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Abstract: In this review, we aim to give an overview of the use of the Borrowing Hydrogen (BH)
methodology with bio-based alcohols. This methodology only forms water as a by-product, thus
providing a sustainable way to amines, which have a large range of applications. This process is of
particular interest when related to biomass due to the high abundance of alcohol functions in natural
compounds. However, natural compounds often comprise multiple chemical functions that can
change the reactivity of the substrate. This comprehensive review, comprising both homogeneous
and heterogeneous catalysts, aims at summarizing the recent advancements in biomass amination
for every class of substrate, highlighting the key parameters governing their reactivity and the
remaining scientific hurdles. Even though most substrates have successfully been converted into the
corresponding amines, reaction selectivity and functional group tolerance still need to be improved.
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1. Introduction

Replacing fossil fuels used in the production of energy or as industrial feedstocks with
renewable sources has become the paramount objective in combating climate change and
environmental pollution. In this context, biorefining, which aims to use biomass as a raw
material, stands out as a relevant solution towards sustainable development [1]. Because
of the inherent differences between hydrocarbons—simple molecules composed of C and
H atoms—and the complex entities that make up biomass feedstocks, new approaches
are required to achieve efficient conversion. Lignocellulosic biomass represents 90% of
all plants and presents the advantage of being abundant and available from non-edible
resources. Lignocellulose is composed of lignin, cellulose, and hemicellulose and is easily
available from waste residue. Cellulose and hemicellulose are carbohydrate polymers and
thus contain large amounts of oxygen atoms, often in the form of hydroxyl functions, which
are also found in a large number of natural compounds [2]. Hydroxyl groups have two
reactive bonds: the C-O and the O-H bonds, each of which displays a particular reactivity.
Aside from the well-known redox and elimination reactions, substitution pathways are
a possibility, and mastering them could pave the way to a large variety of compounds.
On the one hand, substitution of the hydroxyl hydrogen proved to be relatively easy due
to its acid nature. On the other hand, nucleophilic substitution of the hydroxyl moiety
can be problematic due to the poor leaving group ability of the OH group. To circumvent
its low reactivity, acids can be added, but the main drawback of this strategy lies in
the stoichiometric amounts often required along with the formation of side products.
Transforming the alcohol functional groups into more reactive entities via treatment with
SOCl2 or PBr3 is another possible approach with the inconvenience of adding an extra step
to the synthesis.

A particular interest is devoted to the formation of amines as they are essential build-
ing blocks used to yield pharmaceutical compounds, solvents, food additives, polymer
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materials, personal care products, detergents, or agrochemicals. On a general basis, amines
can be obtained by various methods such as the Hofmann N-alkylation reaction, the Gabriel
method, reduction of nitro compounds, Ullmann/Buchwald-Hartwig coupling, reductive
amination, and hydroamination [3]. These approaches involve multiple steps and/or
generate a stoichiometric amount of waste. Alternatives are thus in high demand.

The conversion of oxygen-rich biomass into amines usually involves C=O bond trans-
formations since they are easily reactive and can undergo reductive amination reactions [4].
However, when these bonds are not present in the initial substrate, an extra step involving
a stoichiometric amount of oxidant must be added to form the C=O moiety. Alternatively,
the borrowing hydrogen methodology (BH) can be used when alcohol functions are found
in the substrate. This reaction is also referred to as transfer hydrogenation or hydrogen
autotransfer (Scheme 1) [5–7].
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Scheme 1. Alcohol amination via hydrogen borrowing.

Complex structures can be catalytically obtained in only one step, thus suppressing
multistep sequences. The key step of this methodology involves dehydrogenation of the
substrate and its storage on the catalyst for later use in the last step of the catalytic cycle.
Within only one step, oxidation/dehydrogenation and reduction/hydrogenation reactions
are coupled, thus allowing the coupling of exothermic with endothermic reactions, which
presents various advantages [8]. When this methodology is applied to an alcohol, the
transformation starts with the dehydrogenation of the alcohol, forming a carbonyl moiety
in concomitance with the catalyst hydrogenation. This step is followed by the classical
amine/carbonyl condensation to form the corresponding imine. Finally, hydrogenation
of the imine occurs, leading to the targeted amine such as the regeneration of the cata-
lyst to complete the catalytic cycle. The H2 used for this transformation arises from the
catalyst (from the first dehydrogenation). The need for a stoichiometric amount of oxi-
dant/reductant is thus removed. It is important to note that in some cases, extra H2 was
required to perform the reaction. An imbalance between the hydrogen borrowed from the
substrate and consumed during the reaction can thus be observed. This extra hydrogen can
be needed to prevent the catalyst deactivation, to reduce the amount of catalyst used, to
control the selectivity of the reaction or to help to perform the last hydrogenation step [9].

Alcohol amination was first mentioned in 1932 by Winans and Adkins [10]. Hydrogen
borrowing using homogeneous catalysts was first reported by Grigg [11] and Watanabe [12]
and is gaining increasing attention due to the ease of the synthesis and the low amount of
by-products formed. The term “borrowing hydrogen” was first used in 2004 [13] and was
followed by extensive research on the topic. This has become an appealing methodology
since functionalization of a large variety of alcohols is possible, with water being the only
by-product formed in contrast with classical amine synthesis methods.
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Due to the high presence of alcohol functions in natural substrates, this methodology
was applied to a large variety of compounds arising from biomass, such as terpenes, furan
derivatives, isohexides, fatty alcohols, diols, triols, polyfunctional alcohols, and carbohy-
drates (Scheme 2). Herein, we review these reactions and identify the key parameters for
the amination of natural substrates. As an example, the use of fatty alcohols involves the
presence of long aliphatic chains. The impact of these chains on the reaction conditions
will be examined. The presence of multiple chemical functions will also be evaluated
(double bonds, heterocycles, amides, carboxylic acids, and esters). Finally, the impact of
the presence of multiple alcohol functions will be investigated. A large alcohol structural
diversity can indeed be produced from biomass, and each class of natural substances will
present some particular specificities. We have decided to classify the substrates used, to
give a general trend for the BH amination. The latest studies on biomass amination via BH
methodology will be summarized and discussed in this comprehensive review with an
emphasis on the structure/functionalization-reactivity relationship.

Catalysts 2022, 12, x FOR PEER REVIEW 3 of 35 
 

 
Catalysts 2022, 12, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/catalysts 

Due to the high presence of alcohol functions in natural substrates, this methodology 

was applied to a large variety of compounds arising from biomass, such as terpenes, furan 

derivatives, isohexides, fatty alcohols, diols, triols, polyfunctional alcohols, and carbohy-

drates (Scheme 2). Herein, we review these reactions and identify the key parameters for 

the amination of natural substrates. As an example, the use of fatty alcohols involves the 

presence of long aliphatic chains. The impact of these chains on the reaction conditions 

will be examined. The presence of multiple chemical functions will also be evaluated 

(double bonds, heterocycles, amides, carboxylic acids, and esters). Finally, the impact of 

the presence of multiple alcohol functions will be investigated. A large alcohol structural 

diversity can indeed be produced from biomass, and each class of natural substances will 

present some particular specificities. We have decided to classify the substrates used, to 

give a general trend for the BH amination. The latest studies on biomass amination via 

BH methodology will be summarized and discussed in this comprehensive review with 

an emphasis on the structure/functionalization-reactivity relationship. 

 

Scheme 2. Substrate aminated with a borrowing hydrogen strategy. 

2. Amination of Bio-Based Alcohols by Hydrogen Borrowing Catalysis 

2.1. Fatty Alcohols 

Fatty alcohols are derived from natural fats and oils and correspond to long-straight-

chain primary alcohols. The amination of small-chain alcohols has been extensively stud-

ied and is well documented in the literature [5,6]. We will only discuss long-chain fatty 

alcohols with carbon chains containing at least 14 carbon atoms. To the best of our 

knowledge, only two examples are reported in the literature [14]. The fatty alcohols were 

aminated in methoxycyclopentane using [Ni(cod)2] as catalyst, in the presence of 30 mol% 

of KOH with an 85–90% yield (Scheme 3). KOH is used to stabilize the in situ formed Ni 

nanoparticles. This methodology is well suited for the amination of alcohols with aniline, 

but the use of aliphatic amines, leads to catalyst poisoning due to the increased basicity of 

Scheme 2. Substrate aminated with a borrowing hydrogen strategy.

2. Amination of Bio-Based Alcohols by Hydrogen Borrowing Catalysis
2.1. Fatty Alcohols

Fatty alcohols are derived from natural fats and oils and correspond to long-straight-
chain primary alcohols. The amination of small-chain alcohols has been extensively studied
and is well documented in the literature [5,6]. We will only discuss long-chain fatty alcohols
with carbon chains containing at least 14 carbon atoms. To the best of our knowledge,
only two examples are reported in the literature [14]. The fatty alcohols were aminated in
methoxycyclopentane using [Ni(cod)2] as catalyst, in the presence of 30 mol% of KOH with
an 85–90% yield (Scheme 3). KOH is used to stabilize the in situ formed Ni nanoparticles.
This methodology is well suited for the amination of alcohols with aniline, but the use
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of aliphatic amines, leads to catalyst poisoning due to the increased basicity of aliphatic
amines thus providing a stronger coordination ability. Shorter aliphatic chains could also
be aminated and give similar yields. The length of the aliphatic chain has no impact on
the reactivity of the catalytic system. In 2021, Ding et al. reported a homogeneous catalyst
that was efficient in the presence of a base as an additive with slightly increased yields
(90–99%) [15].
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2.2. Terpenoids

Terpenoids are natural compounds arising from isoprene units that can be found in
plants and are often used for their aromatic properties. They present a large structural
and functional variety, and some display alcohol functions that were used in hydrogen
borrowing reactions.

Vogt et al. described in 2013 the amination of various alcohols belonging to the terpene
family (Scheme 4) [16]. Satisfactory conversion ranging from 32 to 99% was achieved
depending on the substrate used. Selectivity varied from 44 to 98% due to the high func-
tionality of the targeted terpenoids. As an example, since unsaturations are commonly
found in terpenoids, the intermediate formation of enals is observed. They could easily
isomerize to a mixture of compounds (such as the corresponding saturated amines or
alcohols). Additionally, the formation of secondary amines from the primary alcohols was
also observed, i.e., the dialkylation of ammonia instead of the desired monoalkylation.
Moreover, in the case of bulky terpenoids, the reaction is hardly completed. The corre-
sponding ketone is thus the main product obtained with these substrates. This highlights
some of the difficulties encountered with natural substrates.
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2.3.1. Furfuryl Alcohol 

Scheme 4. Terpene amination.

2.3. Furan Derivatives

Furan derivatives can be obtained via the dehydration of carbohydrate monomers un-
der acid conditions. The amination of several furan derivatives is reported in the literature:
mainly 5-(hydroxymethyl)furfural (5-HMF), 2,5-bis(hydroxymethyl)furan (BHMF), and
furfuryl alcohol. In addition, rare examples of 1-(2-furyl)ethanol, 5-methylfurfuryl alcohol
or tetrahydrofurfuryl alcohol were also mentioned in the literature. This section will be
ordered according to the alcohol substrate used.
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2.3.1. Furfuryl Alcohol

Furfuryl alcohol was aminated under various reaction conditions. Interestingly, a
large structural variety of products was obtained, such as various primary, secondary, or
tertiary amines, depending on the amine substrates and the reaction conditions (Scheme 5).
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Ammonia as a Nitrogen Source

Only two different structures are accessible from furfuryl alcohol and ammonia:
furfuryl amine and its hydrogenated counterpart, tetrahydrofurfurylamine (Scheme 6).
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Scheme 6. Furfuryl alcohol amination using ammonia as a nitrogen source.

The catalytic systems used to provide furfuryl amine from furfuryl alcohol and ammo-
nia are summarized in Table 1.

Table 1. Catalytic synthesis of furfuryl amine.

Entry Catalyst T (◦C) t (h) Solvent Additive Yield (%) Ref

1 Ru-PNP complex 135 12 Toluene — 95 [17]

2 [Ru3CO12]/
CataCXium® PCy 150 20 Neat — 71 [18]

3 Ru nanoparticles 180 20 Neat H2 (2 bar) 38 [19]
4 Ru/Al2O3 180 20 Neat H2 (2 bar) 10 [19]
5 Ru–MgO/TiO2 110 20 Toluene — 94 [20]
6 RANEY® Ni 180 24 THF — 82 [21]

7 Ni/Al2O3-SiO2 160 18 t-amyl
alcohol — 52 [22]
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This reaction was first reported in 2008 by Milstein et al. with the synthesis and
catalytic activity of an acridine-based Ru complex for the production of primary amines
(Scheme 7, Table 1 Entry 1) [17]. This catalyst provided 95% of furfurylamine after 12 h. This
particular catalyst is believed to operate via metal-ligand cooperation. Indeed, the acridine
moiety is known to dearomatize and thus activate the alcohol in concomitance with the
metallic center to perform the oxidation of the alcohol to a carbonyl [23]. In 2010, Beller also
described the synthesis of the primary amine in 71% yield using [Ru3CO12]/CataCXium®

PCy as a catalyst (Table 1 Entry 2) [18]. Even though a lower yield was obtained compared
to the previous report by Milstein, the catalytic system is commercially available.
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Additionally, for these homogeneous systems, several heterogeneous catalysts were
reported (Table 1 Entry 3–7). To the best of our knowledge, only Ru- and Ni-based catalysts
have been described. Although the non-supported Ru nanoparticles proved to have
superior catalytic activity, the primary amine yield was quite low: 38 and 10% for Ru NP
and Ru/Al2O3, respectively (Table 1 Entry 3 and 4) [19]. The yield of the reaction was
drastically increased in 2020 with the work of Hara (Table 1 Entry 5) [20]. In the presence of
Ru-MgO/TiO2, 94% of the desired furfurylamine was obtained. The main advantage of
this catalyst, besides its high yield, is that no external H2 was needed for the reaction to
proceed at excellent yields.

Earth abundant based catalysts were also efficient in furfuryl alcohol amination with
ammonia. The most efficient system consists of the use of RANEY® Ni (Table 1, En-
try 6) [21,24]. When this catalyst was used, furfuryl alcohol could be transformed into
either furfurylamine or tetrahydrofurfurylamine depending on the reaction conditions
(Scheme 8) [21,24]. Indeed, the selectivity of the reaction was driven by the presence of
H2. Although the alcohol amination does not require the use of external H2 since it is
“borrowed” from the alcohol dehydrogenation, it is mandatory for the hydrogenation of
the furan ring. Indeed, 1 MPa of H2 led to the hydrogenation of the furan ring in addition
to the amination reaction, thus forming tetrahydrofurfurylamine. Whereas the catalyst
could be reused at least five times in the case of the tetrahydrofurfurylamine, the absence
of H2 pressure for the furfurylamine formation catalysis led to catalyst deactivation after
one run [21]. The remarkable catalytic activity of RANEY® Ni was ascribed to the small
absorption energy difference between NH3 and H2. Thanks to this small difference, some of
the active sites of the catalyst are available to perform the dehydrogenation/hydrogenation
reactions that are required for the amination to occur and thus improve the overall catalytic
activity of the catalyst [21].
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Primary Amines as a Nitrogen Source

Furfuryl amination using a primary amine as a nitrogen source led to the expected
furfuryl amine and to more unexpected structures. Indeed, cyclic aminated compounds can
be obtained from the use of diamine as a nitrogen source, and one example of amidation
has been reported (Scheme 9).
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Scheme 9. Furfuryl alcohol amination/amidation using a primary amine as a nitrogen source.

If a primary amine was used instead of ammonia, secondary amines were obtained
under various conditions. The catalytic activity of various homogeneous catalysts was
assessed and resulted in yields ranging from 66 to 93% (Table 2 Entry 1–6). The first report
in 2007 described the use of [Ru3CO12]/CataCXium® PCy, which allowed the isolation of
66% of products (Table 2 Entry 1) [25]. Only a moderate yield was obtained for this reaction
due to the occurrence of side reactions (mainly difuryl side products). More and more
well-defined catalysts were designed, synthesized, and investigated on natural alcohol,
such as a complex containing a tridentate P,N,O ligand which efficiently catalyzed the
amination of furfuryl alcohol with aniline with a 68% yield in only 4 h (Scheme 10, Table 2
Entry 2) [26]. It is worth mentioning that the presence of a base as an additive was used
for this reaction. The base was assumed to deprotonate the alcohol, thus facilitating the
coordination of the formed alcoholate to the Ru center.

Table 2. Catalytic furfuryl alcohol amination with a primary amine as a nitrogen source.

Entry Catalyst T (◦C) t (h) Solvent Additive Yield (%) Ref

1 [Ru3CO12]/
CataCXiumPCy® 110 24 Neat — 66 [25]

2 Ru-PNO complex 110–
130 4 Neat t-BuOK 68 [26]

3 Ru-NHC 120 24 Toluene t-BuOK 93 [27]
4 [IrI2Cp*]2 115 10 H2O — 86 [28]

5 Cyclometalated
Iridium complex 80 24 H2O KOH 91 [29]

6 Mn-NNS complex 140 72 Toluene KOH 67 1 [30]

7
TiIII0.2TiIV0.8(NTf2)2
(O)x(OH)y(H2O)z·

2.5H2O
100 2 Toluene Bipyridine or

terpyridine 98 2 [31]

8 Nanosized zeolite
beta 135 4 Neat — 52 [32]

9 PdZn/Al2O3 110 4 p-xylene — 85 [33]
10 [Ni(COD)2] 140 18 CPME KOH 51 [14]

1 A diamine was used as a nitrogen source. 2 The reaction was performed under microwave irradiation. Cp* is the
classical aabbreviation for pentamethylcyclopentadiene.
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Scheme 10. Amination of furfuryl alcohol with aniline.

In addition to the homogeneous systems already described, heterogeneous catalysts
were used to perform this reaction (Table 2 Entry 7–10). The most efficient catalyst is
the complex TiIII0.2TiIV0.8(NTf2)2(O)x(OH)y(H2O)z·2.5H2O (Table 2 Entry 7) [31]. Indeed,
only 2 h were required at 100 ◦C in the presence of bipyridine or terpyridine as ligands
under microwave irradiations to reach a 98% yield of the targeted amines. Interestingly,
the authors are proposing an SN-type mechanism rather than the classical borrowing
hydrogen one, which is classically encountered in alcohol amination. The ligand may
help to solubilize the catalyst, avoiding its deactivation and increasing its activity by
forming cationic species. Zeolites were also used as catalysts and their catalytic activity
was ascribed to the acidity of the catalyst (Table 2 Entry 8) [32]. The first step of the
mechanism is assumed to be the adsorption of the alcohol on the acid sites of the zeolite for
further reaction with the amine, thus increasing its reactivity. Oxophilic catalysts such as
PdZn/Al2O3 were effective for this transformation (Table 2 Entry 9) [33]. The alcohol is
believed to be alkylated on the surface of the PdZn catalyst. Indeed, the oxophilic nature of
Zn atoms played a crucial role in the reaction, whereas Pd atoms are azophilic. This may
explain the high catalytic activity of the intermetallic PdZn/Al2O3 catalyst.

When a diamine was used as a substrate, the corresponding 2,3-dihydro-1H-perimidine
derivative was formed (Scheme 11, Table 2 Entry 6) [30]. This sustainable system, compris-
ing a nontoxic earth-abundant manganese complex and an air- and moisture-stable ligand
scaffold, could afford a 67% yield of the desired compound.
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Scheme 11. Amination of furfuryl alcohol with 1,8-diaminonaphthalene.

Note that Huynh et al. used a cationic Ru-NHC catalyst [RuCl(p-cymene)(NHC)(PPh3)][PF6]
to perform the amidation of furfuryl alcohol in the presence of NaH as a base (Scheme 12) [34].
Interestingly, the nature of the base influences the nature of the product formed. The
amidation reaction was effective only in the presence of a strong base otherwise, the
formation of the expected amine was observed.
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Tertiary Amines as Nitrogen Sources

There is only one example of tertiary amines synthesized from furfuryl alcohol reported in
the literature [35]. The use of [RuCl3·3H2O] and 1,10-bis(diphenylphosphino)ferrocene (dppf)
allowed for the alkylation of a tertiary amine at a good yield (Scheme 13). Interestingly,
the amination agent was a tertiary amine. The reaction afforded a mixture of mono- and
bis-substituted products with a preference for the mono-substituted product.
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Scheme 13. Tertiary amines synthesis from furfuryl alcohol.

2.3.2. 1-(2-Furyl)ethanol

Under the same conditions used for furfuryl alcohol, the amination of 1-(2-furyl)ethanol
was investigated. The reaction was performed with a primary amine or with ammonia
as nitrogen sources, leading to the formation of a secondary or primary amine respec-
tively. Both reactions proceeded using [Ru3CO12] in combination with CataCXium® PCy
as catalyst (Scheme 14) [18,25].
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Scheme 14. 1-(2-furyl)ethanol amination.

2.3.3. 5-Methylfurfuryl Alcohol

Similar to that which was reported with furfuryl alcohol, in 2019, Barta et al. performed
the amination of 5-methylfurfuryl alcohol using Ni/Al2O3-SiO2 as a catalyst to provide
45% of the desired primary amine (Scheme 15) [22].
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2.3.4. 5-(Hydroxymethyl)furfural

The compound 2,5-bisaminomethylfuran (2,5-BAMF) can be formed starting with ei-
ther 5-(hydroxymethyl)furfural (5-HMF) [21,36,37] or 2,5-bis(hydroxymethyl)furan (BHMF)
(see below) [20,36].

When 5-HMF was used as a substrate, the reaction combined a reductive amination of
the carbonyl moiety and the borrowing hydrogen methodology on the alcohol function.
Whereas it was possible to perform selectively the reductive amination of the carbonyl
function, selective transformation of the alcohol function has never been observed. This
is presumably due to the increased reactivity of the carbonyl group compared to the
alcohol and to the similar reaction conditions needed to undergo both reductive amination
and hydrogen borrowing reactions. This shows the selectivity limit of the use of natural
substrates with hydrogen borrowing methodology. As an example, a stepwise amination
of 5-HMF was described in 2017 by Hara [38]. The reductive amination of the aldehyde
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function was performed by Ru/Nb2O5 using ammonia as a nitrogen source. No amination
of the alcohol function was observed. It was necessary to perform the amination of this
amino alcohol with [Ru(CO)ClH(PPh3)3]/Xantphos to yield the desired diamine at a yield
of 93%.

However, the formation of 2,5-BAMF starting from 5-HMF can be performed using
either homogeneous (Table 3 Entry 1) or heterogeneous catalysts (Table 3 Entry 2–3). All
systems required the use of external H2 as an additive.

Table 3. Catalytic amination of 5-HMF with ammonia as a nitrogen source to produce 2,5-BAMF.

Entry Catalyst T (◦C) t (h) Solvent Additive Yield (%) Refs

1 Ru-PNP
complex 140 11 t-amyl alcohol H2 (10 bar) 85 [36]

2 RANEY® Ni 160 12 THF H2 (10 bar) 61 [21]

3 CuNiAlOx 210 1 27 Dioxane Na2CO3
H2 (45 bar) 86 [37,39,40]

1 9 h at 90 ◦C, followed by 18 h at 210 ◦C.

Homogeneous catalysts proved to be efficient with complete conversion in the reaction
of 5-HMF with ammonia using 10 bar H2 and t-amyl alcohol as solvent at 140 ◦C for 11 h
(Scheme 16, Table 3 Entry 1) [36].
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Several heterogeneous catalysts were also tested for this reaction: RANEY® Ni,
RANEY® Co, CuNiAlOx Pd/C, Pt/C, and Ru/C [21,37,39,40]. Whereas Pd/C, Pt/C,
and Ru/C were only efficient for reductive amination of the carbonyl moiety, RANEY® Ni
was effective for 5-HMF diamination with a 61% yield (Table 3 Entry 2) [21]. The catalytic
activity could be increased to 86% with the use of the bifunctional CuNiAlOx catalyst
(Scheme 17, Table 3 Entry 3) [37,39,40]. This catalyst combined the hydrogenation ability of
Ni with the dehydrogenation ability of Cu. A base was used as an additive to promote the
hydrogen transfer reaction. A gradual heating of the reaction was necessary to achieve high
selectivity. Indeed, the reductive amination of the aldehyde only required 90 ◦C heating for
9 h, whereas the hydrogen borrowing of the alcohol required 210 ◦C for 18 h.
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Only one example of 5-HMF amination using primary amines as nitrogen sources
was described by Pera-Titus et al. [41]. A mechanical mixture of 5%Ru/C + 5%Pd/C
catalysts or a bifunctional (Ru + Pd)/C were required to afford more than an 87% yield of
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diamines (Scheme 18). The reaction consists of two consecutive steps: the aerobic oxidation
of HMF to 2,5-diformylfuran, followed by reductive amination of 2,5-diformylfuran to
the corresponding diamines in the presence of H2. Even though the reaction cannot be
categorized as a hydrogen borrowing reaction, the overall chemical equation is a reductive
amination of the carbonyl and the amination of the alcohol of HMF in a one-step process
and shall therefore be mentioned here.
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2.3.5. 2,5-Bis(hydroxymethym)furan

The compound 2,5-bis(hydroxymethyl)furan (BHMF) was used as a substrate in ami-
nation reactions with ammonia as a nitrogen source to produce 2,5-bis(aminomethyl)furan
(BAMF) using either homogeneous or heterogeneous catalysts [20,36]. For homogeneous
reaction, the amination of the alcohol moieties was observed with an 85% yield after 9 h
(Scheme 19) [36]. The heterogeneous system provided a similar yield since 86% of BAMF
was obtained when Ru–MgO/TiO2 was used as a catalyst [20].
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2.4. Polyfunctional Alcohols

Alcohols found in nature are often bearing multiple functionalities, for this reason, the
reaction conditions should be adapted to the specificities of other groups that may also
be reactive. The amination is complex due to the functional group, which may hinder the
coordination sites of the catalyst. In some cases, the functional groups can also be reactive,
as shown with the aldehyde function of 5-HMF, which is more reactive than the alcohol
function. We will here take α-hydroxy amides, α-hydroxy acids, and α-/β-hydroxy esters
as examples of bifunctional molecules.

2.4.1. α-hydroxy Amides

The first amination of α-hydroxy amides was reported in 2011 by Beller et al. [42].
The reaction went well when [Ru3(CO)12] was used as a metallic precursor with 1,2-
bis(dicyclohexylphosphino)ethane as a ligand in t-amyl alcohol at 160 ◦C for 24 h, yielding
91% (Scheme 20). The reaction was quite tolerant to the substituent borne by the amine
and by the α-hydroxy amides, even though the yields decreased to 20% when both alcohol
and nitrogen sources were sterically hindered. Alternatively, [TiCl4] could be used stoichio-
metricaly at only 100 ◦C, instead of the Ru based catalyst, to provide the desired α-amino
amides with moderate to good yields [43].
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2.4.2. α-hydroxy Acids

α-hydroxy acids can be transformed into α-amino acids in one step with high yields
using ruthenium nanoparticles supported on carbon nanotubes or on nitrogen-doped
carbon nanotubes as catalysts [44–46]. This methodology provides an alternative to the
classical microbial cultivation process used for α-amino acids production. It seems, how-
ever, limited to the transformation of α-hydroxy acids since the use of β-hydroxy acids
only led to poor yields (below 4%). Doping the carbon nanotubes with nitrogen led to an
increase in catalytic activity. This enhancement is believed to be due to the improvement
of the Ru nanoparticle dispersion on the support and to their strong interaction with the
support. Additionally, the absorption of the substrate is believed to be facilitated when a
N-dopant is used.

Changing the catalyst to an ultrathin CdS nanosheet using NH3 under visible light
irradiation provides the formation of the desired α-amino acids at only 50 ◦C with relatively
low yields (Scheme 21) [47]. The formation of oxygen-centered radicals under these condi-
tions is considered to be responsible for the activity of the catalytic system. Unfortunately,
once again low activity was detected with β-hydroxy acids (yields below 6%).
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2.4.3. α-and β-hydroxy Esters

The use of α-hydroxy esters as substrates under reaction conditions which are known
to be effective for non-functional alcohols provided a rather unexpected reaction [42].
Indeed, the reaction was selectively performed on the alcohol but also on the ester moiety,
with 78% of alanamide observed (Scheme 22). This indicates a low ester tolerance under
these conditions.
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However, the reaction of ammonia and α-hydroxy esters in the presence of
[RuHCl(PPh3)3(CO)] and Xantphos resulted in the formation of the desired primary amine
in good yields [48]. In the particular case of β-hydroxyl acid esters, the use of a Brønsted
acid as an additive was an efficient methodology for their amination with various aniline
derivatives [49]. The catalyst and the additive are believed to form adducts which are
presumably more active than the catalyst alone (Scheme 23).
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2.5. Polyols
2.5.1. Diols

A large number of publications on the amination of diols can be found in the literature.
For this reason, we have selected examples to give a general trend to understand the remain-
ing barriers with this type of substrate. Isohexides will be treated separately as they are
complex compounds due to the difference in reactivity between the two hydroxyl groups.

As shown in Scheme 24, amination of diols can lead to a broad structural variety
depending on: (i) the substrates used (nitrogen source and/or diol), (ii) the catalysts used,
and (iii) the reaction conditions. The main products encountered in this section are the
expected diamines, formed by the double amination of the two alcohol functions, and the
amino alcohols, arising from the amination of only one alcohol, in line with the cyclization
products. This cyclization can be inter- or intra-molecular. On the one hand, a diamine
reacts with a diol, thus forming a cycle, and on the other hand, an amino alcohol is formed,
and the amine function reacts with the remaining alcohol, thus providing cyclization of the
product. Finally, aromatic heterocycles or dehydrated/aminated products can sometimes
be obtained. In these reactions, oligomer formation (or at least dimerization) was one of
the side reactions often encountered [50–57].

Diamines and Amino Alcohol Synthesis

The main products of diol amination are diamines. However when the reaction does
not go to completion, the formation of amino alcohols was observed. Homogeneous
and heterogeneous catalysts leading to diamination and/or monoamination of diols are
reported in Table 4. Several factors influence the reactivity of the catalytic system, and
the important parameters will be reviewed herein with selected examples. Note that the
reaction could also provide the formation of an amino ketone when the reaction proceeds
further than amino alcohol formation without going to completion [58].



Catalysts 2022, 12, 1306 14 of 35

Catalysts 2022, 12, x FOR PEER REVIEW 13 of 35 
 

 
Catalysts 2022, 12, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/catalysts 

remaining barriers with this type of substrate. Isohexides will be treated separately as they 

are complex compounds due to the difference in reactivity between the two hydroxyl 

groups. 

As shown in Scheme 24, amination of diols can lead to a broad structural variety 

depending on: (i) the substrates used (nitrogen source and/or diol), (ii) the catalysts used, 

and (iii) the reaction conditions. The main products encountered in this section are the 

expected diamines, formed by the double amination of the two alcohol functions, and the 

amino alcohols, arising from the amination of only one alcohol, in line with the cyclization 

products. This cyclization can be inter- or intra-molecular. On the one hand, a diamine 

reacts with a diol, thus forming a cycle, and on the other hand, an amino alcohol is formed, 

and the amine function reacts with the remaining alcohol, thus providing cyclization of 

the product. Finally, aromatic heterocycles or dehydrated/aminated products can some-

times be obtained. In these reactions, oligomer formation (or at least dimerization) was 

one of the side reactions often encountered [50–57]. 

 

Scheme 24. Diol amination. 

Diamines and Amino Alcohol Synthesis 

The main products of diol amination are diamines. However when the reaction does 

not go to completion, the formation of amino alcohols was observed. Homogeneous and 

heterogeneous catalysts leading to diamination and/or monoamination of diols are re-

ported in Table 4. Several factors influence the reactivity of the catalytic system, and the 

important parameters will be reviewed herein with selected examples. Note that the reac-

tion could also provide the formation of an amino ketone when the reaction proceeds fur-

ther than amino alcohol formation without going to completion [58]. 

Nature of the alcohols: primary alcohols were found to be much more reactive than 

secondary ones. When primary and secondary alcohol diols were combined, amino-alco-

hols were formed instead of the corresponding diamines [59,60]. This shows the increased 

activity of primary alcohols toward secondary ones and the importance of the steric hin-

drance of alcoholic substrates [59]. However, under certain conditions, the reactivity of 

secondary alcohols can be pushed to complete the reaction. Stepwise amination of pri-

mary and secondary diols was also performed and was significantly faster with primary 

alcohols compared to secondary ones (Scheme 25) [61].  

Scheme 24. Diol amination.

Nature of the alcohols: primary alcohols were found to be much more reactive than
secondary ones. When primary and secondary alcohol diols were combined, amino-
alcohols were formed instead of the corresponding diamines [59,60]. This shows the
increased activity of primary alcohols toward secondary ones and the importance of
the steric hindrance of alcoholic substrates [59]. However, under certain conditions, the
reactivity of secondary alcohols can be pushed to complete the reaction. Stepwise amination
of primary and secondary diols was also performed and was significantly faster with
primary alcohols compared to secondary ones (Scheme 25) [61].
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Scheme 25. Stepwise amination of diol.

The selectivity of the reaction was also driven by the length/nature of the spacer
between the two alcohol functions [62] and its steric hindrance [63]. For example, the use
of an O-tethered spacer led to the formation of amino-alcohols, whereas the use of a simple
aliphatic chain gave diamines [62].

Nature of the nitrogen sources: in addition to the nature of the alcohol substrates,
the selectivity of the reaction strongly depends on the steric hindrance of the nitrogen
sources (Scheme 26) [64]. It was demonstrated that, within a homogeneous process cat-
alyzed by [RuCl2(PPh3)2], highly sterically hindered amines preferentially provided the
formation of amino alcohols, while the use of small nitrogen sources allowed access to
diaminated compounds.
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Diamination Monoamination
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zeolite [65] zeolites [65,66]
Ni-Cu-Cr2O3 [63] Ni-Cu-Cr2O3 [63]

Ru/Co/Al2O3 [63] Ru/Co/Al2O3 [67]
Ru-Co-Sn [68] Ru-Co-Sn [68]
CuNiAlOx [69] CuNiAlOx [69]
Re-Ru-Co [67] Re-Ru-Co [70]

Co-Fe [52] Co-Fe [52]
Cu-Zn-Zr oxide [71] Cu-Zn-Zr oxide [71]

Cu/Al2O3 [64,72] Cu/Al2O3 [72,73]
Cu-Ni-Ca-Ba [74] Ni nanoparticles [14]

Pt-Sn/γ-Al2O3 [62] CuCrO [75]
Ru/Al2O3 [51] RhIn/C [76,77]

Ru/C [78] Co/γ-Al2O3 [79]
Re-Ru-Co [70]

RANEY® Ni [22]
Co-Fe [53]
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[RuCl3·xH20] [80] [RuCl3·xH20]/PPh3 [80]
[RuCl2(PPh3)3] [64] [RuCl2(PPh3)3] [64,80]
[Ru3(CO)12]/

CataCXium PCy [59] [Ru3(CO)12]/
CataCXium PCy [59]

[RuCl(p-cymene)(P,N)]
[Cl] [61] [RuCl(p-cymene)(P,N)]

[Cl] [61]

[IrCl2Cp*(NHC)] [50] [IrCl2Cp*(NHC)] [50,81]
[Ru3(CO)12]/ PNP [16,36,82–86] [Ru3(CO)12]/ PNP [16,83,85,86]
[IrCl3·xH20]/PPh3 [80,87] [RuHCl(PPh3)3] [80]

[RuHCl(CO)(PPh3)3]/
Xantphos [48] [RuHCl(CO)(PPh3)3]/

Triphos [84]

[RuCl2(p-cymene)]2/
DPEphos [54,60]

[RuCl2(p-cymene)]2/
Josiphos [88]

[IrH2Cl{(iPr2PC2H4)2NH}] [87]
[Fe(CO)4

(cyclopentadienone)] [89]

Reaction conditions: the reaction temperature was found to be a critical parameter [72,90].
For example, in 1987, the amination of 1,6-hexanediol was performed at temperatures rang-
ing from 165 to 230 ◦C. A mixture of diamines and aminols was always obtained. However,
selectivity toward amino-alcohols is increased at low temperatures (up to 90% at 180 ◦C)
and selectivity toward diaminated products increases with temperature (up to 65% at
230 ◦C) [72]. This temperature dependence is commonly observed [67,83]. The selectivity
also strongly depends on the catalyst loading [69]. In the case of a heterogeneous pro-
cess, the nature of the support, is also of capital importance. Li et al. showed that basic
(Ru/MgO) and neutral (Ru/Al2O3) supported catalysts were efficient for monoamination
reactions, whereas acidic supported catalysts (Ru/Nb2O5) provided mainly diaminated
products (in line with by-products formation) [51].

Stoichiometry: in addition to the amination of one of the alcohol moiety, a dehydration
of the second alcohol and subsequent hydrogenation can sometimes be observed [16,50,81].
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The quantity of amines plays a crucial role in the latter transformation. Hence, the use
of an excess of amines led to the formation of the expected diamines, preventing the
dehydration reaction (Scheme 27). Similar dehydration reactions were observed in the
absence of amine [50].
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Scheme 27. Dehydration reaction.

Cyclization Reactions

Cyclized compounds could also be obtained as products owing to the presence of
two alcohol functions on the same molecule. Cyclization could either be inter- or intra-
molecular depending on the nitrogen sources used (Scheme 28). The homogeneous and
heterogeneous catalysts leading to the cyclization of diols are reported in Table 5.
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Pt-Sn/γ-Al2O3 [62] Pt-Sn/γ-Al2O3 [62,91]
Pd/MgO [92] zeolites [65,66,93–95]

Re-Ru-Co [70]
NiCuFeOx [96]
CuNiAlOx [69]

(Ni0.5Cu0.5)Fe2O4 [97]
Cu-Zn-Zr oxide [71]

CuCrO [75]
Ru/Co/Al2O3 [67]

Ru-Co-Sn [68]
Ni/Co/Cu/Sn/Al2O3 [98]

Ru/C [78]
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Table 5. Cont.

Intermolecular Cyclization Intramolecular Cyclization

H
om

og
en

eo
us

C
at

al
ys

ts

[Fe(CO)4
(cyclopentadienone)] [89] [Fe(CO)4

(cyclopentadienone)] [89]

[IrCl2Cp*]2 [55,90] [IrCl2Cp*]2 [55,99,100]
[RuCl(p-

cymene)(P,N)]
[Cl]

[61] [RuCl(p-cymene)(P,N)]
[Cl] [61]

[RuCl2(p-cymene)]2/
DPEphos [60,101] [RuCl3·xH20]/PPh3 [102]

[Pd(OAc)2]/PPh3 [103] [RuCl2(PPh3)3] [104]
[RuCl(p-cymene)

(NHC)(PPh3)][PF6] [105]

[RuCl2(PPh3)
(C5H3N-2,6-(CH2NMe2)2] [106]

Ru-PNP complex [83,85,86]
[RuHCl(CO)(PPh3)3]/

Triphos [84]

[Ru(acac)3]/Triphos [107]
cyclometalated Ir catalyst [108]

[CuBr2] [109]
1,3,5-triazo-2,4,6-triphosphorine-

2,2,4,4,6,6-hexachloride
(TAPC)

[110]

On the one hand, diols can react with diamines to promote the cyclization process, thus
providing an intermolecular reaction. In this case, two nitrogen atoms are comprised in the
newly formed cycle when [Fe(CO)4(cyclopentadienone)] is used as a catalyst (Scheme 29).
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Scheme 29. Intermolecular cyclization.

On the other hand, cyclization occurred by reaction of the newly formed amine with
the second alcohol function of the starting diols, thus providing a heterocycle with only one
nitrogen atom. A critical parameter in the cyclization is the stability of the cycle formed.
Cycles comprising of five or six atoms are the most common, even though seven-atom
rings were also reported (Scheme 30) [62].
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Scheme 30. Intramolecular cyclization.

Nature of the amines: the nature of the amines used was of prime importance for the
cyclization. As an example, the use of unsubstituted benzylamine led to the formation of an
amino alcohol, whereas the chloro-substituted one led to a high yield of cycle products [89],
highlighting the importance of electronic density on the nitrogen sources.
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Nature of the alcohols: the cyclization reaction also seems to be sensitive to steric
hindrance of the alcohol substrates used, as shown by Madsen et al. [55]. Although
[IrCl2Cp*]2, can efficiently convert ethylene glycol into the corresponding piperazine in the
presence of a catalytic amount of base (isolated yields from 35 to 86%), no dimerization was
observed when phenylethylene glycol and cyclohexane-1,2-diol were used as substrates.

One example of morpholine derivatives formation was reported from the intermolecu-
lar amination of ethanolamine. A 75% yield was obtained from the reaction of ethyleneg-
lycol and NH3 in the presence of a NiO/CuO/TiO2/Cr2O3 catalyst under an H2 atmo-
sphere [111].

Aromatic Heterocycles Formation

Pyrrole: coupling amines with unsaturated 1,4-diols led to the formation of pyrrole
using [Fe(CO)3(cyclopentadienone)] as a catalyst (Scheme 31) [56,112]. Trimethylamine
N-oxide (Me3NO) was used as an additive to generate the catalytically active species.
Alternatively, [RuH2(CO)(PPh3)3]/Xantphos could be used to provide pyrroles without the
use of additives [113]. The reaction is believed to proceed via preliminary isomerization
of the 1,4-alkylediol into a 1,4-diketone followed by a Paal–Knorr cyclization. Similar
reactivity was observed with the reaction of ketones, vicinal diols, and amines in the
presence of [Ru3(CO)12]/Xantphos or [Ru(p-cymene)Cl2]2/Xantphos as catalysts [114,115].
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Scheme 31. Pyrrole formation.

Pyrazine and phenazine: amination of 1,2-cyclooctanediol led to the formation of
a mixture of dicycloocta[b,e]pyrazine and dicycloocta[b,e]-2,3-dihydropyrazine [16]. A
similar behavior was observed with 1,2-cyclohexanediol, yielding octahydrophenazine
upon reaction with [Ru3(CO)12]/acridine-based diphosphine (Scheme 32).
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2.5.2. Isohexides

Isohexides are obtained from sorbitol dehydration. For this biogenic diol, three isomers
can be found. To the best of our knowledge, only examples of isosorbide and isomannide
aminations have been reported in the literature. Either one or the two alcohols can be
aminated (Scheme 33). Amination often leads to isomerization of the aminated position due
to the carbonyl/imine intermediates which comprise a sp2 carbon atom, thus leading to a
loss of the chiral information. Isosorbide isomerization to isoidide or isomannide instead
of amination was often observed, highlighting the particular and challenging nature of this
substrate. Note that isosorbide isomerization is also known to occur in the presence of a Ru
catalyst and under H2 pressure [116].
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Ammonia as a Nitrogen Source

The first report on isohexide amination was published by Beller in 2011 [48]. They
reported the amination of isosorbide with ammonia to provide the corresponding primary
diamine (Scheme 34, Table 6 Entry 1). No details were given on the stereoselectivity of
the reaction.
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Table 6. Catalytic isohexides diamination using ammonia as a nitrogen source.

Entry Catalyst T (◦C) t (h) Solvent Additive Yield (%) Refs

1 [RuHCl(CO)(PPh3)3]/
Xantphos 150 20 t-amyl alcohol — 96 [48]

2 [RuHCl(CO)(POP)] 170 48 t-amyl alcohol — 90 [117]
3 [Ru3(CO)12]/PNP 170–200 21 t-amyl alcohol — 96 [16,118]
4 [RuHCl(CO)(PNP)] 170 48 t-amyl alcohol — 90 [119]
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Excellent yields were obtained by Vogt with isomannide by using a mixture of [Ru3(CO)12]
and the acridine-based diphosphine developed by Milstein as a catalyst at 170 ◦C (Scheme 35,
Table 6 Entry 3) [16]. In this case, a mixture of diamino-isosorbide/diamino-isomannide/ di-
aminoisoidide in a 45, 15, and 35% yield was obtained, respectively (total conversion = 96%).
This isomer distribution corresponds to the thermodynamic equilbrium expected at this
temperature. The authors highlighted the importance of using an excess of ammonia for
the reaction to proceed to an acceptable yield with correct kinetics.
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Scheme 35. Isomannide amination.

In 2014, the amination of isosorbide and isomannide was patented by Schelwies et al.
using a homogeneous Ru-based catalyst (Scheme 36, Table 6 Entry 3 and Table 7 Entry 1) [118].
Excellent conversions of 99% were obtained, and the selectivity of the reaction toward
mono- or di-amination was tuned according to the nature of the catalysts and to the
reaction conditions (concentration, stoichiometry, and pressure). Selectivity of up to 94%
for mono-amination and up to 96% for di-amination was achieved.
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Table 7. Catalytic isohexides mono-amination using ammonia as a nitrogen source.

Entry Catalyst T (◦C) t (h) Solvent Additive Yield (%) Refs

1 [RuHCl(CO)
(PNP)] 180 20 t-amyl alcohol — 94 [118]

2 [RuHCl(CO)
(PPh3)3] 150 20 Neat — 50 [48]

3 Ru/C 170 24 H2O H2 (10 bar) 50 [78,120,121]
4 RANEY® Ni 160 18 t-amyl alcohol — 32 [22]
5 Ni/Al2O3−SiO2 160 18 t-amyl alcohol — 51 [22]

The catalytic activity of several heterogeneous catalysts was assessed in isohexide
amination but only resulted in mono-aminations (Table 7 Entry 3–5). As an exemple,
Rose et al. described the synthesis of aminoalcohol or isomerization reactions using Ru/C
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as a catalyst [78,120,121]. The moderate conversion of the reaction highlights the complexity
of the catalytic system. No diastereoselectivity was observed in this case since a mixture of
the endo and exo amino alcohols were obtained. Both isosorbide and isomannide were used
as substrates in the course of this study [120,121]. Both substrates gave rise to different
reactivities, presumably due to the configuration of the hydroxyl groups in both isomers. It
was found that the endo-configured alcohols were more reactive due to the lower activation
barrier on the Ru/C catalyst and to their higher accessibility. Slight hydrogen pressure
was beneficial for the reaction, even though increasing the pressure led to an increase in
the isomerization. To the best of our knowledge, only one other report regarding the use
of heterogeneous catalysts was published using RANEY® Ni or Ni/Al2O3-SiO2 to obtain
moderate yields of the mono aminated product (32 and 51% respectively) [22]. No details
were given concerning the regioselectivity of the reaction.

Primary Amines as Nitrogen Sources

With the aim of reducing the number of by-products formed and to gain a better
understanding of the selectivity of the reaction, partially protected isohexides were used
as substrates. In 2018, Popowycz and collaborators studied the stereoselective amination
of an exo-monobenzylated isosorbide, which will reduce the number of by-products due
to the reduced number of alcohol functions available for the BH reaction [122]. The
activity of classical Ru-based homogeneous catalysts was limited even when a base was
used as an additive. The catalytic activity was drastically increased using [IrCl2Cp*]2.
The best results were finally obtained by using the well-defined Ir catalyst depicted in
Scheme 37, along with diphenyl phosphate as an additive. Less nucleophilic or hindered
amines led to a lower yield of the aminated product. Interestingly, the reaction gave
similar results, independently of the orientation of the benzyloxy group, i.e., with excellent
diastereoselectivity, highlighting the spectator role of the C6 position. This was the first
report concerning the controlled stereochemistry of the product formed. When endo-
benzyloxy-isosorbide, which comprises the alcohol function at the exo configuration, was
used as substrate, no reaction was observed, thus pointing to the disfavored reaction at
exo positions.
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Scheme 37. Monobenzylated isosorbide amination.

When unprotected isosorbide was used as a substrate under similar conditions, only
one isomer was formed with yields ranging from 11 to 71% (Scheme 38) [123]. The reaction
of isomannide with various amines led to the formation of the desired diamine in a
stereoselective fashion with a 47–79% yield (Scheme 38).
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The use of isohexide as a substrate is a challenging task in hydrogen borrowing reac-
tions. Indeed, as shown before, the presence of two alcohol functions on the same substrate
can lead to unexpected reactions and to uncompleted amination. Even though side reactions
were not observed, amination selectivity is challenging. The main hurdle here is to suc-
ceed in the amination of both alcohol functions. Whereas monoaminated and diaminated
products can now be obtained depending on reaction conditions with both isomannide and
isosorbide, further research is still required to achieve stereoselective reactions.

2.5.3. Triols

The most available biobased triol is glycerol since it is a by-product of biodiesel
production. As shown in Scheme 39, a large structural variety of products were achieved via
dehydration reactions, partial aminations, amine formylations, condensations, cyclizations,
and C-C bond cleavages.
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Scheme 39. Glycerol amination.

The first amination of glycerol was reported in 2014 by Crotti et al. [124]. They reacted
glycerol with a diamine to perform an intermolecular cyclization reaction. Due to the
high number of alcohol functions on the substrate, the reaction provided a mixture of
N-heterocyclic compounds (Scheme 40).
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Scheme 40. Glycerol intermolecular cyclization.

The other cyclic compound that can be formed by glycerol amination is oxazoline
(Scheme 41) [125]. Indeed, Ru/C was able to achieve 95% selectivity to oxazoline (27% con-
version). A mechanism was proposed involving the preliminary formation of acetol by
glycerol dehydration followed by imine formation and finally a reaction of the imine with
a second acetol molecule to achieve the formation of oxazoline.
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Scheme 41. Oxazoline formation from glycerol and ammonia.

Glycerol amination was then reported by Katryniok et al. in 2016 [126]. They used
salts of phosphomolybdic acid as catalysts to yield (dimethylamino)acetone by the N-
acetonylation reaction of dimethylamine with glycerol. The conversion can be increased by
up to 33% by supporting the catalyst on silica, which leads to an increase in the catalyst
acidity. A mechanism was proposed for the formation of (dimethylamino)acetone from
glycerol as depicted in Scheme 42. A similar reactivity was reported the same year with
improved yields (up to 94%) [127]. A homogeneous Ru catalyst could also be used to
perform this reaction under acid conditions with yields of up to 81% [128].
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Scheme 42. (dimethylamino)acetone synthesis.

In addition to the formation of N-Acetonyl amine over the CuNiAlOx catalyst, glycerol
could also be used as a methylation agent for various amines (Scheme 43) [127]. The
reactivity was driven by the solvent, i.e., use of pure 1,4-dioxane led to the formation of
N-Acetonyl amines, whereas a mixture of water and 1,4-dioxane provided methylated
amines. Finally, performing the reaction under 5 bar of O2 led to the formation of amides
through a formylation reaction (Scheme 43) [127]. This highlights the versatility of glycerol
as a substrate and the importance of the reaction conditions in this type of reaction. Indeed,
small changes lead to the formation of different products.
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Scheme 43. Glycerol reactivity over a CuNiAlOx catalyst.

Alanine production was also possible in a 43% yield, starting from glycerol over a
RuNi/MgO catalyst in aqueous ammonia (Scheme 44) [129]. The glycerol was believed to
be first transformed into lactic acid, which then was aminated to alanine.
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Scheme 44. Alanine formation from glycerol.

C-C bond cleavages were also observed upon glycerol amination. Glycerol was
transformed into a mixture of methyl amine, ethyl amine, and propylamine by reaction
with aqueous ammonia under H2 pressure over Ru/C [130]. Other chemicals such as
2,6-dimethylpiperazine, piperazine, 2-methypiperazine, and various alcoholic products
were observed as by-products. However, a selectivity of 51% in alkyl amines could be
obtained after optimization of the reaction conditions. Finally, glycerol was used to per-
form N-hydroxyethylation of amines in basic media (Scheme 45) [128,131]. The proposed
mechanism for this reaction involves C-C bond cleavage via dehydrogenation and retroal-
dol/decarbonylation sequences.
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Scheme 45. Glycerol as an N-hydroxyethylation agent.

As shown here, the expected product in which all alcohol functions are aminated
has not been observed yet. To perform the amination only at one position, it is necessary
to protect glycerol by forming solketal (Scheme 46) [132]. The product could easily be
deprotected afterward.
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Scheme 46. Solketal amination.

Only two examples of amination of other triols than glycerol have been reported, both
led to cyclization reactions. When 1,5,9-nonanetriol was used as substrate in the presence
of [Ir(NH3)3Cp*][I]2, the formation of quinolizidine was observed (Scheme 47) [133]. The
cyclization occurred with an 85% yield in a very selective fashion, highlighting the efficiency
of the reaction.

Catalysts 2022, 12, x FOR PEER REVIEW 24 of 35 
 

 
Catalysts 2022, 12, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/catalysts 

 

Scheme 45. Glycerol as an N-hydroxyethylation agent. 

As shown here, the expected product in which all alcohol functions are aminated has 

not been observed yet. To perform the amination only at one position, it is necessary to 

protect glycerol by forming solketal (Scheme 46) [132]. The product could easily be depro-

tected afterward. 

 

Scheme 46. Solketal amination. 

Only two examples of amination of other triols than glycerol have been reported, 

both led to cyclization reactions. When 1,5,9-nonanetriol was used as substrate in the pres-

ence of [Ir(NH3)3Cp*][I]2, the formation of quinolizidine was observed (Scheme 47) [133]. 

The cyclization occurred with an 85% yield in a very selective fashion, highlighting the 

efficiency of the reaction.  

 

Scheme 47. 1,5,9-nonantriol amination. 

The amination of 1,2,4-butanetriol has also been studied in detail [134]. Again, cy-

clization was observed with [RuCl2(p-cymene)]2/Xantphos in the presence of a base 

(Scheme 48). One of the hydroxyl groups remained intact after the reaction. The extension 

of this methodology to 1,3,4-hexanetriol and 1,2,5-pentanetriol led to the formation of 2-

ethyl pyrrolidinol and an equimolar mixture of pyrrolidine/piperidine respectively. 

 

Scheme 48. 1,2,4-butanetriol amination. 

2.5.4. Carbohydrates 

Carbohydrates can be obtained from cellulose/hemicellulose depolymerization un-

der acid conditions. Carbohydrates often comprise a reactive aldehyde or ketone function 

that can be masked in their closed ring form. This function is prone to reductive amination 

and can be protected to facilitate the reactivity of the less reactive alcohol functions in 

amination reactions. Additionally, protection steps can be added to trigger the reactivity 

of a particular alcohol function. In this section, we will thus differentiate between pro-

tected and unprotected carbohydrates.  

Protected Carbohydrates 

The first report of carbohydrate amination was published in 2011 by Cumpstey and 

Martín-Matute [135]. As shown in Scheme 49, the amination of protected α-mannose was 

Scheme 47. 1,5,9-nonantriol amination.

The amination of 1,2,4-butanetriol has also been studied in detail [134]. Again, cycliza-
tion was observed with [RuCl2(p-cymene)]2/Xantphos in the presence of a base (Scheme 48).
One of the hydroxyl groups remained intact after the reaction. The extension of this method-
ology to 1,3,4-hexanetriol and 1,2,5-pentanetriol led to the formation of 2-ethyl pyrrolidinol
and an equimolar mixture of pyrrolidine/piperidine respectively.
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2.5.4. Carbohydrates

Carbohydrates can be obtained from cellulose/hemicellulose depolymerization under
acid conditions. Carbohydrates often comprise a reactive aldehyde or ketone function that
can be masked in their closed ring form. This function is prone to reductive amination
and can be protected to facilitate the reactivity of the less reactive alcohol functions in
amination reactions. Additionally, protection steps can be added to trigger the reactivity of
a particular alcohol function. In this section, we will thus differentiate between protected
and unprotected carbohydrates.

Protected Carbohydrates

The first report of carbohydrate amination was published in 2011 by Cumpstey and
Martín-Matute [135]. As shown in Scheme 49, the amination of protected α-mannose
was achieved using [IrCl2Cp*]2 as a catalyst. Interestingly, the amination agent was a
carbohydrate amine, thus providing pseudodisaccharide in the presence of a base. All the
products were isolated as only one diastereoisomer. A good selectivity toward the primary
C6 alcohol was achieved (71% of product).

The carbohydrate amine could also be used in combination with other alcohols with
good yields. Note that the unprotected amino sugar could also react with various alcohols
to provide alkylated amines with no oligomer formation (Scheme 50). This highlights the
lower reactivity of the alcohols borne by secondary carbons on the carbohydrate. In this
case, toluene could not be used as a solvent due to solubility issues. The reaction was thus
performed using the alcohol as a solvent. These reactions could also be performed using
glucose derivatives instead of mannose, producing a yield of 44–78%.
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Scheme 50. An amino sugar is used as a nitrogen source in a hydrogen borrowing strategy.

Unprotected Carbohydrates

The use of protected carbohydrates led to the selective formation of the desired
products. However, several synthesis steps were added to perform the synthesis of the
alcoholic substrates. As shown in Scheme 51, the use of unprotected carbohydrates only
led to C-C bond cleavages in line with the results obtained with glycerol. However, even
when C-C bond cleavages were observed, good selectivities and conversions in various
amines and amino alcohols were obtained.
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Note that N-heterocyclic chemical formation from unprotected carbohydrates am-
ination is well described, these reactions are not considered borrowing hydrogen be-
cause the amination usually occurs on carbonyl functions, and thus will not be reported
here [136–141].

The authors of [142,143] describe the use of a series of monosaccharides such as
glucose, fructose, 2-deoxy-D-glucose, and xylose in combination with Ru/C as a catalyst
to provide C2-diamines (Scheme 52, Table 8 Entry 1). In the course of these reactions, the
presence of H2 pressure was mandatory to avoid decomposition of the starting materials
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and to obtain complete reactions (i.e., the formation of diaminated products instead of
monoaminated). The proposed mechanism involved a hemiaminal formation followed
by an iminium formation by dehydration. A C-C cleavage on the latter, followed by a
hydrogenation reaction thus formed the amine. Supported Ni catalysts also allowed the
reaction to perform nicely (up to a 92% yield, Table 8 Entry 2). A large series of monomeric
substrates were used under these conditions, such as mannose, galactose, or arabinose.
Interestingly, trimeric carbohydrates and disaccharides could also be used (cellobiose,
maltose, and maltotriose), with a decrease in the yield indicating poor hydrolysis of the
glycosidic linkages.
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Table 8. Catalytic amination of unprotected carbohydrates.

Entry Catalyst T (◦C) t (h) Solvent Additive Products Refs

1 Ru/C 125 1 H2O H2 (70 bar) Ethan-
diamines [142,143]

2 Supported Ni 125 1 H2O H2 (70 bar) Ethan-
diamines [142,143]

3 [Ru(2-methylallyl)2(cod)2]/
Xantphos 150 16 Dioxane Acetic

acid
Ethanol-
amines [131]

4 [RuCl2(p-cymene)]/DCyPF/N-
MeTMA 150 20 Dioxane t-BuOK Ethanol-

amines [128]

5 CdS nanosheet 50 8 H2O NaOH,
hν Alanine [47]

Chaudhari described in 2018 the amination of sorbitol (a compound obtained via the
hydrogenation of glucose) using a similar Ru/C catalyst under H2 pressure and observed
the formation of a complex mixture of aliphatic amines (10% methylamine, 11% ethylamine,
12% propylamine, and 15% other alcoholic products) with excellent conversion. These
results highlight the C-C cleavages occurring during the course of the reaction, thus forming
smaller carbon chains similar to that which was observed with glycerol (Scheme 53) [130].
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Carbohydrates were used to perform hydroxyethylation of amines [128,131]. The
skeleton of the carbohydrate was cleaved similar to work by Sels et al. [142,143]. Two
homogeneous systems enabling the formation of β-amino alcohols from amines and car-
bohydrates were described in the literature. The use of [Ru(2-methylallyl)2(cod)2] and
Xantphos allow the transformation of various C5 and C6 sugars, as well as oligomeric
carbohydrates, in the presence of acid derivatives, even though lower yields were obtained
with oligosaccharides (Scheme 54). Only traces of product were obtained when cellulose
was used as a substrate. Interestingly, pre-treatment of α-cellulose with inorganic acids for
further hydroxyethylation reaction led to the formation of the desired β-amino alcohols.
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The second system enabling the reaction was described in 2020, and allowed the reaction to
be performed in basic media instead of under acidic conditions as reported in 2019 (Table 8
Entry 4) [128].
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Finally, a photocatalytic conversion of glucose into alanine was performed over an
ultrathin CdS nanosheet (Scheme 55) [47]. Even though low amounts of alanine were
isolated, conversion to the key intermediate, namely lactic acid, was observed.
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Scheme 55. Alanine formation.

As shown in this section, the alcohol protection of carbohydrates to deactivate several
positions for amination reactions or the use of aminated carbohydrates as amination agents
were the only routes to access more complex structures. Indeed, without these strategies,
C-C bond cleavages were always observed even though selective reactions could occur
under specific conditions (Table 8). Carbohydrate amination has not yet been achieved
under acceptable conditions since tremendous protection steps are required to avoid C-C
bond cleavages of the carbohydrate structure. Research in this field is still limited, and
more effort could be devoted to uncovering new reaction conditions that could alleviate
the protection procedure and achieve carbohydrate amination instead of decomposition.

3. Conclusions: Challenges and Future Directions

In this review, we provide an overview of the most significant advances in the use of
bio-based alcohols with the hydrogen borrowing approach (Scheme 56). We discussed the
versatility of the available catalysts and demonstrated the most recent advancements in the
use of biobased substrates. Despite its incontestable success, highlighted by the increased
number of publications in the last decade, several hurdles remain.

Some of the bio-based substrates, such as the fatty alcohols, are successfully converted
to the corresponding amines. It appears that the presence of a long aliphatic chain has no
impact on the efficiency of the reaction. When terpenoids are used as substrates, selectivity
issues are observed due to the presence of C=C double bonds, which leads to the formation
of enals, which can then isomerize. Additionally, when bulky terpenoids are used, the
reaction does not go to completion and the formation of the intermediate ketone as the
main product is observed instead of the expected amines. In the case of furan derivatives,
despite efficient conditions reported for the formation of the desired amines, several by-
products are obtained. Reduction of the furan cycle is indeed observed, such as amidation
reactions. The selectivity toward furan cycle reduction is driven by the presence of external
H2 pressure, whereas the selectivity toward an amidation reaction (instead of amination)
is driven by the presence of a strong base. This highlights the importance of the reaction
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conditions. Interestingly, the use of 5-HMF only leads to di-amination reactions since it
is not possible to selectively aminate the alcohol functions without affecting the carbonyl
moiety. However, 2,5-BAMF is selectively obtained from 5-HMF or BHMF even though
H2 pressure is required. For polyfunctional alcohols, ester functions are compatible with
hydrogen borrowing methodology even though, under certain conditions, α-amino acid
amides are obtained by di-amination of the corresponding α-hydroxy esters. Additionally,
whereas amination of α-hydroxy acids is efficient, β-hydroxy acids only leads to poor yields.
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A large number of publications are dealing with polyols since they are one of the
predominant classes of alcoholic compounds found in nature or that can be obtained from
biomass. A broad structural diversity is achieved when polyols are used as substrates
in amination reactions. Indeed, aside from the expected diamines, incomplete reactions
are observed with the formation of the corresponding amino alcohols, such as cyclization
reactions or even the formation of aromatic heterocycles or dehydrated/aminated products.
The selectivity of the reaction is driven by the substrates used (nitrogen sources and/or
diols), the catalytic systems, or the reaction conditions. The selectivity of these reactions
can be considered as the main hurdle for the expansion of the use of this methodology
with bio-based substrates. The most striking example of this lack of selectivity is the use
of carbohydrate, which only leads to C-C bond cleavages of the carbohydrate backbone
unless the alcohol functions are all protected.

Additionally, to pursue efforts for milder reaction conditions and lower catalyst load-
ing, efforts targeting the special needs for bio-based substrates still need to be made.
Various catalysts have been used for this purpose, either homogeneous or heterogeneous.
However, most of them comprise noble metallic centers, which are expensive and envi-
ronmentally harmful. We are thus anticipating the breakthrough of an earth-abundant
based catalyst, which is still limited when it comes to natural substrates. Additionally,
within this review, we have highlighted the strong dependence between the selectivity of
the reaction and either the catalyst structure/nature or the reaction conditions. We have
indeed identified selectivity as one of the main issues to circumvent for the amination of
bio-based alcohols. We strongly believe that the tuning of the catalyst structure and the
adaptation of the reaction conditions to the pre-requisite of the use of natural substrates
is the way to overcome this hurdle. The design of a more active catalyst will also allow
milder reaction conditions such as the decrease of the reaction temperature or the use of
additives, which are critical parameters for the reaction selectivity. Even though hydrogen
borrowing is a powerful strategy to provide C-N bond formation, only a few examples
of stereo controlled reactions have been described [144], and the reports concerning the
asymmetric amination of bio-based substrates are still scarce. This is critical in order to
apply this methodology to higher-value product formation, such as pharmaceutical drug
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precursors. Additionally, several catalytic systems still require the use of an external H2
source, which is not mandatory when a borrowing hydrogen mechanism is involved. More
active catalysts which are less prone to oxidation are thus required.

In conclusion, with this overview, bio-based alcohols can be aminated in only one
step to provide highly desirable products. A high atom economy is achieved within this
reaction since water is the only by-product formed. However, we find that selectivity
and functional group tolerance are the main issues to circumvent. We hope that further
research on sustainable catalysis will promote bio-based alcohol amination as a new route
for biomass valorization.
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