabilities and are
promising gas sensors due to the alternation of electronic and magnetic properties upon gas
adsorption [36]. Moreover, such structures show superior catalytic capability for CO2RR:
the limiting potentials of RhIr⊥gra and RhPt⊥gra are −0.36 and −0.26 V, respectively [37].
Therefore, it is natural to ask whether such reverse sandwich structures can be achieved in
other two-dimensional materials and whether these reverse sandwich structures be used as
electrocatalysts for NRR. To answer these questions, we designed ten BN-based DACs with
reverse sandwich structures and explored their stability and potential for NRR.

In this work, density functional theory (DFT) calculations were performed to system-
atically investigate the electrocatalytic performance of 10 DACs, M2⊥vb-BN (M = Co, Ni,
Rh, Ir, and Pt) and M2⊥vn-BN (M = Co, Ni, Rh, Ir, and Pt), for NRR, where M2⊥vb-BN
(M2⊥vn-BN) denotes a metal dimer vertically embedded in the B(N)-vacancy of a BN
monolayer (Figure 1). Our computations show that Pt2⊥vb-BN is a rather efficient NRR
electrocatalyst with a limiting potential of only −0.06 V. We also compared the electrocat-
alytic performance of three promising DACs (Rh2⊥vb-BN, Pt2⊥vb-BN and Rh2⊥vn-BN)
with that of their single-atom catalysts (Rh@vb-BN, Pt@vb-BN and Rh@vn-BN) and found
that all of the DACS with reverse sandwich structures outperformed the SACs. Our work
reveals the promise of metal dimers loaded perpendicularly in defective h-BN, i.e., inverse
sandwich structures, as electrocatalysts for NRR, thus providing a novel design scheme for
double-atom catalysts.
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2. Results and Discussion
2.1. The Stability, Magnetic and Electronic Properties of DACs

We first calculated the single-cell structure of h-BN with a cell size of 2.52 Å and a
B-N bond length of 1.45 Å, as shown in Figure S1a, which is the same as in the previous
study [38]. In our study, two defective configurations of a boron atom vacancy (vb-BN) and
a nitrogen atom vacancy (vb-BN) were constructed using a 5× 5 h-BN supercell, as shown in
Figure S1b,c. As shown in Figure 1, two transition-metal M atoms are symmetrically located
at the top and bottom of the vacancy of h-BN; each metal M atom is bound to three nitrogen
or boron atoms, respectively, and two M atoms are also bound to each other, forming
M2⊥vb-BN and M2⊥vn-BN configurations with an inverse sandwich structure (Figure 1).
The distances between metal atoms (D) are listed in Table S1. The distances between metal
atoms are all within 3 Å, indicating good bonding between metals, except that the D of Ir2
is larger than 3 Å, which might be attributable to the instability of Ir2⊥vn-BN, as discussed
afterwards. We demonstrated in our previous study that five transition metals (M = Co, Ni,
Rh, Ir and Pt) can be stably embedded vertically in defective graphene, so we proceeded to
evaluate their stability in the M2⊥vb-BN and M2⊥vn-BN configurations [36].

First, using Equation (1) (see Section 3), we calculated the binding energy (Eb) for
the 10 structures on defective h-BN and compared it with the cohesion energy
(Ecoh = (Ebulk − nEM)/n, where EM and Ebulk are the energies of a free M atom and the
total energy of the M bulk, respectively, and n is the number of M atoms) in the bulk
phase of the corresponding metal. If ∆E = Eb − Ecoh is less than or close to zero, these
systems are thermodynamically stable [39]. The results are listed in Table S1. Ir2⊥vb-
BN and Ir2⊥vn-BN are unstable due to their large ∆E and are not considered in the
subsequent discussion.

Next, first-principles molecular dynamics (FPMD) simulations were performed to
evaluate the thermal stability of the remaining eight catalysts. Fortunately, during the
molecular dynamics simulations at room temperature (300 K) with a time step of 1 fs and a
time duration of 5 ps, the structures of all eight catalysts were well preserved with slight
energy vibrations (Figure S2), demonstrating that they were all stable at room temperature.
Therefore, we screened the eight stable DACs (M2⊥vb-BN and M2⊥vn-BN; M = Co, Ni, Rh
and Pt) for further study.

Then, we explored the magnetic and electronic properties of the eight stable DACs.
Their Bader charges and magnetic properties are summarized in Table S2. In the four DACs
with B-vacancy, the metal atoms (Co, Ni, Rh and Pt) all lose electrons, and the upper and
lower metal atoms carry the same charge (+0.84, +0.76, +0.50 and +0.44 |e|); in the four
DACs with N-vacancy, because the metal atoms are bonded to the B atoms, not all of the
metal atoms (Co) lose electrons: three types of metal atoms (Ni, Rh and Pt) gain electrons to
show a negative charge, and again, the upper and lower metal atoms carry the same charge
(+0.15, −0.05, −0.25 and −0.48 |e|). This symmetry phenomenon is the same as that for
the M2⊥gra structure in graphene that we studied [36]. The result that the metal atoms
exhibit negative charges in the h-BN structure is also similar to previous results, which is
mainly caused by the low electronegativity of the B atoms [40]. Concerning the magnetic
properties, among the eight stable structures, all of them are ferromagnetic (FM), except
for the Ni2⊥vn-BN structure, which exhibits nonmagnetism (NM), and the Co2⊥vb-BN
structure, which exhibits antiferromagnetism (AFM), and the two metal atoms carry the
same amount of magnetic moment, as shown in Table S2.

Meanwhile, we plotted the density of states (DOS) of the eight stable DACs (Figure S3).
The DOS crosses the Fermi energy level for all of these DACs, indicating that all eight
DACs have good conductivity and exhibit metallicity. This shows that the introduction of
double metal atoms revolutionizes the wide band gap of h-BN and qualitatively improves
the problem that the h-BN-loaded single-atom catalyst only narrows the original band gap
of h-BN rather than completely converting it to metallicity [22,35], which is beneficial for
electrocatalyzing the N2 reduction reaction.
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2.2. Screening of the DACs

NRR is a complicated reaction process involving different mechanisms, including
distal [41], alternating [42] and enzymatic ones [43] (Figure 2). Among the proposed
mechanisms, previous studies revealed that the first hydrogenation step (*N2 → *N2H) is
the potential-determining step (PDS) in most cases [44], mainly because of the high energy
consumption during the first hydrogenation step due to the breakage of the inert N≡N
triple bond [45]. Therefore, we first used the free energy change in the first electronic
step as screening criteria for the eight stable DACs. The free energy change ∆G in the
first hydrogenation step (*N2 → *N2H) is illustrated in Figure 3. For the end-on path, the
free energy changes of the eight stable DACs all exceed 0.50 eV (the limiting potential
UL = −0.5 V on the surface of the mature catalyst Re(111) [46]); thus, the distal and
alternating paths were not considered in our subsequent calculations. In contrast, the ∆G
values of *N2 → *N2H over Co2⊥vb-BN, Rh2⊥vb-BN, Pt2⊥vb-BN and Rh2⊥vn-BN along
the enzymatic path were 0.46, 0.50, 0.06 and 0.46 eV, respectively, and thus, these four DACs
have the potential to be good NRR electrocatalysts based on the enzymatic route.
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On the other hand, the suppression of the competitive hydrogenation reduction
reaction (HER) is an essential feature required for a good NRR catalyst [44]. Therefore,
we continued to use the effective inhibition of HER as another screening criterion for
the four promising DACs: the free energy change ∆G(*N2) of N2 adsorption should be
more negative than the intermediate *H’s value (∆G(*H) [47]. Since the enzymatic path is
favorable to proceed, as revealed in the above paragraph, we only compared the ∆G(*N2)
of the side-on adsorption conformation with that of H adsorption. The ∆G(*N2) values
are all more negative than ∆G(*H) on the four DACs (Figure S4), indicating that all four



Catalysts 2022, 12, 1387 5 of 12

DACs are able to restrain the HER reaction. Overall, Co2⊥vb-BN, Rh2⊥vb-BN, Pt2⊥vb-BN
and Rh2⊥vn-BN were identified as potential NRR electrocatalysts through a two-step
screening process.

2.3. The Reaction Pathway of NRR on Four Promising DACs

After screening the potential NRR catalysts (Co2⊥vb-BN, Rh2⊥vb-BN, Pt2⊥vb-BN
and Rh2⊥vn-BN), we started a specific study on their NRR catalytic activity. It is well
known that N2 adsorption on the catalyst surface is the first step in NRR, and its initial
adsorption mode plays an important role in the subsequent reaction steps [22]. Based on
the screening in Section 2.2, the distal and alternating paths are no longer applicable to
these four DACs, so we focused on the side-on adsorption configurations corresponding to
the enzymatic path; the optimized structures are displayed in Figure 4, and the adsorption
energy and geometric parameters are given in Table S3. Actually, the N2 molecules were
not adsorbed exactly parallel to the BN sheet, except for Pt2⊥vb-BN, but were slightly
tilted, the same as in the previous study [22]. Compared to the free gas molecule, the
bond length of the adsorbed N2 molecule was stretched from 1.12 Å to 1.15~1.17 Å
(Table S3). The adsorption energies calculated from Equation (2) (see Section 3) are all
negative (−1.26 ~ −0.89 eV), indicating that N2 adsorption on all four DACs is exothermic
and that N2 adsorption and activation on these DACs can easily occur at room temperature.
Our Bader charge analysis shows that the electron transfer from the metal dimer to the
adsorbed N2 molecule is −0.30 ~ −0.43 |e| (Table S3), which is consistent with the results
of the charge difference diagram (Figure S5). In conclusion, N2 molecules can sponta-
neously adsorb on the four DACs and can be activated by these DACs for the subsequent
reduction process.
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Figure 4. Optimized geometries of N2 adsorption on (a) Co2⊥vb-BN, (b) Rh2⊥vb-BN, (c) Pt2⊥vb-BN
and (d) Rh2⊥vn-BN.

To evaluate the potential of the four DACs as electrocatalysts for converting N2 to NH3,
we calculated the free energy change of each elementary step along the enzymatic pathway
over these DACs. The free energy corrections (EZPE − TS) for the free gas molecules used
in the process are given in Table S4, and the free energy correction of each adsorbed species
in the reaction pathways is listed in Table S5. When NRR follows the enzymatic pathway,
protonation alternates between the two N atoms, releasing one ammonia molecule in the
sixth electron step and one at the end, respectively (Figures 2 and 5). As for Co2⊥vb-
BN (Figure 5a), in addition to the first hydrogenation step, there are two more steps,
*NNH→ *NHNH and *NHNH2 → *NH2NH2, in which the free energy change is raised,
and the free energy change is 0.69 eV for the latter step, which is larger than 0.46 eV in
the former step; thus, the potential-determining step (PDS) on Co2⊥vb-BN is *NHNH2
→ *NH2NH2. In contrast, for the other three DACs (Figure 5c,d), the PDS is the first
hydrogenation step, since the corresponding ∆G is larger than those of other electron steps.
It is noteworthy that during the reaction via the enzymatic mechanism over Pt2⊥vb-BN
(Figure 5c), the free energy changes in the remaining five electron steps exhibit a successive
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downhill trend, with only a slight increase in the free energy in the first electron step
(∆G = 0.06 eV), which is very favorable for the reduction reaction to proceed.
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The PDSs and limiting potentials (UL) of the four DACs are presented in Table S6,
and UL is −0.69 V for Co2⊥vb-BN, −0.50 V for Rh2⊥vb-BN, −0.06 V for Pt2⊥vb-BN and
−0.49 V for Rh2⊥vb-BN. Our calculations indicate that the PDS of all three DACs except
for Co2⊥vb-BN was the first electron step (*N2 → *NNH) (Table S6), which is a side note
supporting that our use of the free energy change in the first electron step as a criterion
for screening catalysts in Section 2.2 is reliable. In addition, three DACs (Rh2⊥vb-BN,
Pt2⊥vb-BN and Rh2⊥vn-BN) have an absolute value of UL less than 0.5 V, indicating that
they are promising NRR catalysts (Table S6); in particular, Pt2⊥vb-BN has a very small
UL of −0.06 V, whose absolute value is much lower than those of the BN-supported SACs
Mo-BN (−0.35 V) [22] and Mo-VN-BN (−0.24 V) [32].

In addition, we examined the NRR pathways on the single-atom catalysts (Rh@vb-
BN, Pt@vb-BN and Rh@vn-BN in Figure S6) corresponding to the three DACs (Rh2⊥vb-
BN, Pt2⊥vb-BN and Rh2⊥vn-BN) with good performance for comparison. Likewise, we
considered the enzymatic pathway for the three SACs (Figure S7 and Table S6). According
to Figure S7 and Table S6, the PDS for all three SACs is the first electron step (*N2→ *NNH),
the same as the DACs; however, their ∆G values were much larger than the values of the
DACs (Rh2⊥vb-BN/Rh@vb-BN: 0.50/1.25 eV; Pt2⊥vb-BN/Pt@vb-BN: 0.06/0.35 eV; and
Rh2⊥vn-BN/Rh@vn-BN: 0.49/1.48 eV). Moreover, the adsorption strength of N2 on these
three SACs is very weak, resulting in an increase in the free energies for adsorption when
adding the corrections. Therefore, we believe that these three DACs with reverse sandwich
structures have special potential as NRR electrocatalysts.
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2.4. Origin of NRR Activity

To further investigate the origin of the activity of the four DACs with reverse sandwich
structures, we examined the variation in atomic charge in each elementary step along the
favorable enzymatic pathway (Figure 6). According to previous studies [22,37], each
intermediate can be divided into three parts, namely, part 1 (BN sheet), part 2 (M2 dimer)
and part 3 (adsorbed NxHy species). Part 1 acts as an electron donor or acceptor, i.e.,
electron storage, during NRR, while part 2 acts as an emitter for electron transfer between
part 3 and part 1, and our results have similar characteristics, with minimal electron changes
on the M2 dimer, which only acts as a “mediator” to transfer electrons, while the source and
destination of the electrons gained and lost on the adsorbate is the BN monolayer. In the
reaction path of the Pt2⊥vb-BN catalyst with the best catalytic activity, the charge exchange
between the BN monolayer and the adsorbed NxHy species is moderate among the four
DACs, and the fifth electron step (*NH2NH2 → *NH2 + NH3) with the largest charge
exchange is more than 1 |e| (none of the other catalysts reach this value), indicating that
the Pt2 dimer plays a key role in the catalytic process to transfer electrons and improve the
catalytic activity. In the Rh2⊥vn-BN catalyst, the overall charge transfer and fluctuations
are smaller than those of the other three catalysts with metal bonded to N atoms, because
the Rh atoms bonded with B atoms seize electrons from B and show negative charges.
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Furthermore, we calculated the projected density of states (PDOS) of the four DACs
with the adsorption of N2. As shown in Figure S8, compared to the free N2 molecule, all
four DACs provide electrons to the 2π* orbitals above the Fermi energy level, bringing
them down from above 5 eV to near the Fermi energy level, and the d orbitals of the metals
are well coupled to the 2π* orbitals. Among them, the d orbitals of Pt2⊥vb-BN not only
have good hybridization with the 2π* and 3σ* orbitals of the N2 molecule but also couple
well with the 2π and 3σ orbitals below the Fermi energy level, which might be associated
with Pt2⊥vb-BN’s superior performance.
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Considering the distinguished catalytic performance of Pt2⊥vb-BN towards NRR, we
assessed the feasibility of synthesizing the inverse sandwich structure of Pt2⊥vb-BN in the
experiment by immersing defective graphene in a PtCl2 aqueous solution and performing
an FPMD simulation in the NVT ensemble at 400 K; such a strategy was proposed previ-
ously [48,49]. The formation of the inverse sandwich structure occurred at about 0.5 ps of
the FPMD simulation (Figure S9), indicating the feasibility of the experimental realization
of our novel DAC model.

3. Computational Methods

In this work, spin-polarized density function theory (DFT) calculations were per-
formed using the Vienna Ab initio Simulation Package (VASP) [50,51]. The Perdew–Burke–
Ernzerhof (PBE) functional within the generalized gradient approximation (GGA) was
utilized to describe the exchange-correlation energy [52]. The projector augmented-wave
(PAW) method was used to describe the interactions between ion cores and valence elec-
trons [53]. The Brillouin zone was sampled by the Monkhorst-Pack (MP) scheme and
3 × 3 × 1 k points [35]. The kinetic energy cutoff for the plane-wave basis set was chosen
to be 600 eV. The van der Waals (vdW) interactions between the reactants/intermediates
and the catalyst were considered using the DFT-D2 method [54]. The force on each atom
in the self-consistent iteration was 0.001 eV/Å, and the energy convergence criterion was
1 × 10−6 eV. The Poisson–Boltzmann implicit solvation model with a dielectric constant
of ε = 80 for water was used to simulate the H2O solvent environment [55]. Bader charge
analysis was adopted to evaluate the charge transfer [56].

First-principles molecular dynamics (FPMD) simulations were carried out to assess
the thermal stability of the structures. The temperature was controlled by the Nosé–Hoover
method [57]. The material was annealed at a room temperature of 300 K. Each FPMD
simulation in the NVT ensemble lasted 5 ps with a time step of 1 fs.

To model M2⊥vb-BN and M2⊥vn-BN, we used a 5 × 5 h-BN supercell in our calcula-
tions (Figure 1). One boron atom or one nitrogen atom in the center of the h-BN supercell
was removed to form a vacancy defect, denoted as vb-BN and vn-BN, respectively, and then
the transition-metal atoms were symmetrically positioned above and below the vacancy,
respectively, to form an inverse sandwich structure, where the M2 dimer was perpendicular
to the h-BN plane. A vacuum space of 15 Å in the direction perpendicular to the BN plane
was applied to avoid image interactions [58].

The binding energy (Eb) per M atom on defective graphene was defined as:

Eb = (EM2⊥vx-BN − Evx-BN − 2EM)/2 (1)

where EM2⊥vx-BN (x = b or n) is the total energy of the M2⊥vb-BN or M2⊥vn-BN structure,
and Evx-BN (x = b or n) and EM refer to the energies of the defective h-BN and a free M atom,
respectively. According to the definition, a more negative Eb value indicates a stronger
binding strength between the metal atoms and the BN substrate.

The adsorption energy (Ead) of reaction intermediates can be obtained from the follow-
ing formula:

Ead = Etotal − Ecatalyst − Eadsorbate (2)
where Etotal, Ecatalyst and Eadsorbate are the energies of the adsorbate-adsorbed catalyst, the
bare catalyst and the free adsorbate, respectively [59]. By this definition, a positive/negative
value of Ead indicates that the adsorption is endothermic/exothermic.

The free energy (G) of each intermediate is given by:

G = EDFT + EZPE − TS (3)

where EDFT is the energy from the DFT calculation, and EZPE and TS are the zero-point
energy and entropy corrections, respectively [35]. The corrections for EZPE and S can be
obtained from vibration frequency calculations [60], and T is the temperature (298.15 K).

The free energy G for each step in the whole NRR was calculated according to the
computational hydrogen electrode (CHE) model proposed by Nørskov and coworkers [61].
According to the CHE model, the effect of the electrode potential (U) and pH on NRR
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can be considered an energy shift of the free energy change in the electrochemical step:
∆GU = –eU; ∆GpH = −kBTln10 × pH, where kB is the Boltzmann constant, and pH was set
as zero in this study to mimic the strong acidic condition. The limiting potential (UL) is
defined as the maximum free energy change (∆Gmax) among all elementary steps along the
most favorable pathway: UL = −∆Gmax/e [22,62].

4. Conclusions

In conclusion, we screened the NRR activity of 10 DACs with inverse sandwich struc-
tures, M2⊥vb-BN (M = Co, Ni, Rh, Ir and Pt) and M2⊥vn-BN (M = Co, Ni, Rh, Ir and Pt),
by comprehensive DFT calculations. After a stability evaluation and an initial screening of
two conditions (moderate ∆G for the first hydrogenation step and the effective suppression
of HER), we identified four potential DACs; then, through complete enzymatic pathway
calculations, three DACs (Rh2⊥vb-BN, Pt2⊥vb-BN and Rh2⊥vn-BN) with good NRR activ-
ity were identified. Notably, Pt2⊥vb-BN has a limiting potential of only −0.06 V, which
is superior to many reported NRR electrocatalysts. The activity of the DACs with inverse
sandwich structures was compared with the corresponding three SACs, and the electro-
catalytic performance of the DACs with inverse sandwich structures was found to prevail
over that of their corresponding SAC counterparts. Thus, our calculations demonstrate that
three stable DACs with inverse sandwich structures are promising NRR electrocatalysts,
echoing our recent work showing that vertical metal dimers can be anchored in suitable 2D
materials, not limited to graphene, and DACs with such inverse sandwich structures may
be used for CO2RR and beyond [37]. We hope that our proposed double-atom catalysts
featuring inverse sandwich structures will stimulate experimental and theoretical studies
to further explore their variation and potential in electrocatalysis.
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