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Abstract: Photopolymerization has attracted great interest because of its mild reaction conditions, spa-
tiotemporal controllability, cost efficiency, and fast speed. However, with the raising environmental
awareness and the increasing attention to life and health, the leachability of photoinitiators has become a
growing concern. In this research, a methacrylate functionalized triazine-based polymerizable visible light
photoinitiator, 2-(((4-(2-(4,6-bis(trichloromethyl)-1,3,5-triazin-2-yl)vinyl)phenoxy)carbonyl)amino)ethyl
methacrylate (CT) and its reversible addition–fragmentation chain transfer (RAFT) polymerized CT (pCT)
were designed as the polymerizable and polymeric photoinitiators, respectively. The photoinitiation
abilities of the investigated triazine derivatives were evaluated under violet LEDs. Due to the steric
effect, pCT showed slightly reduced photoinitiation ability under both LED at 400 nm and 410 nm
irradiation. Nevertheless, photopolymers initiated using CT and pCT showed excellent migration sta-
bility compared to those prepared by 2-(4-methoxystyryl)-4,6-bis(trichloromethyl)-1,3,5-triazine (MT)
and 4-(2-(4,6-bis(trichloromethyl)-1,3,5-triazin-2-yl)vinyl)phenol (PT). Specifically, CT and pCT-based
polymers prepared under the irradiation of LED at 400 nm exhibited only 1/3-fold and 1/14-fold of
photoinitiators leachability, while 1/2-fold and 1/6-fold of photoinitiator leachability were obtained
compared to the MT-based photocured polymers when using LED at 410 nm. The excellent migration
stability of pCT reveals potential applications in the biomedical and food packaging fields.

Keywords: triazine; polymerizable photoinitiator; polymeric photoinitiator; migration; photopolymerization

1. Introduction

Photopolymerization has been prevalent in various fields, including 3D printing,
coating, optoelectronics, dentistry, adhesive, and paints [1–8], due to its mild reaction
conditions, spatiotemporal controllability, cost-efficiency, and high efficiency [9–11].
Many photocatalysts [12–14] and photoinitiators [15,16] are commercially available or
have been developed to initiate photopolymerization. One of the most growing concerns
in photopolymerization is the migration and leachability of photoinitiators from pho-
tocured products. Although only a small amount of photocatalysts or photoinitiators
is required in photopolymerization, unconsumed photoinitiators and their photolysis
fragments still remain in the photocured products, while it is even more significant
for photocatalysts as they are almost not consumed at all and remain unchanged after
reactions [17–20]. The residual photocatalysts or photoinitiators and fragments pro-
duced from the photolysis of photoinitiating systems can bring undesired properties
of the polymers and cause migration problems. All these issues greatly limit the appli-
cations of the produced polymers on food packaging or biochemical materials due to
toxicity [18,21–28]. Thus, the strategies to minimize the migration of photoinitiators have
attracted much interest. One prevalent strategy is to introduce polymerizable groups
such as the methacrylate group into photoinitiators, including thioxanthone, naphthal-
imide, and (2E,5E)-2,5-bis(4-((2-hydroxyethyl)(methyl)amino)benzylidene)cyclopentanone.
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This allows the crosslinking of photoinitiators into the prepared photopolymer networks,
which significantly decreases their mobility [17,18,28–34]. Another strategy is to develop the
macromolecular photoinitiators from the low molecular weight photoinitiators, including
bisacylphosphine oxide (BAPO), 1-hydroxy-cyclohexyl-phenylketone (HCAP), 2-hydroxy-
2-methyl-1-phenyl propanone (HMPP), and naphthalimide derivatives [35–38], and the de-
veloped macromolecular photoinitiators were well-known for their low leachability due to
the significantly reduced diffusion coefficient of macromolecules in both the fluid layer and
polymer matrix [36–45]. However, most of them only contain a low content of photoinitiator;
thus, they require high mass concentrations [35–41,43]. Alternatively, these polymeric pho-
toinitiators work efficiently mainly under UV light irradiation, which limits their potential
applications in household usage and making thick samples due to the potential harm of UV
light to the human body and its poor penetration depth [46–52]. The most direct approach
to solving these issues is to employ photoinitiators that are sensitive to longer wavelengths
instead. In fact, there have been some visible light-sensitive macromolecular photoinitiators
reported [35,53]. Specifically, a waterborne poly(ethylene glycol) substituted BAPO deriva-
tive (PEG-BAPO) was synthesized and showed a possibility of applying it to 3D printing
under 460 nm LED irradiation [35]. However, it also showed a prolonged induction time of
12 s when photopolymerized with only 50 µm-thick samples, which could be ascribed to the
extremely low molar extinction coefficient at 460 nm. Alternatively, a series of BAPO salts
and monoacylphosphineoxide (MAPO) salts were also synthesized and investigated under
visible light irradiation [53]. Nevertheless, their low molar extinction coefficients under the
visible light range significantly affect their efficiency. Therefore, it is desirable and urgent
to design and develop highly efficient visible-light-sensitive photoinitiators with high
migration stability for photopolymerization. 2-(4-methoxystyryl)-4,6-bis(trichloromethyl)-
1,3,5-triazine (MT) has been reported as a highly efficient photoinitiator under visible light
irradiation [46]. Compared to the commercially available photoinitiators, such as BAPO,
2,4,6-trimethylbenzoyl diphenyl-phosphineoxide (TPO), and 2-benzyl-2-dimethylamino-1-
(4-morpholinophenyl)-1-butanone (BDMB), MT exhibits a higher photoinitiation ability
under the irradiation of LED at 405 nm in free radical polymerization (FRP) and has been
applied in 3D printing [54]. Moreover, MT, when combined with an iodonium salt and
N-vinylcarbazole, can photoinitiate cationic polymerization of 3,4-epoxycyclohexylmethyl
3,4-epoxycyclohexane carboxylate (EPOX) [46]. However, most photoinitiators, including
MT, show poor cytocompatibility [55–57]; therefore, the investigation of the migration of
photoinitiators after photopolymerization becomes significant.

Herein, we reported a polymerizable MT derivative and a polymeric MT derivative
with high efficiency and migration stability. Specifically, the polymerizable MT derivative,
2-(((4-(2-(4,6-bis(trichloromethyl)-1,3,5-triazin-2-yl)vinyl)phenoxy)carbonyl)amino)ethyl
methacrylate (CT) was synthesized by first forming 4-(2-(4,6-bis(trichloromethyl)-1,3,5-
triazin-2-yl)vinyl)phenol (PT) by the demethylation of MT, followed by the coupling of PT
with 2-isocyanatoethyl methacrylate. Subsequently, CT underwent RAFT polymerization
to generate polymerized CT (pCT), a polymeric photoinitiator with high triazine content,
as shown in Scheme 1. The light absorption properties of the synthesized triazine deriva-
tives were fully studied. The photoinitiation abilities of these triazine derivatives were
investigated under the irradiation of LED at 400 nm and 410 nm by the photopolymeriza-
tion of trimethylolpropane triacrylate (TMPTA) via real-time Fourier transform infrared
spectroscopy (RT-FTIR). Furthermore, the migration stability of the residual photoinitiators
from photocured samples was discussed.
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Scheme 1. Synthetic route for PT, CT, and pCT.

2. Results and Discussion
2.1. Synthesis and Characterization of Triazine Derivatives

Triazine (MT) was first demethylated by boron tribromide (BBr3) to yield 4-(2-(4,6-
Bis(trichloromethyl)-1,3,5-triazin-2-yl)vinyl)phenol (PT). PT was subsequently coupled with
2-isocyanatoethyl methacrylate to form polymerizable 2-(((4-(2-(4,6-bis(trichloromethyl)-1,3,5-
triazin-2-yl)vinyl)phenoxy)carbonyl)amino)ethyl methacrylate (CT). Finally, CT was RAFT
polymerized to yield a polymeric photoinitiator, pCT. The successful synthesis of CT was
confirmed with nuclear magnetic resonance (1H NMR and 13C NMR), as shown in Figure 1.
Specifically, H1, H4, and H5 proton signals in Figure 1a suggested the introduction of the
methacrylate group, while the carbonyl group signal of C12 in Figure 1b indicated the
formation of the carbamate.

Figure 1. (a) 1H NMR and (b) 13C NMR spectra of CT in DMSO-d6 (400 MHz).

The prepared CT was also characterized using Fourier-transform infrared spectroscopy
(FTIR). As shown in Figure 2, the presence of the characterization bands at 3417 and
1703 cm−1 of CT were attributed to the N-H and C=O stretching, respectively [58]. This
again confirmed the successful synthesis of CT from PT. Finally, the RAFT polymerized CT
(pCT) was examined to have Mn of 5240 g/mol, Mw of 6840 g/mol, and a polydispersity
index (PDI) of 1.305 using the GPC measurements (Figure 3). The triazine content of pCT
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was calculated via the equation: MT wt% = (Mn−MCPPA)
Mn

× MMT
MCT

= 72 wt%, where MCPPA,
MMT, and MCT are the molecular weight of CPPA, MT, and CT, respectively.

Figure 2. FTIR spectra of CT, PT, and MT.

Figure 3. GPC elution profile of pCT synthesized by RAFT polymerization.

2.2. Light Absorption Properties of MT, PT, CT, and pCT

The light absorption spectra of the investigated triazine derivatives in DMF are shown
in Figure 4. To compare the light absorption properties of pCT with small molecule triazine
derivatives, the equivalent concentration of triazine moiety of pCT was applied. Their light
absorption maxima (λmax) and extinction coefficients at the maximum absorption (εmax) are
summarized in Table 1. Compared to the maximum absorption peak of MT (λmax = 380 nm),
the maximum light absorption of PT is slightly red-shifted (λmax = 385 nm), possibly due
to the hydrogen bonding and the basic condition of N,N-dimethylformamide (DMF) [59].
Specifically, the phenol hydroxyl group of PT could form hydrogen bonds with DMF and
could also be ionized in basic DMF, resulting in the bathochromic shift. In contrast, those of
CT and pCT were both blue-shifted (λmax = 350 nm), which can be attributed to the fact that
the substituents with low electron-donating abilities lead to the hypsochromic shift [60].
The order of maximum absorption peak follows the order of electron-donating abilities: CT
and pCT: –O(CO) < MT: –OMe < PT: –OH. Interestingly, even though the molar extinction
coefficient of pCT (24,900 M−1 cm−1) is slightly lower than that of CT (29,900 M−1 cm−1),
the light absorption of pCT is extended up to 460 nm (Figure 4). With the light absorption
profiles of the synthesized triazine derivatives and the knowledge of the photoinitiation
mechanism [48], the following studies were performed under the irradiation of LED at
400 nm or LED at 410 nm (Table 1).
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Figure 4. UV−Vis absorption spectra of CT, pCT, MT, and PT in DMF.

Table 1. The maximum absorption wavelengths λmax, extinction coefficients εmax at λmax, ε400 nm at
400 nm, and ε410 nm at 410 nm of MT, PT, CT, and pCT in DMF.

Photoinitiators λmax (nm) εmax (M−1 cm−1) ε400 nm (M−1 cm−1) ε410 nm (M−1 cm−1)

MT 380 29,400 21,500 14,000
PT 385 26,000 23,900 19,000
CT 350 29,900 3300 1500

pCT 350 24,900 5100 3100

2.3. Photoinitiation Abilities of Triazine Derivatives

With the knowledge of the fact that the free radicals generated from the self-cleavage
of MT are the active species for the initiation of the following polymerization of trimethy-
lolpropane triacrylate (TMPTA) [46], the photoinitiation ability of MT is efficient for the
free radical polymerization of acrylates under the irradiation of LED at 400 nm in terms
of the final double bond conversion (35.6%) and maximum rate of photopolymerization
(Rp,max: 4.21 s−1) (Figure 5a and Table 2). Furthermore, the higher intensity violet LED at
410 nm (110 mW cm−2) improves the photopolymerization of TMPTA in the presence of
MT (Figure 5b), in line with the results reported previously [42,46,54]. To evaluate the effect
of modification of MT structure on their photoinitiation abilities, the photopolymerization
of TMPTA was carried out in laminate under both LED at 400 nm and LED at 410 nm
(Figure 5 and Table 2). The demethylated triazine derivative, PT, showed similar final
double bond conversions (36.2% and 46.4%) compared with MT (35.6% and 45.0%) (Table 2)
upon exposure to LED at 400 nm and LED at 410 nm, respectively; nonetheless, it showed
diminished Rp,max to 3.31 s−1 and 7.34 s−1. However, the polymerizable and the polymeric
triazine derivatives, CT and pCT, exhibited reduced photoinitiation abilities in terms of
both final double bond conversions and the Rp,max to different extents (Figure 5a and
Table 2). Specifically, CT and pCT reduced the final double bond conversions to 15.3% and
24.9% upon exposure to LED at 400 nm, respectively (Table 2). This trend is in accordance
with the discussed light absorption of the investigated triazine and its derivatives at 400 nm
above, except for pCT (Table 1). As shown in Figure 5a, the overall slope of the TMPTA
photopolymerization profile of pCT (red) revealed that the rate of polymerization was
adversely affected by its nature as the polymeric photoinitiator. Specifically, the triazine
moieties pendants on the chain of the pCT induced a huge steric effect, which restricted the
mobility of the generated free radicals; hence, this significantly sacrificed the photoinitiation
ability of corresponding photoinitiators [61]. Nevertheless, the slower polymerization rate
in the pCT-based formula allowed the active species produced by pCT to release into the
uncured resin gradually and resulted in a higher final double bond conversion of 24.9%
compared to that produced by CT. In contrast, the Rp,max of pCT is higher under LED at
410 nm than under LED at 400 nm (Table 2). This can be ascribed to the concentrated free
radicals generated by pCT under LED at 410 nm compared to that under LED at 400 nm
due to light intensity. Therefore, the distribution of active species in the uncured resin was
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promoted by the radical concentration gradient. The accelerated Rp,max of pCT (2.97 s−1)
under LED at 410 nm compared to LED at 400 nm (0.18 s−1) resulted in faster gelation of
the monomers, of which the formed network subsequently reduced the mobility of residual
active species and limited the diffusion of active species into the uncured sample; hence,
the final double bond conversion of TMPTA cannot reach a higher plateau. (Figure 5b).

Figure 5. Photopolymerization profiles (double bond conversion vs. time) of TMPTA in laminate
upon exposure to (a) LED at 400 nm and (b) LED at 410 nm in the presence of triazine derivative-based
photoinitiators (molar concentrations of all triazine moieties are 5.0 µmol/g).

Table 2. Double bond conversions and polymerization rates of TMPTA in the presence of triazine
derivatives (MT, PT, CT, and pCT) upon exposure to the LED at 400 nm (6.4 mW cm−2) and LED at
410 nm (110 mW cm−2) for 300 s.

Photoinitiators a
LED at 400 nm LED at 410 nm

C b (Rp/[C=C]) × 100 c C b (Rp/[C=C]) × 100 c

MT 35.6% 4.21 s−1 45.0% 10.91 s−1

PT 36.2% 3.31 s−1 46.4% 7.34 s−1

CT 15.3% 0.83 s−1 40.5% 5.59 s−1

pCT 24.9% 0.18 s−1 22.5% 2.97 s−1

a Contains equal molar concentration of the triazine moiety (5 µmol/g). b Final double bond conversions of
TMPTA after photopolymerization for 300 s. c Maximum rates of photopolymerization, calculated from the
maximum of the first derivative of the double bond conversions versus time curves during photopolymerization.

Additionally, the effect of light intensity and triazine moiety concentrations was inves-
tigated. As aforementioned, the increasing intensity of LED promoted the polymerization
of TMPTA in the presence of identical photoinitiating systems in terms of both final double
bond conversions and the Rp,max (Table 2). Moreover, except for the 1.0 µmol/g pCT for-
mulation, the increased amount of triazine moiety from 1.0 to 10.0 µmol/g resulted in the
increased final double bond conversion for both pCT and CT under the irradiation of LED
at 410 nm (Figure 6). The distinctive TMPTA photopolymerization profile of 1.0 µmol/g
pCT (Figure 6a) is attributed to the aforementioned steric effect.

2.4. Migration of Photoinitiators from Photocured Samples

Residual photoinitiators and photolysis fragments tend to migrate to the surface of
the photocured samples, which limits their application in biochemical materials [18,21–28].
The migration stabilities of photocured samples (41.5 mg) were investigated by comparing
the light absorption at the absorption maxima (λmax) of each sample in their leaching
solution (4 mL) as illustrated in Figure 7. Although the photoinitiation abilities of CT
and pCT were reduced (Figure 5), their migration stabilities were significantly enhanced
compared to MT (Table 3). Specifically, when irradiated by LED at 400 nm, PT showed the
highest leachability (72.88%), possibly due to the strong hydrogen bonding interaction with
the solvent, which increased its solubility, while CT (13.35%) and pCT (2.88%) showed a
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1/3-fold and a 1/14-fold leachability, respectively, compared to MT (41.03%). When irradi-
ated by LED at 410 nm, the polymers were crosslinked higher compared to that of using
LED at 400 nm; thus, the migration stabilities of all the samples were enhanced, especially
for PT (11.91%) and MT (3.75%). However, the trend remained the same as those with LED
at 400 nm. Specifically, CT (1.55%) and pCT (0.61%) showed a 1/2-fold and a 1/6-fold
leachability, respectively, compared to MT (3.75%).

Figure 6. Photopolymerization profiles (double bond conversion vs. time) of TMPTA obtained in
laminate in the presence of diverse equivalent triazine moiety concentration (a) pCT and (b) CT upon
exposure to LED at 410 nm.

Figure 7. UV−Vis absorption spectra of photoinitiators extracted with DMF for 20 h from the
photopolymers prepared by the photopolymerization of TMPTA under the irradiation of (a) LED at
400 nm and (b) LED at 410 nm in the presence of 10.0 µmol/g triazine moiety of MT, PT, CT, and pCT
in TMPTA.

Table 3. The migration ratio of photoinitiators from photocured samples.

Photoinitiators LED at 400 nm LED at 410 nm

MT 41.03% 3.75%
PT 72.88% 11.91%
CT 13.35% 1.55%

pCT 2.88% 0.61%

3. Materials and Methods
3.1. Materials

Unless specified, all the chemicals were used as received. Trimethylolpropane tri-
acrylate (TMPTA), 2-(4-methoxystyryl)-4,6-bis(trichloromethyl)-1,3,5-triazine (MT), boron
tribromide (BBr3, 1 M in heptane), dichloromethane (DCM; anhydrous), hexane, ethyl
acetate (EA), absolute ethanol, toluene, triethylamine (TEA), azobisisobutyronitrile (AIBN),
2-isocyanatoethyl methacrylate, N,N-dimethylformamide (DMF), dimethylacetamide (DMA),
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acetonitrile (ACN), and dioxane were all purchased from Sigma-Aldrich. Deuterated
dimethyl sulfoxide (DMSO-d6) was obtained from Cambridge Isotope Laboratories, An-
dover, MA, USA.

3.2. Synthesis
3.2.1. 4-(2-(4,6-Bis(trichloromethyl)-1,3,5-triazin-2-yl)vinyl)phenol (PT)

The synthesis of PT followed the literature [42]. Briefly, to the solution of
2-(4-methoxystyryl)-4,6-bis(trichloromethyl)-1,3,5-triazine (MT) (1 g, 2.2 mmol) in 100 mL
of DCM at −78 ◦C, BBr3 (60 mL, 1 mol/L, 60 mmol) was added dropwise. The resultant
mixture was allowed to warm to room temperature (~18 ◦C) overnight and stirred for 1 day.
The reaction mixture was then quenched by ice water (300 mL) and extracted by DCM.
The organic layer was combined, dried with anhydrous sodium sulfate, and concentrated
under vacuum, affording a yellow solid without further purification (780 mg, 80% yield).

3.2.2. Polymerizable
2-(((4-(2-(4,6-Bis(trichloromethyl)-1,3,5-triazin-2-yl)vinyl)phenoxy)carbonyl)amino)ethyl
Methacrylate (CT)

To the solution of 4-(2-(4,6-Bis(trichloromethyl)-1,3,5-triazin-2-yl)vinyl)phenol (PT)
(780 mg, 1.8 mmol) and TEA (0.5 mL, 3.6 mmol) in 20 mL toluene protected with N2, the
solution of 2-isocyanatoethyl methacrylate in 10 mL toluene was added at room tempera-
ture. The resultant mixture was then stirred at 60 ◦C for 18 h. The solvent was removed
under vacuum and the residue was purified by a silica column (10% EA/Hexane) to give a
pale-yellow solid (700 mg, 66% yield).

1H NMR (400 MHz, DMSO-d6) δ 8.40 (d, J = 15.8 Hz, 1H), 8.08 (s, 1H), 7.99 (d, J = 8.6 Hz,
2H), 7.51 (d, J = 15.9 Hz, 1H), 7.22 (d, J = 8.5 Hz, 2H), 6.12–6.08 (m, 1H), 5.70 (t, J = 1.9 Hz, 1H),
4.18 (s, 2H), 3.39 (d, J = 5.6 Hz, 2H), 1.90 (s, 3H).

3.2.3. Polymerized
2-(((4-(2-(4,6-Bis(trichloromethyl)-1,3,5-triazin-2-yl)vinyl)phenoxy)carbonyl)amino)ethyl
Methacrylate (pCT)

The RAFT reagent 4-cyano-4-(propylthiocarbonothioylthio)pentanoic acid (CPPA) was
synthesized as previously reported [62]. CT (234 mg, 0.4 mmol), CPPA (5.5 mg, 0.02 mmol),
and the thermal initiator AIBN (0.2 M, 55 µL, 0.01 mmol) were mixed in a 10 mL flask to
make the ratio of [CT]: [CPPA]: [AIBN] to 20: 1: 0.5. The mixture with N2 protection was
degassed via freeze-pump-thaw cycles at least 3 times, and then heated to 60 ◦C and stirred
for 10 h. The resulting polymer was purified with a short column to remove unpolymerized
CT with (EA/DCM = 10%).

3.3. Irradiation Sources

Two LEDs with different emission wavelengths and light intensities were used as
irradiation devices for photopolymerization reactions: LEDs with emission wavelengths
centered at 400 nm (6.4 mW cm−2) and 410 nm (110 mW cm−2).

3.4. Characterizations
3.4.1. Fourier-Transform Infrared Spectroscopy

Infrared spectra of MT, PT, and CT were acquired using a Spectrum Two Fourier
transform infrared (FTIR) spectrometer (Perkin Elmer, Waltham, MA, USA) fitted with
attenuated total reflectance (ATR) accessory scans, with an average over the range of
500–4000 cm−1 at the resolution of 4 cm−1.

3.4.2. Ultraviolet-Visible (UV-vis) Measurements

Ultraviolet-visible (UV-Vis) measurements were conducted on a Varian Cary 50 Bio
UV-Vis spectrometer from Agilent Technologies, Selangor, Malaysia.
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3.4.3. Gel Permeation Chromatography Analysis

Gel permeation chromatography (GPC) eluent profile of pCT was characterized using a
1260 Agilent Infinity GPC at 30 ◦C, with DMA as the eluent and polystyrene as the standard.

3.4.4. NMR Spectroscopy

All the characterization experiments utilized AscendTM 400 MHz NMR from Bruker
BioSpin AG, Fällanden, Switzerland. Chemical shifts were standardized using DMSO,
δ = 2.50 ppm.

3.5. Photopolymerization Experiments

Photopolymerization of TMPTA in the presence of the investigated triazine-derived
photoinitiators under the irradiation of LED at 400 nm (6.4 mW cm−2) and 410 nm
(100 mW cm−2) was investigated using a real-time Fourier transform infrared spectroscopy
INVENIO ® (RT-FTIR) manufactured by Bruker. The free radical photopolymerization
of TMPTA was conducted in laminate. Specifically, formulations were added in between
two polypropylene films with a volume of samples of approximately 15 µL. The film was
then sandwiched between two BaF2 windows and placed on a measuring holder. The
evolution of the double bond of TMPTA was at the band of 1620 cm−1. Conversions of
functional groups of monomers (C) during the photopolymerization processes were calcu-
lated via the equation: C = (A0 − At)/A0 × 100%, where A0 and At are the peak areas at
the characterized band of TMPTA before irradiation and at time t irradiation, respectively.

3.6. Migration Test

The samples were prepared upon exposure to LED at 410 nm or LED at 400 nm in the
presence of equal triazine moiety (10 µmol/g) with a thickness of 0.3 mm. The resultant
samples were washed with ethanol to remove the unpolymerized monomer and immersed
in DMF (4 mL) for 20 h. The leaching solution was measured using a UV−Vis spectrometer
to determine the migration stability of the investigated photoinitiators. The calibration
curves were plotted using their UV−Vis spectra with different equivalent concentrations of
triazine moieties (Figures S1–S4).

4. Conclusions

In summary, we prepared three triazine derivatives to investigate their photoinitia-
tion abilities and migration stabilities. The blue-shifted light absorptions were found for
the polymerizable and the RAFT polymerized triazine derivatives (CT and pCT), which
reduced the photoinitiation abilities of both CT and pCT for the photopolymerization
of TMPTA under the irradiation of LED at 400 nm compared to MT, while PT showed
comparable photoinitiation efficiency to MT. In contrast, PT and CT kept comparable pho-
toinitiation efficiency for the photopolymerization of TMPTA under the irradiation of LED
at 410 nm compared to MT. Nevertheless, the migration stability of the photoinitiators
was significantly enhanced in the photocured polymers photoinitiated by CT and pCT
compared to that photoinitiated by MT under both LED at 400 nm and LED at 410 nm.
Therefore, the discovery of the exceeding migration stabilities of CT and pCT can expand
their applications in various areas, especially in the food packing or biochemical fields.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/catal12111305/s1, Figure S1: (a) UV-vis spectra of different concentrations
of CT and (b) calibration curve of CT (absorbance at 350 nm vs concentration) in DMF; Figure S2:
(a) UV-vis spectra of pCT with different concentrations of triazine moiety and (b) calibration curve
of triazine moiety (absorbance at 350 nm vs concentration of triazine moiety) in DMF; Figure S3:
(a) UV-vis spectra of different concentrations of MT and (b) calibration curve of MT (absorbance at
380 nm vs concentration) in DMF; Figure S4: (a) UV-vis spectra of different concentrations of PT
and (b) calibration curve of PT (absorbance at 385 nm vs concentration) in DMF. Table S1: Migration
concentrations of photoinitiators from the photocured samples in DMF.

https://www.mdpi.com/article/10.3390/catal12111305/s1
https://www.mdpi.com/article/10.3390/catal12111305/s1
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