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Abstract: Spent caustic wastewater produced in a soda plant has a high concentration of ammonia
nitrogen (NH4

+-N). As excessive NH4
+-N discharging into water bodies would cause eutrophica-

tion as well as destruction to the ecology balance, developing an efficient technology for NH4
+-N

removal from the spent caustic wastewater is imperative in the current society. In this study, an
electrochemical process with graphene electrodes was designed for the NH4

+-N removal in the spent
caustic wastewater. The removal efficiency of the NH4

+-N during the electrochemical process could
reach 98.7% at 4 A in a short treatment time (within 120 s) with an acceptable energy consumption
(6.1 kWh/m3-order). NO3

− and NO2
− were not detected during the electrochemical process. An

insignificant amount of NH2Cl, NHCl2, and NCl3 produced in the treatment suggested that little
of the NH4

+-N reacted with chlorine, that is, chlorination played a negligible role in the NH4
+-N

removal. By electron equilibrium and nitrogen conversion analysis, we think that NH4
+-N was

primarily converted to NH2(ads) on the surface of a graphene electrode by one-electron transfer
during the direct oxidation of the electrochemical process. Due to the high calcium ion (Ca2+) in the
spent caustic wastewater, the electrode scale significantly increased to 1.4 g after treatment of 240 s at
4 A. By X-ray diffraction (XRD) analysis, the composition of the electrode scale is portlandite Ca(OH)2.
Although the electrode scale was obvious during the electrochemical treatment, it could be alleviated
by alternating the electrode polarity. As a result, the life and efficiency of the graphene electrode for
NH4

+-N removal could remain stable for a long time. These results suggest that the electrochemical
process with a graphene electrode may provide a competitive technology for NH4

+-N removal in
spent caustic wastewater treatment.

Keywords: ammonia nitrogen; electrochemistry; spent caustic; graphene electrode; electrode scale

1. Introduction

Soda, as an important chemistry ingredient for industry (such as the glass manufactur-
ing industry or the construction industry), has an increasing demand with rapid economic
development. During soda production, a large amount of spent caustic wastewater with
high alkalinity, salinity, and nitrogen would be produced. Although the nitrogen element
is a necessary nutrient for plants and algae, excessive nitrogen discharging into water
bodies would cause algae mass growth and eutrophication [1]. Therefore, it is critical to
remove the nutrient of the nitrogen element (especially for ammonia nitrogen) from the
spent caustic wastewater before it is discharged into the environment.

Up to now, the common methods for ammonia nitrogen (NH4
+-N) removal in wastew-

ater include biological nitrification [2], adsorption [3], break-point chlorination [4], and
so on. Biological nitrification has been widely used for many years; however, it is only
suitable for the wastewater treatment with a relatively low ammonia concentration due
to the limit of the appropriate C/N ratio for microorganism growth [5]. Adsorption is
a convenient method for ammonia removal. However, the adsorption efficiency of the
NH4

+-N removal is affected by the pH of the water, and the used material needs to be
further disposed [6]. Break-point chlorination is also a well-known classic method for
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NH4
+-N removal. Unfortunately, the process is highly pH dependent and requires highly

skilled operators [7]. In addition, due to the generation of radicals with strong oxidation,
advanced oxidation processes (AOPs) have shown high efficiencies for organic contami-
nants and NH4

+-N removal [8–12]. However, potentially negative impacts of AOPs have
been reported, such as the accumulation of the total dissolved solids and the limitation of
the transportation and storage of liquid oxidants [12–14]. Above all, more suitable methods
for NH4

+-N removal in the spent caustic wastewater need to be developed.
Due to its versatility and amenability to automation, the electrochemical process is

a promising technology for ammonia removal in wastewater. During the electrochemical
process, NH4

+-N can be removed via anodic oxidation, including direct electron transfer
to the anode surface and mediate oxidation with oxidants generated by an anode, such
as hydroxyl radicals and chlorine [15,16]. Consequently, the electrode material is crucial
during the electrochemical process [17]. The previous literature reported that the boron-
dope diamond (BDD), dimensionally stable anode (DSA), magnesium, Pt-Ir, etc., were
efficient for NH4

+-N removal [16,18]. Nevertheless, the high cost of these electrodes has
largely limited their application in actual wastewater treatment. Moreover, it was found
that a DSA electrode would become deactivated due to surface poisoning by nitrogen
adsorption [19]. Another study showed that due to the competing of carbonate oxidation,
ammonia oxidation would be inhibited on the DSA electrode at a high pH [20]. Thereby, a
suitable electrode for ammonia removal in wastewater should be economical, efficient, and
durable.

A graphene electrode exhibits a high electronic conductivity, great mechanical strength,
and low cost [21,22]. Thus, a graphene electrode could be an alternative for ammonia
removal during the electrochemical process. Electrolysis with a graphene electrode used
for ammonia nitrogen removal in real wastewater was rare as far as we know. Especially,
the electrochemical process with a graphene electrode for ammonia nitrogen removal in
spent caustic wastewater that has a high concentration of calcium ions has not been found.

The objective of this study is to evaluate whether the electrochemical process with a
graphene electrode is feasible for ammonia removal in spent caustic wastewater. Ammonia
nitrogen removal efficiency, energy consumption, and nitrogen transformation were inves-
tigated. Moreover, the electrode scale rate and scale composition were also analyzed. At
last, a solution to alleviating the electrode scale to extend the electrode life was provided.

2. Results and Discussion
2.1. Ammonia Nitrogen Removal

Main parameters of the spent caustic wastewater are shown in Table 1. Figure 1
shows the NH4

+-N removal during the electrochemical treatment of the spent caustic
wastewater with varying currents. In general, with increasing currents from 2 to 4 A,
NH4

+-N concentrations in the effluent decreased continuously. The concentrations of NH4
+-

N decreased from the initial 70.0 mg/L to 42.3, 22.7, and 0.9 mg/L after a 120 s treatment
with 2, 3, and 4 A, respectively (Figure 1a). The effluent at 4 A could meet the direct emission
standard of pollutants for the inorganic chemical industry of China (10 mg/L) [23]. By
linearly fitting −ln(C/C0) vs. time, the pseudo-first-order rate constants (k) of NH4

+-N
removal can be obtained [24]. Because of the enhancement of the electron transfer rate
and/or the indirect oxidation agents at a high current density, the rate of contaminant
degradation increases with increasing currents [25]. For example, with currents ranging
from 2 to 4 A, the k values increased from 0.0038 to 0.0126 s−1, as shown in Figure 1b.
Under the tested conditions, the electrochemical system could process 720 L water per day
(1 L water at a treatment time of 120 s) and effectively remove the NH4

+-N. Moreover, the
ammonia oxidation rate per m2 of electrode per day is 1.38 × 104 gN·m−2·d−1 at 4 A in this
study, which is more than 100 times higher than the previous literature [26,27]. Nevertheless,
the electricity demand at 4 A (58 Wh·gN−1), in this study, was only slightly higher than
the previous literature (42 Wh·gN−1) [26]. The results indicate the electrochemical process
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may be a high-efficient and practical method for NH4
+-N removal in the spent caustic

wastewater.
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2.2. Electrochemical Oxidation for NH4
+-N

In the spent caustic wastewater (pH = 11.4), soluble NH3 is the dominant species
of ammonia nitrogen. The soluble NH3 could be air-stripped by gas bubbles produced
during the electrochemical process [28]. The previous reference reported that ~9–11%
of the ammonia disappeared in an ammonia solution at pH 12 and 80 mA/cm2 with a
90 min treatment only by air bubbling, similar to the gas evolution generated during the
electrolysis [28]. In our study, the ammonia was treated by the electrochemical process at
similar conditions, only for 2 min. Therefore, the ammonia nitrogen removal by the bubbles
generated during the electrochemical process was far below 9%, that is, the removal could
be neglected.

During the electrochemical process, contaminants could be removed via direct electron
transfer to the anode surface (i.e., direct electrolysis) and/or via mediate oxidation with
electrochemically generated oxidants, such as hydroxyl radicals and chlorine (i.e., indirect
electrolysis) [15,16]. As shown in Equation (1), ammonia can be transformed to N2 by
electron transfer to the anode surface under an alkaline condition at pH > 9 [26,29]. In this
study, the pH of the spent caustic wastewater was 11.4, and thus the ammonia nitrogen
may be removed by direct electrolysis during the electrochemical process.

2NH3+6OH− − 6e– → N2 ↑ +6H2O (1)

On the other hand, ammonia can be removed by indirect electrolysis due to the Cl−

transformation to chlorine during the electrochemical treatment, as shown in
Equations (2)–(4) [30,31]. As shown in Figure 2, the concentration of the free chlorine
residual could achieve 69 mg/L during the electrochemical treatment of the spent caustic
wastewater at 4 A and 120 s. The current efficiency (CE) of the electro-generated chlorine
was calculated according to Equation (5) [32] and displayed in Figure 2. The concentration
of the chlorine generated by electrolysis was difficult to measure due to the contaminant
existing in the spent caustic wastewater. Therefore, the free chlorine residual was an al-
ternative to the chlorine generated by electrolysis for the CE calculation. The CE of the
electro-generated chlorine gradually increased with an increasing treatment time (Fig-
ure 2). The increasing CE suggested that less free chlorine reacted with the ammonia as the
ammonia concentration decreased with the increased treatment time [33].

2Cl– – 2e– → Cl2 (2)

Cl2+2OH− → Cl–+OCl–+H2O (3)
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3OCl–+2NH3 → N2 ↑ +3Cl−+3H2O (4)

CE (%) =
nFCchlorine−EV∫ t

0 Idt
×100 (5)

where Cchlorine-E is the concentration of chlorine generated by electrolysis (mol/L), n is the
number of electrons transferred form Cl− to Cl2, F is the Faraday constant (96485 C/mol), I
is the current (A), t is the treatment time (s), and V is the solution volume (L).
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In order to analyze the concentrations of the NH2Cl, NHCl2, and NCl3 produced in
the electrochemical process, the concentration of the total chlorine was determined. For
example, the concentration of the total chlorine was 74 mg/L at 120 s treatment of the spent
caustic wastewater with 4 A, while the concentration of the free chlorine was 69 mg/L. As
a result, the total concentration of the NH2Cl, NH2Cl, and NCl3 produced in the treatment
was only 5 mg/L. The finding suggests that the NH4

+-N was barely degraded by the
chlorination during the electrochemical treatment.

Based on the applied current and treatment time, the total number of electrons from
the electrode could be calculated, as shown in Equation (6). Thereby, the total number of
electrons transferred to the surface of the graphene anode is 480 C (4.97 mmol) at 4 A and
120 s treatment. Then, according to the electron equilibrium, 3 mol electrons would be
transferred when 1 mol NH4

+-N is oxidized to N2. As a result, at the reaction conditions
(4 A and 120 s treatment), only 23.2 mg of the NH4

+-N would be oxidized as a consequence
of the reactions on the anode (including direct and indirect electrolysis). Nevertheless, at
the conditions (4 A and 120 s treatment), the electrochemical process removed ~69 mg of
the NH4

+-N (Figure 1a), which was nearly 3 times higher than that of the three-electron
transformation (23.2 mg). Therefore, one-electron transformation played a significant role
for the NH4

+-N degradation in this electrochemical process, such as Equation (7) [16,34].
Because the electrons increased linearly with increasing currents, the k values for the NH4

+-
N degradation would have an obviously linear correlation with varying currents, as shown
in Figure 1b.

Number of electrons (C) =
∫ t

0
Idt (6)

NH3+OH− − e− → NH2(ads) + H2O (7)

2.3. Nitrogen Conversion

The total nitrogen (TN) includes NH4
+-N, NO2

−-N, NO3
−-N, and organic nitro-

gen [35]. To analyze the nitrogen conversion during the electrochemical treatment, the TN,
NO3

−, and NO2
− were also determined. As shown in Figure 3a, the TN concentration

decreased from 122 to 71.3, 52.7, and 27.9 mg/L with 2, 3, and 4 A treatment, respectively
(Figure 3a). It demonstrated that the TN removal rates increased with increasing currents.
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However, both NO3
− and NO2

− were not detected during the electrochemical treatment.
These results indicated that the NH4

+-N in the spent caustic wastewater was not oxidized
to NO3

− and NO2
−, both of which were also contributed to eutrophication and could cause

secondary pollution [36,37].

Catalysts 2022, 12, x FOR PEER REVIEW 5 of 11 
 

 

2.3. Nitrogen Conversion 

The total nitrogen (TN) includes NH4+-N, NO2−-N, NO3−-N, and organic nitrogen [35]. 

To analyze the nitrogen conversion during the electrochemical treatment, the TN, NO3−, 

and NO2− were also determined. As shown in Figure 3a, the TN concentration decreased 

from 122 to 71.3, 52.7, and 27.9 mg/L with 2, 3, and 4 A treatment, respectively (Figure 3a). 

It demonstrated that the TN removal rates increased with increasing currents. However, 

both NO3− and NO2− were not detected during the electrochemical treatment. These results 

indicated that the NH4+-N in the spent caustic wastewater was not oxidized to NO3− and 

NO2−, both of which were also contributed to eutrophication and could cause secondary 

pollution [36,37]. 

 

Figure 3. (a) Total nitrogen and (b) organic nitrogen evolution during the electrochemistry treat-

ment of the spent caustic wastewater with varying currents. 

In addition, the concentration of organic nitrogen can be calculated according to the 

analysis for NH4+-N, TN, NO3−, and NO2− [35]. Figure 3b shows that the organic nitrogen 

ranged from 39.2 to ~27−30 mg/L during the electrochemical process with varying currents 

(2–4 A), featuring only ~23–31% removal efficiencies. With the applied currents increasing 

from 2 to 4 A, the removal efficiencies of the organic nitrogen had little enhancement (Fig-

ure 3b). The results suggested that the organic nitrogen in the spent caustic wastewater 

was refractory by the direct electrolysis of the graphene electrode and chlorination. The 

possible reason was attributed to the low second-order rate constant for the reaction of 

chlorine with amines (~100–101 M−1·s−1) [38] and the short treatment time (120 s). 

2.4. EEO 

Energy consumption is a key index for evaluating the practicability of a technology. 

The electrical energy demand to abate the concentration of pollutants by 1 order of mag-

nitude in 1 m3 of water (i.e., electrical energy per order (EEO), kWh/m3-order) by the elec-

trochemical processes is calculated using Equation (8) [39]. 

EEO =
UIt

3600Vlg
C0

C

= 
2.3UI

3600Vk
 (8) 

where U is the cell voltage (V), shown in Table 2; I is the applied current (A), shown in 

Table 2; t is the treatment time (s); C0 and C are the NH4+-N concentration at times t = 0 

and t, respectively (mg/L); V is the solution volume (L); and k is the pseudo-first-order 

rate constant for pollutant removal (s–1), shown in Figure 1b. 

The EEO values of the NH4+-N removal during the electrochemistry treatment of the 

spent caustic wastewater with varying currents were calculated according to Equation (8) 

and shown in Figure 4. In general, the EEO of the NH4+-N removal decreased from 7.7 to 

6.1 kWh/m3-order with increasing currents from 2 to 4 A. The result was attributed to the 

Figure 3. (a) Total nitrogen and (b) organic nitrogen evolution during the electrochemistry treatment
of the spent caustic wastewater with varying currents.

In addition, the concentration of organic nitrogen can be calculated according to the
analysis for NH4

+-N, TN, NO3
−, and NO2

− [35]. Figure 3b shows that the organic nitrogen
ranged from 39.2 to ~27−30 mg/L during the electrochemical process with varying currents
(2–4 A), featuring only ~23–31% removal efficiencies. With the applied currents increasing
from 2 to 4 A, the removal efficiencies of the organic nitrogen had little enhancement
(Figure 3b). The results suggested that the organic nitrogen in the spent caustic wastewater
was refractory by the direct electrolysis of the graphene electrode and chlorination. The
possible reason was attributed to the low second-order rate constant for the reaction of
chlorine with amines (~100–101 M−1·s−1) [38] and the short treatment time (120 s).

2.4. EEO

Energy consumption is a key index for evaluating the practicability of a technology.
The electrical energy demand to abate the concentration of pollutants by 1 order of mag-
nitude in 1 m3 of water (i.e., electrical energy per order (EEO), kWh/m3-order) by the
electrochemical processes is calculated using Equation (8) [39].

EEO =
UIt

3600Vlg C0
C

=
2.3UI

3600Vk
(8)

where U is the cell voltage (V), shown in Table 2; I is the applied current (A), shown in
Table 2; t is the treatment time (s); C0 and C are the NH4

+-N concentration at times t = 0
and t, respectively (mg/L); V is the solution volume (L); and k is the pseudo-first-order rate
constant for pollutant removal (s–1), shown in Figure 1b.

The EEO values of the NH4
+-N removal during the electrochemistry treatment of the

spent caustic wastewater with varying currents were calculated according to Equation (8)
and shown in Figure 4. In general, the EEO of the NH4

+-N removal decreased from 7.7 to
6.1 kWh/m3-order with increasing currents from 2 to 4 A. The result was attributed to the
rapid increase in the NH4

+-N removal rate with increasing currents. For example, the k of
the NH4

+-N removal was enhanced ~3.3 times while the applied current only increased
2 times (i.e., from 2 to 4 A, see Figure 1b). Above all, the NH4

+-N removal during the
electrochemistry treatment of the spent caustic wastewater at 4 A is a cost-efficient choice.
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+-N removal during the electrochemistry treatment of the spent caustic

wastewater with varying currents.

2.5. Electrode Scale

As the electrode scale has a negative influence on electrode life and efficiency [40], the
mass of the electrode scale needs to be considered due to the high calcium ion (Ca2+), as
shown in Table 1. The amount of the electrode scale was determined by the mass difference
values of all the electrodes before and after treatment of 240 s. Figure 5a shows that the
electrode scale increased with increasing applied currents. When the applied currents
increased from 2 to 4 A, the electrode scale increased from 0.55 to 1.40 g. The phenomenon
was caused by the rapid mass transfer at a high current density. At a high current density,
more Ca2+ would be transferred onto the surface of the graphene cathodes and more H2O
would decompose into the OH−. Thus, the solubility product of the Ca(OH)2 would be
reached quickly, and then precipitation would occur. By X-ray diffraction (XRD) analysis,
and in comparison with the card of the powder diffraction file (PDF) (PDF#44-1481) [41],
the composition of the electrode scale is portlandite Ca(OH)2 (Figure 5b).
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Table 1. Main water parameters of the spent caustic wastewater.

Parameter Value

pH 11.4
NH4

+-N (mg/L) 70.0
TN (mg/L) 122

NO3
−-N (mg/L) 11.2

NO2
−-N (mg/L) 1.58

Ca2+ (mg/L) 53,100
Na+ (mg/L) 18,900
Cl− (mg/L) 111,000

Although obvious the electrode scale was observed during the electrochemical treat-
ment, it could be alleviated by reversing the electrode polarity [42,43]. After reversing the
anode and cathode, the flaky scale peeled off the electrode surface. Thereby, the electrode
scale decreased from 1.40 g (4 A) with 240 s treatment to 0.71 g (4 A-reversal) after reversing
the electrode polarity with 120 s treatment (Figure 5a). The scaling produced before the
electrode reversal treatment could be almost completely peeled off after the electrode
reversal treatment. The phenomenon was attributed to the oxygen (O2) generation via
the electron transfer of OH− to the anode surface. The generated O2 bubbles would lead
to the scale being peeled off the electrode surface [44]. As a result, the electrochemical
process could keep the long electrode life and be pretty efficient by continually reversing
the electrode polarity. In our study, the same graphene electrodes were used in all the
experiments. The electrodes were stable for at least ~20 L of the spent caustic wastewater
by continually reversing the electrode polarity.

3. Materials and Methods
3.1. Chemicals and Reagents

Nessler’s reagent was purchased from Tianjin Xintaiyi Co., Ltd. (Tianjin, China).
Phosphoric acid, N-(1-naphthalene)-ethylenediamine, and P-aminobenzene sulfonamide
were obtained from Aladdin Reagent Co., Ltd. (Shanghai, China). P-aminobenzene sulfon-
amide was purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). All
chemicals used in this study were of analytical grade. Stock solutions were prepared with
Milli-Q ultrapure water.

3.2. Water Sample

Spent caustic wastewater was sampled from a soda ash industrial park in Hebei,
China, then used within one week for the electrochemical experiments. Main parameters
of the spent caustic wastewater are shown in Table 1.

3.3. Electrochemical Experiments

The spent caustic wastewater (1 L) was added in a cylindrical glass reactor, then
treated by the electrochemical process for 120 s (see Figure 6 for the experimental setup).
For electrochemical experiments, ten electrodes were installed vertically and parallelly
into the wastewater, with a gap of 3 mm between the two adjacent electrodes. The two
outermost electrodes connect the positive and negative electrodes of a direct current (DC)
power supply. The electrodes were graphene plates (6 × 6 cm). The electrochemical
experiments were conducted under galvanostatic conditions with varying currents of 2–4
A (corresponding to current densities of 55.6–111 mA/cm2 according to Equation (9)).
Electrochemical conditions during the spent caustic wastewater treatment were listed in
Table 2.

j =
I
S

(9)

where j is the applied current density (mA/cm2), I is the applied current (mA), and S is the
area of the electrode (cm2).
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Table 2. Electrochemical conditions during the spent caustic wastewater treatment.

Current (A) J (mA/cm2) Voltage (V)

2 55.6 23
3 83.3 27
4 111 30

3.4. Analytical Methods

Free chlorine and total chlorine were analyzed using the N,N-diethyl-p-phenylenediamine
method with a Hach chlorine detector (Pocket Colorimeter, Hach, Loveland, CO, USA) [45].
NH4

+-N was determined using Nessler’s reagent spectrophotometry (HJ 535-2009) [46].
Total nitrogen (TN) was measured using alkaline potassium persulfate digestion UV spec-
trophotometric method (HJ 636-2012) [46]. NO3

− was analyzed by an ion chromatograph
(ICS-1100, Thermo Dionex, Waltham, MA, USA) [47]. NO2

− was determined using N-(1-
naphthalene)-ethylenediamine spectrophotometry [48].

4. Conclusions

This study introduces an electrochemical process as an efficient technology for NH4
+-

N removal in spent caustic wastewater treatment. NH4
+-N in the spent caustic wastewater

could be effectively removed in a short treatment time with an acceptable energy consump-
tion. By electron equilibrium and nitrogen conversion analysis, NH4

+-N was primarily
converted to NH2(ads) on the graphene electrode by one-electron transfer during the
electrochemical process. The little amount of the NH2Cl, NHCl2, and NCl3 produced in
the treatment suggested that chlorination played a negligible role in the NH3-N removal.
Although obvious the electrode scale was observed during the electrochemical treatment,
it could be alleviated by reversing the electrode polarity. These results suggest that the
electrochemical process may provide a competitive technology for NH4

+-N removal in
spent caustic wastewater treatment.
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