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Abstract: Access to drinking water is a human right recognized by the United Nations. It is estimated
that more than 2.1 billion people lack access to drinking water with an adequate microbiological qual-
ity, which is associated to 80% of all diseases, as well as with millions of deaths caused by infections,
especially in children. Water disinfection technologies need a continuous improvement approach
to meet the growing demand caused by population growth and climate change. Heterogeneous
photocatalysis with semiconductors, which is an advanced oxidation process, has been proposed
as a sustainable technology for water disinfection, as it does not need addition of any chemical
substance and it can make use of solar light. Nevertheless, the technology has not been deployed
industrially and commercially yet, mainly because of the lack of efficient reactor designs to treat
large volumes of water, as most research focus on lab-scale experimentation. Additionally, very few
applications are often tested employing actual sunlight. The present work provide a perspective on
the operation trends and advances of solar heterogeneous photocatalytic reactors for water disinfec-
tion by systematically analyzing pertaining literature that made actual use of sunlight, with only
60 reports found out of the initially 1044 papers detected. These reports were discussed in terms
of reactor employed, photocatalyst used, microorganism type, overall disinfection efficiency, and
location. General prospects for the progression of the technology are provided as well.

Keywords: sunlight; reactor design; advanced oxidation processes; water treatment; water
potabilization

1. Introduction

As of 2010, the access to water has been recognized as a human right by the United
Nations. Water purposed for personal and domestic use should comply with sufficiency,
physical availability, safeness, and affordability [1]. Nevertheless, the World Health Organi-
zation (WHO) estimates that 30% of the global population, which accounts for 2.1 billion
people, lack access to water sources which meet guidelines for safe drinking water [2].
Water which does not observe those set guidelines cannot be considered as drinking water
and its consumption can be hazardous; it is estimated than the intake of unsafe water is
at fault for 80% of all of the world diseases [3]. Among these illnesses, infectious diseases
which are caused by pathogens, mainly bacteria and virus, are recurrent [4]. Some of them
are typhoid, cholera, dysentery, parasitic infections [3] or viral infections [4]. Water-borne
diseases can become lethal, especially if patients do not receive medical attention; these
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diseases cause 1.8 million deaths each year, children being the most vulnerable group.
Water quality improvement reduces this morbidity [3].

The WHO has also projected, that by year 2025, half of the world population will live
in water-stressed areas. To provide safe drinking water has become one of the biggest
challenges for mankind in the present century [5].

Among the WHO guidelines for drinking water, it is stated that no microorganism
known to be pathogenic should be contained within water, hence, drinking water should
be disinfected to ensure this guideline [6]. Water supply systems may use one or several
disinfection technologies in order to ensure no pathogenic microorganisms are present,
the selected technology depends on a plethora of factors, such as availability, water initial
microbial quality, and final quality intended or needed, cost effectiveness, volume required
or even level of automation and local level costs [7]. Table 1 lists some of the most used
water disinfection processes, along with some of their advantages and disadvantages.

Table 1. Advantages and disadvantages of some of the most used water disinfection technologies.

Water Disinfection Process Advantages Disadvantages

Chlorination Low cost; effective at low concentrations;
residual effect, widely available [8]

Formation of toxic byproducts; modified taste
and odor; ineffective against biofouling; cannot

kill parasite eggs [9,10]

Ozonation
High biocidal efficacy over a wide
antimicrobial spectrum; color, odor,

and taste control [11]

Lack of residual effect as ozone is unstable in
water; byproducts formation from bromide

and natural organic matter [12]

Disinfection with
colloidal silver

Well-known biocidal and disinfection
properties; able to remove organic compounds;

lacks the adverse effects of chlorination
and ozonation [13]

Relatively high cost and time inversion; loss of
effectivity over time [14]

Peracetic acid treatment
Low dependence on pH; high sterilization

ability; reduced toxic byproducts’ formation;
easy implementation [15]

Costly activation (UV light or metal catalysis);
not proven technical feasibility to inactivate
fungi, algae of microorganisms on biofilms;
scarce pilot plant applications which limit

economic feasibility evaluation [16]

Ultraviolet radiation
No chemical addition, reduce disinfection

byproduct (DBP) formation, high efficiency in
inactivating chlorine-resistant organisms [17]

Energy intensive; unsuitable for places
without stable energy supply, lack of a

residual effect [18,19]

Solar disinfection (SODIS)
Non-energy intensive as it harvests solar

energy; effective for several microorganisms;
point of use technology [20]

Low efficiency in solar energy conversion; long
exposure time; microorganism regrowth might
happen if UV exposure is not high enough [21]

Considering the increasing water stress context and the drawbacks of the known
disinfection water technologies, the need to re-design or improve these processes to obtain
technologies which are robust, simple to use, chemical-free, and inexpensive arises [22].
Some emerging water disinfection technologies include electrodisinfection [23], water
cavitation [24] or heterogeneous photocatalysis (HP) with semiconductors, also known as
photocatalysts (PC).

HP is an advanced oxidation process (AOP) which was first reported in 1972 when
water splitting was observed on the surface of a titanium electrode, namely, over titanium
dioxide (TiO2) due to the effect of light irradiation [25]. When a PC is exposed to radiation
(hν) with energy higher than its band-gap (space between the molecule conduction band
and valence band) level energy, an electron from the valence band migrates to the con-
duction band, creating a hole with a positive charge in the valence band (h+) and an extra
electron with a negative charge in the conduction band (e−) [26,27]. The photo-generated
charges move up to the PC’s surface, which then give place to redox reactions when oxygen
and water are present, generating reactive oxidizing species (ROS), mainly hydroxyl radical
(HO•) and superoxide radical (O2

•−), but also hydrogen peroxide (H2O2) [28].
HP is a potentially sustainable technology for water disinfection, as PC can be acti-

vated employing solar light, and moreover, no additional chemical substance is needed in
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the process, which minimizes the potential formation of DBP and environmental harmful
effects [29,30]. HP has also been researched for inorganic pollutants’ removal from water,
such as hexavalent chromium [31] or trivalent arsenic [32], and also for recalcitrant organic
compound degradation, such as dyes, phenolic compounds, pesticides and pharmaceuti-
cal active compounds [33], posing HP as potential technology for comprehensive water
treatment.

TiO2 has remained as the most studied PC, despite the fact it is only active under
UV irradiation (which accounts for nearly 5% of the total Sun spectral irradiation), whose
wavelengths are in the range of 200–400 nm (TiO2 peak absorbance is around 387 nm).
It also has a relative high recombination rate of the photo-generated charges. Several
approaches have been researched to address these issues, such as doping TiO2 with other
elements, coupling it with other PC to form heterojunctions, or even with itself to form
homojunctions; these strategies generally improved TiO2 photocatalytic activity to some
extent, although most studies have only been carried out at lab-scale [25,34–37].

Other materials have also been researched, such as the bismuth oxyhalides, which
are a group of layered materials with narrow band-gaps [38,39]. It is still unclear if a
narrow band-gap is the answer to use solar light more efficiently. Black TiO2, a variation
of TiO2 exhibiting dark coloration instead of white, and sometimes also referred to as
reduced, hydrogenated or oxygen-vacant TiO2, was first reported in 2011 and its ability
to show photocatalytic activity even under infrared light was noticed; although activity
under visible light has been reported and some studies show it outperforms pristine TiO2,
it is believed that this happens due to an improved use of UV irradiation rather than an
effective use of visible or infrared light [40,41].

Water disinfection via HP has been broadly researched for at least the last twenty years,
although disinfection via UV or heat might happen simultaneously [42]; in disinfection
via HP, the generated ROS cause oxidative stress to a wide variety of microorganisms,
including Gram-positive and Gram-negative bacteria, DNA viruses, and RNA viruses
amongst others [43]. The microorganism cell integrity is compromised as the ROS cause
damage to the cell membrane, resulting in cytoplasm leakage; ROS can also obstruct
cell vital functions like protein synthesis or break biomolecules covalent bonds [44–46].
A schematic representation of ROS generation at molecular level (depicting TiO2) and
microorganism disinfection via HP is shown in Figure 1.
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Water disinfection via solar HP depends on several factors, to name a few: nature and
initial concentration of microorganisms, process duration, irradiation intensity, composition
of the water matrix, turbidity, water layer depth, sunlight angle of incidence, water pH,
and PC properties [45,47,48].

Despite its potential advantages, solar HP has not been deployed as a full-scale process
yet; several limitations have been addressed such as low photoconversion efficiency, scarce
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information on energy consumption, and yields on catalyst preparation processes amongst
others, but the lack of knowledge on the field of solar HP reactor design, as well as
the absence of a consensus on proper design methodologies, are recognized as the main
ones [49]. Several reactor designs have been proposed based on devices designed for solar
thermal applications, such as the parabolic trough reactor (PTR) based on the parabolic
trough solar collector, the compound parabolic reactor (CPC) based on the compound
parabolic solar collector or the flat plate reactor (FPR), based on flat devices for solar energy
collection [50,51].

The number of papers published on the topic of disinfection via HP has been increas-
ing year by year during the last two decades, which reflects the interest of the scientific
community in these technologies [52]. However, the amount of research focusing on reac-
tors is generally scarce [53], and even though one of the most promoted characteristics of
HP is its ability to make use of solar energy, plenty of research is performed using solar
simulators instead of actual sunlight, as the controlled conditions allowed by these devices
provide accurate and reproducible results [54]. PC efficiency differs between simulated
sunlight and actual sunlight [55], hence, carrying out research employing actual sunlight is
also relevant and needed.

The objective of the present work is to analyze scientific works focusing on the use
of solar HP reactors for water disinfection. A systematic literature search was conducted
following the preferred reporting items for systematic reviews and meta-analyses (PRISMA)
protocol to discriminate non-pertaining works. The operations have been discussed in
function of reactor type used, PC properties, type of the microorganism treated, disinfection
performance, and location.

2. Methods for Literature Search, Inclusion Criteria, and Review

The literature review method was performed following the PRISMA four-step
procedure [56,57]. The four steps are:

1. Identification of relevant papers indexed by databases.
2. Screen the papers for the determined criteria.
3. Verify papers’ eligibility.
4. Incorporate the eligible papers in the systematic review.

An electronic search of articles was performed on Scopus and Web of Knowledge
using the terms “photocataly*”, “disinfection”, and “solar”, searching on title, abstract,
and keywords in Scopus, and on all fields in Web of Knowledge. As it has been reported
that research focused on reactors is scarce, comprising less than 2% of all papers related to
HP [58], it was decided to include any work involving water disinfection regardless of the
objective or publication year.

Books, book chapters, review articles, conference proceedings, and articles not pub-
lished in English were excluded. Following the first exclusion, papers were screened for
the inclusion criteria. Papers not focused on water disinfection (i.e., energy generation or
pollutants’ degradation), papers that did not make use of actual sunlight (i.e., solar simulators
or UV-lamps), and papers that did not use a photocatalytic reactor (i.e., test tubes of bakers)
were not included. Figure 2 illustrates the PRISMA steps taken for papers’ eligibility.

Eligible papers were then analyzed for data extraction including the type of reactor
employed, the PC used, type of microorganisms, microorganism concentration, disinfec-
tion efficiency, operation duration, volume of water treated, operation timeframe, and
experimentation location.
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3. Results and Discussion
3.1. Data Synthesis

A total of 60 reports were deemed as appropriate for screening in this systematic
review out of the 1043 records originally found. Table 2 shows the extracted data.
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Table 2. Research reports focused on water disinfection via heterogeneous photocatalysis employing actual sunlight carried out in photocatalytic reactors.

Reactor Photocatalyst Microorganism
Treated

Initial
Concentration

(CFU/mL)

Log Cycle
Reduction

Process Time
(min)

Volume
Capacity (L)

Operation
Timeframe Location Reference

CPC type TiO2 Escherichia coli 105 −5 35 150 Not reported Not reported [59]

CPC type TiO2 Escherichia coli 106 −6 120 Not reported 14:00–16:00 Seoul, Korea (38◦ S, 127◦ E) [60]

CPC type TiO2 Escherichia coli 105 −4 30 35 Not reported Almeria, Spain (37◦ N, 2◦ W) [61]a

CPC type TiO2 Escherichia coli 106 −4 12 11 Not reported Almeria, Spain (37◦ N 2◦ W) [62] a

CPC type TiO2 Escherichia coli 106 −6 90 70 12:00–16:00 Lausanne, Switzerland (46◦ N, 6◦ E) [63] a

CPC type TiO2 Escherichia coli 104 −3 45 11 Not reported Almeria, Spain (37◦ N, 2◦ W) [64] a

CPC type TiO2 Escherichia coli 106 −6 60 1 Not reported Dublin, Ireland (53◦ N, 15◦ W) [65] a

CPC type TiO2 Fecal coliforms 106 −6 360 20 Not reported Tucumán, Argentina (26◦ S, 64◦ W) [66]

CPC type TiO2 Escherichia coli 106 −6 150 37 Not reported Lausanne, Switzerland (46◦ N, 6◦ E) [67] a

CPC type TiO2 Escherichia coli 106 −6 180 35 Not reported Lausanne, Switzerland (46◦ N, 6◦ E) [68]

CPC type TiO2 Escherichia coli 106 −6 30 35 Not reported Lausanne, Switzerland (46◦ N, 6◦ E) [69] a

FPR type TiO2 Escherichia coli 104 −4 60 1 Not reported Not reported [70]

CPC type TiO2 Escherichia coli 107 −5 90 14 Not reported Almeria, Spain (37◦ N, 2◦ W) [71] a

CPC type TiO2 Escherichia coli 106 −4 90 14 09:00–10:30 Almeria, Spain (37◦ N, 2◦ W) [72] a

Rectangular
type TiO2 Coliforms 106 −5 120 12.8 13:00–15:00 Not reported [73]

CPC type TiO2 Fusarium solani 103 −3 300 14 11:00–16:00 Almeria, Spain (37◦ N, 2◦ W) [74] a

CPC type TiO2 Escherichia coli 106 −6 50 20 Not reported Porto, Portugal (41◦ N, 8◦ W) [75] a

CPC type TiO2 Fusarium spp. 103 −3 240 60 11:00–16:00 Almeria, Spain (37◦ N, 2◦ W) [76] a

CPC type TiO2 Escherichia coli 105 −5 240 12 10:00–14:00 Lares, Peru (13◦ S, 72◦ W) [77] a

CPC type TiO2 Escherichia coli 106 −6 Not reported 10 Not reported Almeria, Spain (37◦ N, 2◦ W) [78] a

Offset tubular
type TiO2 Coliforms 103 −3 240 300 11:00–15:00 Not reported [79]

Offset tubular
type TiO2 Escherichia coli 106 −6 300 7 10:30–15:30 Almeria, Spain (37◦ N, 2◦ W) [80]

FPR type TiO2
Aeromonas
hydrophila 105 −1.2 2.5 0.2 Not reported Queensland, Australia (20◦ S, 142◦ E) [81]
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Table 2. Cont.

Reactor Photocatalyst Microorganism
Treated

Initial
Concentration

(CFU/mL)

Log Cycle
Reduction

Process Time
(min)

Volume
Capacity (L)

Operation
Timeframe Location Reference

FPR type TiO2
Aeromonas
hydrophila 105 −1.38 2.5 0.2 Not reported Queensland, Australia (20◦ S, 142◦ E) [82]

CPC type TiO2 Phage ΦX174 Not reported −3 30 Not reported Not reported Dublin, Ireland (53◦ N, 6◦ W) [83] a

CPC type TiO2
Microcystis
aeruginosa 107 −7 20 20 Not reported Porto, Portugal (41◦ N, 8◦ W) [84] a

CPC type TiO2 Escherichia coli 105 −4 300 10 11:00–15:00 Almeria, Spain (37◦ N, 2◦ W) [85] a

PTR type TiO2 Coliforms Not reported −2 300 5 Not reported Indore, India (22◦ N, 75◦ E) [86]

FPR type N-TiO2 Coliforms 103 −3 180 1.332 10:00–16:00 Not reported [87]

CPC type TiO2 Fecal coliforms 103 −1 120 1 Not reported Medellin, Colombia (6◦ N, 75◦ W) [88] a

CPC type TiO2 Fusarium solani 102 −2 120 60 10:00–16:00 Almeria, Spain (37◦ N, 2◦ W) [89] a

Staircase
reactor TiO2 Escherichia coli 106 −2 140 Not reported Not reported Not reported [90] a

CPC type TiO2 Escherichia coli 106 −6 300 8.5 10:00–15:00 Almeria, Spain (37◦ N, 2◦ W) [91] a

CPC type TiO2 Escherichia coli 106 −6 Not reported 60 Not reported Almeria, Spain (37◦ N, 2◦ W) [92] a

CPC type TiO2 Escherichia coli 107 −4 300 15 Not reported Perpignan, France (42◦ N, 2◦ E) [93]

CPC type TiO2 Escherichia coli 107 −2 90 6.4 Not reported Bangkok, Thailand (13◦ N, 100◦ E) [94] a

PTR type TiO2 Fecal coliforms 106 −6 360 Not reported 09:00–17:00 Madhya Pradesh, India (22◦ N, 75◦ E) [95]

CPC type TiO2 Escherichia coli 105 −5 80 27 Not reported Cadiz, Spain (36◦ N, 6◦ W) [96] a

Box type TiO2 Escherichia coli 107 −2 480 0.66 08:30–16:30 Not reported [97]

CPC type TiO2 Curvularia sp. 103 −3 120 20 Not reported Almeria, Spain (37◦ N, 2◦ W) [98] a

CPC type Ag-BiVO4 Escherichia coli 106 −6 40 10 10:00–15:00 Almeria, Spain (37◦ N, 2◦ W) [99] a

CPC type TiO2 Escherichia coli 106 −4 81 15 Not reported Dublin, Ireland (53◦ N, 6◦ W) [100] a

Concave dish
type TiO2

Heterotrophic
bacteria 103 −4 240 1 10:30–14:30 Gonabad, Iran (34◦ N, 58◦ E) [101]

CPC type TiO2
Enterobacter

cloacae 109 −4.9 180 3 Not reported Medellin, Colombia (6◦ N, 75◦ W) [102] a

CPC type TiO2 Fecal coliforms 105 −5 300 20 Not reported Almeria, Spain (37◦ N, 2◦ W) [103] a

CPC type TiO2 Escherichia coli 107 −7 105 0.6 10:00–13:00 Nsukka, Nigeria (6◦ N, 7◦ E) [104]
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Table 2. Cont.

Reactor Photocatalyst Microorganism
Treated

Initial
Concentration

(CFU/mL)

Log Cycle
Reduction

Process Time
(min)

Volume
Capacity (L)

Operation
Timeframe Location Reference

Compound
Triangular

collector type
N-TiO2 Escherichia coli 103 −1 180 Not reported 10:00–13:00 Salerno, Italy (37◦ N, 14◦ E) [105] a

Offset tubular
type Ag-TiO2 Escherichia coli 105 −5 30 20 10:00–14:00 Pondicherry, India (12◦ N, 79◦ E) [106]

FPR type TiO2 Escherichia coli 106 −6 60 1 Not reported Not reported [107] a

PTR Type Ag-TiO2 Escherichia coli 106 −6 180 Not reported 10:00–15:00 Not reported [108]

Offset tubular
type TiO2 Coliforms 102 −2 560 Not reported 08:00–17:00 Mae Salong Nok, Thailand

(20◦ N, 99◦ E) [109]

CPC type ZnO Fecal coliforms 107 −7 15 1.1 11:00–15:00 Tehran, Iran (35◦ N, 51◦ E) [110]

FPR type TiO2 Fecal Coliform 106 −4 45 2 Not reported Durango City, Mexico
(23◦ N, 104◦ W) [111] a

CPC type TiO2 Escherichia coli 105 −3.5 360 2.2 Not reported Cadiz, Spain (36◦ N, 6◦ W) [112]

CPC type rGO-TiO2
Klebsiella

pneumonia 109 −9.3 210 0.39 Not reported Stellenbosch, South Africa
(33◦ S, 18◦ E) [113]

CPC type TiO2 Escherichia coli 107 −4 300 15 11:00–15:00 Perpignan, France (42◦ N, 2◦ E) [114]

Optofluidic
capillary type Red phosphorous Escherichia coli 108 −8 28 0.004 Not reported Not reported [5]

Linear Fresnel
type TiO2 Escherichia coli 104 −3 300 1 08:00–13:00 Tsukuba, Japan (36◦ N, 140◦ E) [115]

Through
reactor Fe-TiO2 Escherichia coli 106 −6 120 6 12:00–14:00 Patiala, India (30◦ N, 76◦ E) [116]

Offset tubular
type TiO2 Escherichia coli Not reported Not reported 420 120 Not reported Boyacá, Colombia (5◦ N, 72◦ O) [117]

a Cumulative UV dose (QUV) reported.
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3.2. Type of Reactor

CPC commonly is composed of tubes made of borosilicate glass placed above parabolic
reflectors made of polished aluminum, installed on an inclinable stand tilted at local latitude;
water reservoirs and water pumps are also needed, and the most sophisticated ones count
with radiometers, flow meters, and sensors for temperature, pH and dissolved oxygen
measuring [118]. Due to its optical efficiency and its ability to use both direct and diffuse
solar UV light, it has been considered as the most ideal solar reactor design available at the
moment, especially for environmental applications [119], hence, its use on the majority of
papers reviewed was within expectations. Figure 3 depicts a scheme of a CPC and its main
components, as well as one of a FPR and one of a PTR.
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FPR consists of a flat or corrugated surface over which a thin film of water flows
(in most cases, in the laminar flow regime); it can be a proper approach for small-scale
applications, as it offers a large surface area where the PC can be immobilized and its
design is simple [121]. Although the reports reviewed in this paper employing this design
were a lot less in number than those using a CPC design, it is worth mentioning that two of
the papers reviewed reported steady-state operation rather than batch operation, which is
one of the sought-after characteristics for reactors. An example on the operation of an FPR
reactor can be seen in Figure 3 above.

Offset tubular reactors were employed in four studies. This reactor is similar to the
CPC, with the only difference that it does not count with a reflector, which makes it less
expensive than the CPC. As it does not need a reflector, more tubular sections could be
positioned within the same space a CPC occupies, allowing the treatment of a higher
volume of water, as a work which compared both reactor designs suggested [122]. A
potential disadvantage in comparison to the CPC is the lower temperature the water
might reach. Temperature in the range of 20–80 ◦C does not affect TiO2 photo-excitation,
and although dissolved oxygen concentration in water decreases as water temperature
increases, ionic products of water (OH− and H3O+) do increase in the temperature range of
20–80 ◦C, which promotes HO• generation [92]. In addition to damage caused by ROS to
the microorganism, inactivation also happens due to UV light effect alone and temperature
increase [123].

Three more papers reported the use of a PTR, in which main components include
a parabolic reflector mounted over a rotating platform to concentrate sunlight; its use
has dropped as it has numerous insuperable disadvantages: its components are relatively
expensive, the high sunlight concentration leads to an excessive heating which hinders
photocatalytic activity, and it is only able to use direct sunlight [115]. Likewise, a scheme
showing an example of the operation of a PTR can be seen above in Figure 3. Table 3
shows the summarized advantages and disadvantages of the most used photocatalytic
reactor types.
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Table 3. Summarized advantages and disadvantages of the most used photocatalytic reactor types.

Type of Reactor Brief Description Advantages Disadvantages

Compound
parabolic

concentrator (CPC)

Transparent cylindrical
receptors are placed onto two

joined half-parabola shape
reflectors [120]

Uniform light irradiation for
cylindrical receptors; able to
use both direct and diffuse

solar irradiation; able to work
at low solar concentration

rates [50,120,124]

Aluminum reflector is imperative, which
implies a higher cost; limited optical
efficiency due to light being reflected

multiple times [50,125]

Flat plate reactor
(FPR)

Water flows over a tilted plate
whence the PC has been

immobilized [48]

Relatively lower price as no
reflectors are needed [50]

Atmosphere can prevent the system to
work in an appropriate way; high

pressure is needed to pump water onto
large surfaces [124]

Parabolic trough
reactor (PTR)

A parabolic light-reflecting
surface concentrates solar

irradiation in a transparent
receptor; usually operated in

the turbulent flow regime;
equipped with a sun tracking

system [120]

Easily adaptable and
developed technology;

able to use both direct and
diffuse solar irradiation

[50,124]

Sun tracking systems implies a higher
cost; aluminum reflector is imperative,

which implies a higher cost; solar
concentration factor above one sun

inhibits photocatalytic activity; increase
in temperature reduces dissolved O2

concentration, which slows down
photocatalytic activity; unable to use
diffuse solar irradiation, rendering it

impractical on overcast or cloudy days; a
relatively large area needed for

installation [50,120]

The remaining eight reactors can be considered as empirical approaches (as no design
parameters are included), that due to relative youngness of the field, results in research
teams frequently employing their own singular design, as pointed out more than a decade
ago [48].

It has already been stated that the biggest challenge to translate HP to commercial
applications remains as the lack of an efficient reactor design suitable for treating large
volumes of water [126]. CPC remains as the most studied reactor, with no update, which
again points out the need of more research focused on reactors. Additionally, reactor
innovation can be made in diverse ways; some process intensification attempts have
been reported which involve combining solar HP with other processes, such as solar
pasteurization [42] or ozonation [127]. Additionally, more research is needed to understand
the interesting synergy between the different microorganism inactivation mechanisms
which take place within a solar HP reactor (UV light inactivation and thermal inactivation).

3.3. Photocatalyst Used

TiO2 was the most used PC in the papers analyzed, with a total of 51 studies. Around
1600 papers examining its usage in disinfection have been published over the last 20 years,
with an increase from 5 papers in 2000 to 165 papers in 2019, which is an indicator of the
growing research interest in heterogeneous photocatalytic disinfection, leading to scaled-up
applications [30], just as the ones analyzed in the present work. TiO2 is known for its note-
worthy photocatalytic activity, due in part to its specific surface area of around 46.06 m2 g−1

and a surface energy of 80 mJ·m−2, but also for its optical and electronic properties, high
chemical stability, low cost, non-toxicity, and environmental friendliness [128–130].

On the other hand, TiO2 has limitations, including fast electron-hole recombination
even though adding H2O2 results in an almost inhibited recombination by scavenging
e− [131], and other drawbacks include slow charge carrier transfer, elevated recycling cost,
and photocatalytic activity under UV irradiation only, due to its wide band-gap of 3.2 V,
limiting its efficiency for solar applications, as UV irradiation account for less than 5% of
the received solar energy [132]. ZnO, a PC used in one of the papers reviewed, also has a
band-gap value of 3.2 V, and its drawbacks are almost identical to those of TiO2 [47].
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To overcome these issues, TiO2 modification by doping and coupling has been re-
searched, i.e., Ag-TiO2, Fe-TiO2, N-TiO2, and rGO-TiO2, as used in some of the papers
reviewed. Research towards PC with narrower band-gap and photocatalytic activity under
visible light irradiation, such as the ones used in the papers reviewed, Ag/BiVO4 and red
phosphorus, is the other relevant research trend [133].

When TiO2 surface is modified by metal doping, a Schottky’s barrier arises when
irradiated with UV light, causing the metal Fermi levels to be lower than those of TiO2 CB,
increasing the metal ability to accept electrons, inhibiting charge recombination. When
doping with a noble metal, surface plasmon resonance happens, which allows for electrons
to be transferred directly to TiO2 CB [134].

Fe-TiO2 has shown a better performance than TiO2, which is attributed to Fe atoms
acting as electron-hole traps, slowing down charge recombination and enhancing photocat-
alytic activity as a result; it also enhances specific surface area [135,136].

Ag-TiO2 has been researched since 1984 and it has several advantages over con-
ventional TiO2, such as a narrower band-gap of 2.77 eV, a higher specific surface area
(239 m2 g−1) and the plasmonic effect which increase visible light response. Ag-TiO2 has
been gaining attention from the scientific community, which is also aimed at overcoming
its share of drawbacks, such as photocatalytic activity gradual loss and Ag leaching [132].

Nitrogen is the most common non-metal used as a doping agent for TiO2, predom-
inantly because of its small ionization energy and its atomic size comparable with that
of oxygen. Doping with oxygen confers TiO2 photocatalytic activity under visible light,
although the exact mechanism for this enhancement is still elusive and not totally under-
stood; N-TiO2 has been used for several applications [137,138], including solar disinfection
in a photocatalytic reactor.

Graphene-based and TiO2 composites have also been researched, which has resulted in
an increased photocatalytic performance [139]. Composited of TiO2 and reduced graphene
oxide (rGO) higher photocatalytic activity is attributed to a synergism involving a higher
number of photocatalytic active sites, a superior light collection (due to the hierarchical
structural interface between unidimensional TiO2 and bidimensional rGo) and an enhanced
charge separation rate [140].

PC based on bismuth have been widely researched for water disinfection applications,
as they are non-toxic, chemically stable, visible light active, synthesized with ease, reusable,
and relatively economic. Bismuth-based PC disadvantages include low light absorption,
high charge recombination, and a slow charge migration [141]. One of the most promising
PC is bismuth vanadate (BiVO4), whose properties can be improved when doped with
metals (such as in one of the works reviewed in this paper) [142]. Although 15% Ag doped
BiVO4 was effective for water disinfection, it was not able to outperform conventional
TiO2 [99].

Red phosphorous belongs to a different kind of PC, which are elemental PC; it is an
allotrope inert to chemical reactions and of elevated thermodynamic stability; its band-gap
in the range of 1.4–2.0 allows it to be active under visible light, its production is non-
expensive as the raw material is of low cost, and it is non-toxic; it is a promising material
for photocatalytic disinfection, although there is still non-consensus about its resistance to
oxidation [143,144].

3.4. Microorganism Type

The vast majority of works reviewed in this paper (a total of 38) analyzed water
disinfection employing E. coli, which is within expectations due to the interest of the
scientific community in it, being a research subject in evolutionary, biological genetic,
and molecular studies [145]. E. coli is regarded as an indicator microorganism for the
presence of bacteria by the WHO, as it has been characterized extensively and its presence,
which indicates fecal contamination, is common in untreated water sources; however,
it is inactivated with more ease than other microorganisms, hence, its absence does not
guarantee that any other fecal coliform or microorganism are absent as well [146].
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Among the reviewed works, five and six papers analyzed disinfection of total coliforms
and fecal coliforms, respectively, which is completely appropriate within the interest of
performing experiments in conditions as close to reality as possible, as it is well-known
that disinfection rate is different between microorganisms of different species, and might
even vary between strains of the same species [147]. Methods to quantify coliforms in the
works reviewed included test paper and plate count [88,109].

One of the reviewed papers analyzed total heterotrophic bacteria disinfection, and
four more analyzed disinfection employing a determined species. Several bacteria genres
are included within the heterotrophic bacteria, such as Aeromonas, Citrobacter, Enterobacter,
Helicobacter, Klebsiella, and Serratia among others. Some of these bacteria can cause health
issues to humans with suppressed immunologic response, and are also associated with a
low organoleptic water quality [148,149].

The last paper analyzing bacteria disinfection focused on Microcystis aeruginosa, which
is a cyanobacteria that causes immense harm to ecosystems due to the release of cyanobac-
terial toxins and algal organic matter; its rapid growth greatly affects the efficiency of
drinking water treatments [149]. Previous work has reported that Microcystis aeruginosa
regrowth after photocatalytic is inhibited, as cell density is less than 85% compared to con-
trol experiments [150]. Since HP is also able to degrade organic compounds, it can offer a
comprehensive alternative for cyanobacteria disinfection, as the detrimental cyanobacterial
toxins can be degraded as well [126,151].

In the case of fungi disinfection, three papers focused on the genre Fusarium, which is
a fungus that can cause a condition called fusariosis. Fusariosis symptoms depend on the
affected area and the host’s immunological response, but they can include nail, skin, and
eye infection [152]. According to estimations, the species Fusarium solani is associated with
50% of all the fusariosis reported cases [153].

One of the papers examined Curvularia spp. disinfection; although it is infrequent, this
genre can cause several types of human mycoses, including: fungal keratitis, onychomyco-
sis, peritonitis, invasive sinusitis, subcutaneous disease, and systemic infections among
others [154].

Viral disinfection was also reported. A paper analyzed disinfection of the ΦX174
virus, which is a phage that commonly infects E. coli, hence, its presence in water is also
considered an indicator of fecal pollution [155].

Summarizing, solar HP reactors have been studied for water disinfection involving
several types of microorganisms, and although the exact mechanism does surely differ
from one microorganism to another, the oxidation caused by the ROS surely plays an
important role.

3.5. Disinfection Performance

Most of the papers reviewed reported a high disinfection rate of several orders of
magnitude. However, this data alone is not enough to properly assess process efficiency.
It is well known that there are no established and unanimous figures of merit to evaluate
the efficiency of HP processes, as the amount of diverse studies is vast, which include
emerging technologies and processes combinations, giving as a result a massive challenge
to critically assess HP efficiency, which is also multidimensional, as operational costs,
sustainability, feasibility and yields, among other parameters, such as microorganism
nature, initial concentration, water matrix and pH, to name a few, should, preferably, be
considered [47,156].

Proposed benchmarks to evaluate HP efficiency include disinfection rate constant,
photocatalytic space-time yield, photonic yield, quantum yield, and population log reduc-
tion among others; however, the methodologies to determine these figures of merit can
differ from one study to another, hence, the IUPAC recommends to treat these figures of
merit as only apparent, as a consensus on how to properly determine a benchmark for
comparison among different reports is still lacking [30,53,157]. This issue has been known
for decades and in 2001, the IUPAC published a technical report which suggested the use
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of several figures of merit to evaluate AOPs (including solar HP) [158]. Although the use
of some of these benchmarks (i.e., collector area per order) is still reported on in recent
scientific literature, none of the reports reviewed in the present work made use of any
of them.

Thirty-two papers reported the use of QUV, which is the cumulative UV energy during
an irradiation time per unit of volume of water; as this figure of merit considers solar
irradiation intermittencies throughout the day, it can be considered accurate for efficiency
assessments for the time being [159], considering the complex and variable composition of
the water microbial consortium.

Ten out of the 69 analyzed papers reported an order of magnitude reduction smaller
than 3, which indicates that in the vast majority of the reviewed works, a disinfection rate
of at less 99.9% was achieved, which complies with the minimal health risk standard set by
the WHO [160].

3.6. Volume Treated

In 2011, the WHO estimated that a person needs between 50 and 100 L of water per
day to meet their basic needs which include, but are not limited to, drinking water, food
preparation, and sanitation. However, in water scarcity scenarios, the WHO recommends
a minimum of 7.5 L of drinking water per capita per day [161–164]. The lack of reactor
designs able to treat large volumes of water is one of the main reasons which restrains HP
commercial and industrial application [165]; nevertheless, some of the papers reviewed in
this present work report on treating water volumes in the range of 100–300 L, which could
very well meet drinking water requirements of households or small public facilities [166],
although actual application depends on more factors, such as level of automation or cost
effectiveness, to mention some [7].

Future research should also focus on exploring solar HP reactors or systems able to
disinfect water in a steady-state operation rather than batch operation; the volume output
still needs to be increased, and even though scaling-up might pose a challenge due to light
distribution, scaling-out or numbering-up might offer a feasible alternative, providing land
for installation is available; finally, any system should be tested in conditions as close to
reality as possible [167,168].

3.7. Experimentation Location

The reviewed works were performed around the globe in latitudes as northernmost
as 53◦ N and southernmost as 38◦ S, as well as in longitudes as westernmost as 104◦

W and easternmost as 142◦ E, which indicates water disinfection via HP could be used
in varied locations. However, UV radiation reaching Earth’s surface varies around the
world and through time, and is dependent on many factors, such as presence of clouds,
atmosphere ozone concentration, sunlight reaching the surface oblique angle, aerosol
particles concentration, sun elevation, and surface reflectivity, among others [169].

Disinfection via solar HP is related to SODIS, which is being globally promoted. Guid-
ance has been made public to facilitate the worldwide implementation of a standardized
procedure [170,171], although, at the moment, there are no available predictive approaches
for SODIS expected efficiency worldwide [172], hence, the scenario is analogous for disin-
fection via solar HP.

3.8. Discussion, Considerations, and Prospects

Based on the present literature review and considering the relatively small number of
works that make use of real solar irradiation, there has not been any considerable advance in
reactor design in more than two decades, with batch-operated CPC reactor being the most
common operation. One of the papers reported coupling solar HP with an electrochemical
process [114], which can be considered a process intensification approach [173], rather than
an improvement in reactor design by itself.
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HP reactor design is challenging, as it involves complex interactions between the PC
and microorganisms with the light [174], which can explain the minimal innovation in solar
HP reactor designs. It is worth mentioning that recent research on reactor modeling has
generated important information regarding reactor design in function of the radiant energy
absorbed, shedding light on the relevance of PC chemical properties, PC loading and the
high relevance of the Damköhler number (the ratio of the rate of a chemical reaction to
diffusive mass transfer rate) [175,176].

HP has also shown efficiency in antibiotic resistant microorganism disinfection, which
is not always achieved by conventional technologies such as chlorination [177–179].

Another important reason for HP research on water treatment is that the presence of
emerging pollutants (such as: active pharmaceutical ingredients or personal care products)
has been reported in groundwater, surface water, and tap water; even if they are commonly
found in trace concentrations, its occurrence poses a threat to human health and HP-based
technologies can degrade the pollutants or their organic compounds’ precursors, mitigating
their formation [180–182]. In addition to the intrinsic effect these substances can cause on
their own account, when water undergoes disinfection by chlorination, organic compounds
can react with chlorine and give rise to the formation of DBP; drinking water with trace
concentrations of disinfection byproducts can have a chronic adverse effect on human
health [183]. As HP is theoretically able to mineralize organic compounds [184], its imple-
mentation within a water potabilization process could potentially mitigate disinfection
byproducts’ formation [185].

It has been reported than there is a disproportion on the amount of studies focusing
on fundamental science regarding HP compared to that regarding applied science; more
than 129,000 papers have been published on the HP topic, although usually these studies
focus on the application of photocatalytic reactions employing a benchmark PC to a specific
process, or in the performance of a new PC applied to a benchmark process [186]. More
multidisciplinary endeavors are needed to keep improving HP efficiency.

4. Conclusions

The present work provides a systematic review making use of the PRISMA methodol-
ogy, which served the purpose of discriminating non-relevant works, including only papers
focused on water disinfection employing HP making use of actual sunlight, with a total
of 60 papers found. This information sheds light on the need of performing research em-
ploying real sunlight as well, as photocatalysis efficiency differs when simulated sunlight
is used.

The found papers were analyzed in terms of several operational parameters, identify-
ing the following trends:

1. CPC reactor is the most used type of reactor and its design has not received any major
modification in decades.

2. TiO2 remains the most researched PC despite being unable to use visible light. The
use of modified TiO2 for allowing its visible light activity was more reported than the
use of other PCs.

3. The reports indicated good disinfection efficiency, but the use of proper benchmarks
is not a standardized practice.

4. Most of the works reported the working volume, with some of them treating enough
water for households or small public buildings.

5. Water disinfection via solar HP has been performed in many places around the
globe, but proper models to predict disinfection efficiency in different locations are
still lacking.

More research is needed in several disciplines to keep improving HP efficiency, aiming
to its large-scale application in the future.
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