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Abstract: Rapid population growth and ever-increasing energy consumption have resulted in in-
creased environmental pollution and energy demands in recent years. Accordingly, studies and
research on innovative and efficient ways of wastewater clean-up and exploiting eco-friendly and
renewable energy sources such as sunlight have become a necessity. This review focuses on recent
progress with photocatalysis for water splitting capabilities. It introduces photocatalysis and hy-
drogen as a fuel source, before moving on to explain water splitting. Then, the criteria for ideal
photocatalytic materials are discussed along with current material systems and their limitations.
Finally, it concludes on the TiO2 systems and their potential in future photocatalysis research.
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1. Introduction to Photocatalysis

Within one hour, the sun provides more energy to the surface of the earth than the hu-
man population needs for one year. Considering the ever-increasing energy demands and
concerning environmental issues, the pursuit of such an enormous source of eco-friendly
and renewable energy is more important now than ever [1,2]. Therefore, a significant num-
ber of current projects have been dedicated to tackling the challenges of making chemical
fuel from sunlight.

Solar-to-chemical energy conversion provides a beneficial way to store solar energy
that is both sustainable and efficient. The question then arises as to how we split water
molecules in order to generate hydrogen gas for fuel. The first instance of water split-
ting through hydrolysis was reported around 1800, and since then numerous studies of
alternative ways to achieve this reaction were reported. Unfortunately, the capital cost of
mining hydrogen from water remained higher than the present-day industrial process of
methane steam reforming [3]. However, with the increased pressure from government
and independent groups for renewable and efficient energy, hydrogen generation through
water splitting has been given more focus.

When water comes into contact with sunlight within a photocatalyst platform, it disso-
ciates to produce a clean energy source of hydrogen without further energy requirements
from the photocatalytic process [4,5]. Researchers have suggested and investigated various
systems for this photocatalytic water splitting process [6], some of which will be discussed
in this review. The fundamental elements related to efficient hydrogen generation through
one-step photochemical water splitting are first examined. Then, the essential steps of
a photochemical reaction, along with chemical, electronic, and physical criteria for the
selection of photocatalytic material, and an overview of the current material systems is
reviewed. Finally, this review will discuss the TiO2 systems and their potential in further
photocatalytic research.

2. Hydrogen as Fuel and Its Production

The smallest and lightest element in the universe is Hydrogen. Its unique chemical and
physical properties offer both advantages and challenges in developing it as a prevalent
fuel source. The uniqueness of hydrogen compared to other chemical fuels comes from its
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high diffusivity, inimitability, combustibility, very low viscosity, and electrochemical prop-
erties [7]. All of these characteristics together make hydrogen different or more favorable
than other gaseous fuels. Moreover, it has been reported that hydrogen engines perform
more efficiently than gasoline engines. This is due to the low autoignition temperature of
hydrogen as well as the higher octane rating compared to conventional gasoline. Hydrogen
also has the highest heating value, which is 52,000 Btu/lb, among all the available fuels [8].

Fossil fuels are limited in the ways they can be mined or extracted. The advantage
of hydrogen is its abundant different sources such as oil, coal, natural gas (NG), biomass,
water, etc. Currently, the primary source of hydrogen is NG due to the low production cost
and high efficiency. Figure 1 below illustrates the current most notable sources of hydrogen
for industrial use. Hydrogen is largely generated from NG (48%), raw petroleum products
(30%), coal (18%), and electrolysis of water (4%) [9].
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Almost 96% of today’s industrial hydrogen production is sourced from fossil fuels. In
truth, the current hydrogen fuel is simply relying on another byproduct of non-renewable
fuel sources and would ultimately cost more than any of the initial forms of the fossil
fuels themselves. However, petroleum supplies will become limited in the near future [10];
therefore, it is critical for renewable hydrogen sources to gain attention and support.

3. Water Splitting

As mentioned in the previous section, water could be used as the main source of hydro-
gen production. By definition, the dissociation of the water molecules into their constituents
(hydrogen and oxygen) is known as water splitting (Reaction 1). This phenomenon was
first observed around the 1860s through water electrolysis, where an electric current was
passed through water to complete the water-splitting reaction. Production of hydrogen
from water is highly energy-demanding. There are many different proposed systems to use
other renewable energy sources, such as hydropower, wind turbines, photovoltaic cells,
and so on, to provide the electrical energy required for water hydrolysis. However, the
electricity that is consumed is more valuable than the hydrogen that is produced. To fully
understand the energy requirements for the water-splitting reaction, the thermodynamics
and electrochemistry of the process will be discussed [11].

2H2O→ 2H2 + O2 (1)

3.1. Thermodynamics and Electrochemistry of Water Splitting

As previously mentioned, dissociation of a water molecule is a reaction that is energet-
ically uphill. Typically, and without considering the overpotential, it requires 1.23 V per
one mole of water for the complete splitting of water into oxygen and hydrogen. Due to the
very low ionization power (Kw = 1.0 × 10−14), water splitting becomes thermodynamically
unfavorable (Gibbs free energy LG0 = 237 kJ/mol, 2.46 eV per molecule) at standard tem-
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perature and pressure [9]. LG is calculated at 25 ◦C using the thermodynamic parameters
(∆H, ∆T, and ∆S) required for the water-splitting process:

∆G = ∆H − T∆S = 285.83 kJ − 48.7 kJ = 237.13 kJ (2)

With the obtained value of the Gibbs free energy and using the help of the Nernst
Equation, the standard cell potential E◦ of the reaction could be obtained (Equation (3)).

E◦ = −∆G◦

zF
. (3)

In the above equation, z is the number of electrons transferred in the reaction (in this
case, two), and F is a proportionality constant and is in the Faraday units (96,485 C/mol).
Using the Nernst equation mentioned above, the standard potential of the water electrolysis
can be calculated as 1.229 V at 25 ◦C. This cell potential belongs to the difference in
potentials of the two half-cell reactions occurring at the cathode (reduction; hydrogen
evolution reaction (HER)) and anode (oxidation; oxygen evolution reaction (OER)). The
Nernst equations for the half-cell reactions of water splitting are mentioned below:

Anode (oxidation): 4OH− + 4h+ → O2 + 2H2O E = 1.23 V versus NHE (4)

Cathode (reduction): 2H2O + 2e− → H2 + 2OH− E = 0.00 V versus NHE. (5)

Leading to an overall reaction of the following:

2H2O(l) + 4e− + 4h+ → O2(g) + 2H2(g) E = 1.23 V (6)

where NHE is the normal hydrogen electrode.

3.2. Solar Water Splitting

The above calculations illustrate how thermodynamically unfavorable this reaction
is; however, nature shows us that it has been done for millions of years in plant leaves
through photosynthesis—a process in which the plant splits absorbed water using sunlight
and transforms it into fuels in the form of hydrocarbons. Therefore, a reasonable platform
would be the combination of solar energy with the plentiful water resources available to us.
This platform is called solar water splitting and is generally completed by photobiological,
thermochemical, or photocatalytic water splitting. Table 1 below contains a summary of
each method.

Table 1. Summary of solar water splitting methods.

Solar Water Splitting
Methods Description Comments

Thermochemical
Uses high temperature—from
concentrated solar power and

chemical reactions.

The simplest method. The
requirements for large solar

concentrators make this method
very expensive [12].

Photobiological

A process in which light is used in
biological systems to dissociate

water into molecular oxygen
and hydrogen.

Low yields of hydrogen
production, toxic effects of

enzymes, limitations on
scaling up [13].

Photocatalytic Theoretically, only light energy,
water, and catalyst are needed.

Low cost, relatively higher solar
H2 efficiency, the capability of

separating H2 and O2, and
flexible reactor size.
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4. Photocatalytic Water Splitting

Photocatalytic water splitting uses sunlight, water, and a semiconducting photocat-
alyst to dissociate water molecules through the two redox reactions mentioned above.
The breakthrough study was started in 1972 by Fujishima and Honda [14] in a photo-
electrochemical cell using TiO2 as their photocatalyst. Afterwards, photocatalytic water
splitting received an enormous amount of attention due to its potential. During the past
40 years, various photocatalyst materials and systems were used to split water under
ultraviolet light or visible light. Photocatalytic water splitting could be categorized into
either photochemical water splitting or photoelectrochemical (PEC) water splitting [15].

The schematics of the two different systems are summarized in Figures 2 and 3 below.
Both types include three basic steps: a semiconductor photocatalyst absorbs more photon
energy than the band gap energy of the photocatalyst and excites the electron–hole pairs;
the photogenerated charge carriers are then separated out and move toward different sites
of the photocatalyst’s surface; finally, at these sites water reacts with the charge carriers in
two separate redox reactions and therefore is reduced by electrons to produce H2 in the
same time its oxidized by holes to produce O2 [16].
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Reprinted with permission from [16]. Copyright 2022 American Chemical Society.

Even though the general concept of photochemical and PEC systems is the same, the
setup is different. In photochemical reactions, the water-splitting reaction takes place at
the semiconductor–electrolyte junction, whereas in a PEC setup the reaction takes place at
two different sites. In this method, illuminating the cathode or anode would provide the
required potential [15].

In order to understand the difference between these two setups, an important char-
acteristic of the semiconductor should be taken into consideration. This characteristic is
the band edge position of the semiconductor [17]. A suitable semiconductor for water
splitting has a valance band position that is more positive than the O2/H2O energy level
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(1.23–0.059 pH, V versus NHE) and a conduction band position that is more negative
than the H+/H2 energy level (0–0.059 pH, V versus NHE). In other words, in the ideal
case, a single semiconductor material should have a band gap that is large enough to
split water, so the conduction band energy and valance band energy should straddle the
electrochemical potentials E0 (H+/H2) and E0 (O2/H2O) [18]. However, in the case of
a single semiconducting material, the second requirement is not satisfied in most of the
material systems (as will be discussed in depth in further sections). Scaife [19] mentioned
in 1980 that it is exceptionally difficult to find a single semiconductor photocatalyst with
both characteristics. This difficulty is why many studies focus on two semiconductor
photocatalytic systems (PEC water splitting). By using two different materials, each one
will act as either a photoanode or photocathode, which when used in tandem, satisfies the
band gab requirement.

As seen in Figure 3, a two-step PEC system involves water splitting in two parts: one
for the hydrogen evolution using a semiconductor that satisfies the conduction band posi-
tion for that reaction, and the other for the O2 evolution. In this method, a semiconductor
that only partially satisfies the band edge position for the redox reaction could still be
used in conjunction with another semiconductor to facilitate a water-splitting reaction [20].
However, there are many drawbacks to and critics of this method.

First, it requires the number of photons to be double that for the one-step system to
achieve overall water splitting. The number of photons required in two-step photocatalytic
water splitting is eight, whereas in one-step overall water splitting it is four. This difference
causes the amount of hydrogen and oxygen produced in a two-step process to be half that
of the one-step process at light absorption values and apparent quantum yield of unity [21].

Second, there are still some drawbacks that involve promoting electron transfer be-
tween two semiconductors and opposing and suppressing the possible backward reactions
that involve shuttle redox mediators [22]. Therefore, since the number of backward electron-
transfer routes increases, which is the result of an increase in the number of elementary
steps, this route is kinetically unfavorable. Overall, two different studies summarized the
techno-economic analyses which determined that a high capital cost prevents PEC devices
from being implemented into solar hydrogen production. For these reasons, we will focus
on one-step photochemical water-splitting systems.

5. Photochemical Water Splitting

In order to understand the photocatalytic process in photochemical water splitting
(Figure 4), which is a quite complicated process, a simple step-by-step description of the
process will be discussed in this section. Overall, the following steps occur:

1. Photon absorption: Photocatalysts absorb photons and generate electrons and holes
at the surface. When the material absorbs the photons with an energy that is equal to
or more than the band gap energy of the semiconductor, an electron jumps from the
valance band to the conduction band, leaving a hole in the valance band. Electrons
and holes release energy (heat) and move the conduction and valance bands to the
minimum and the maximum positions, respectively [23].

2. Charge transport: After the charge carriers have been excited, there are different
scenarios that could occur. The first scenario, which is highly unfavorable, is that
excited-state conduction band electrons and valance band holes recombine. In the
case where there is not a suitable force to separate these charged carriers, the energy
stored in them will dissipate in a very short time (typically a couple of nanoseconds)
in the form of heat. In the event that there is a defect state, a trap on the surface
of the material, or a suitable scavenger, the recombination is potentially avoided.
Another scenario is that the excited electrons and holes will move to the respective
reaction sites [24]. In bulk, if the carriers do not recombine, it is only possible for
either an electron or hole to be accumulated at the anode or cathode, whereas in a
nanostructured semiconductor both of the photogenerated charge carriers could be
present at the same surface. Low dimensionality, few numbers of defects, and a high
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surface area in nanostructured materials result in key differences in electron transport
compared to their bulk counterparts [25,26].

3. After the charges have moved to the reaction sites in the material/water interface,
they can participate in the surface chemical reactions between these carriers and the
compounds (e.g., water) [15].
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6. Criteria for Selection and Synthesis of an Ideal Photocatalytic Material

As mentioned in the previous section, there are many different factors and steps in
the photochemical water-splitting process. Therefore, the development of photocatalytic
materials that can maximize the conversion of solar energy to solar fuel demands sig-
nificant consideration. At the molecular level, several physicochemical functions need
to be integrated into one stable chemical system that can set the criteria, which must be
satisfied simultaneously.

6.1. Chemical and Electronic Properties of the Materials

1. The band gap of the semiconducting material should lie between 1.6 eV (1.23 eV +
overpotential) and 2.7 eV (larger than 2.43 eV). It is known that only 4% of the sunlight
on earth is UV. Thus, in order to achieve maximum efficiency, the material should be
able to harvest within the visible light spectrum [28].

2. Band edge positions mean that band edges must straddle between the redox potentials
of H2O (0.00 eV and 1.23 eV), as illustrated in Figure 4. Semiconductor materials must
satisfy the minimum band gap requirement (~1.4 eV) [29]. Although recently a couple
of different ways of determining the valance band edge position of new material
systems have been proposed, the task of predicting the exact band position of a new
photocatalyst is arduous. For this reason, the applicability of a specific photocatalyst
material for overall water splitting is unknown in advance [30,31].

3. Charge transfer is necessary at the photocatalytic surface and must be fast enough
to prevent photo-corrosion and shifting of the band edges. This prevention avoids
the recombination of the charge carriers and can further provide efficient oxidation
and reduction sites on the surface of the material. A prevalent approach to hinder the
recombination process is the use of a cocatalyst. Cocatalysts have been used in many
investigations on hydrogen generation; however, some cocatalysts are highly active
and induce a reverse reaction, i.e., the generation of water from molecular oxygen and
hydrogen, which must be reduced [17].

4. The stability of the material in an aqueous medium is an essential requirement (at least
for 20 years). Many investigated material systems are susceptible to photo-corrosion
such as CdS. Although high efficiencies are reported in the early stages of experiments,

https://pubs.acs.org/doi/10.1021/cr1002326
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due to oxidation of the material the process deteriorates over time before eventually
stopping [32].

6.2. Physical and Crystal Structure Properties of the Material

Aside from the electronic and chemical properties that were mentioned above, there
are structural factors of semiconductors that play a significant role in the final efficiency
of the photochemical water-splitting process. Recent capabilities in advanced character-
ization enabled material scientists to investigate these factors, some of which are briefly
discussed below:

1. Crystalline phases: Semiconductors with different polymorphs have been shown to
have different photocatalytic overall water-splitting features. One famous example of
this is TiO2, which has the three main polymorphs, anatase, rutile, and brookite [33,34].
Initially, it was proposed that overall water splitting could only occur using the rutile
phase [35,36]. However, it was later discovered that the reaction is also feasible when
anatase or brookite are treated with continued UV irradiation [37]. Early studies using
infrared absorption–excitation energy scanning spectroscopy revealed that there are
numerous trapped states close to the valance bands of anatase and brookite but
not rutile. Later, it was concluded that the elongated emission of UV on these two
phases promotes the phase transformation to a quasi-rutile structure that elevates
water-splitting reactions. On the other hand, a recent experiment by the Akira group
in 2017 [38] illustrated the opposite conclusion, that brookite should have better
photocatalytic activities, by studying the depth of electron traps in the three different
polymorphs. The group concluded that brookite has moderate trap levels that both
preserves the reactivity of electrons and hinders the recombination process of the
charge carriers. These inconsistent results and conclusions show that there is a lack of
fundamental understanding of the different behavior of the photocatalytic activity of
a semiconductor with different polymorphs.

2. Crystallinity: A semiconductor with a high degree of crystallization has fewer struc-
tural imperfections such as vacancies and dislocations. These defects are known to
be recombination sites for photogenerated charge carriers. Therefore, it is commonly
suggested that a highly crystalline semiconductor has a lower electron–hole pair
recombination rate [39]. However, in two distinct studies in 2019 published in the
Nature Materials journal, two different conclusions have been derived. Wang et al. [40]
studied the overall water splitting of single-crystal Ta3N5 nanorods with no surface
defects and grain boundaries and compared the water-splitting efficiency of the same
material system with different nanorods with relatively more defects. Their result
demonstrates that the hydrogen production rate is almost three times higher in the
case of nanowires with no defects. In another study by Li et al. in 2019 [41], N-doped
titania samples with differing amounts of oxygen vacancies on the surface were
studied. From this experiment, it was demonstrated that by increasing the oxygen
vacancies on the surface by close to 13 times, these oxygen vacancies acted as electron
traps and increased the final efficiency of hydrogen evolution by nearly two times.
These two different conclusions show that, although it is known that defects act as
recombination sites, it is possible that different types of defects could have different
effects in the lifetime of photogenerated carriers that needs further investigation.

3. Particle size and morphology: As one might expect, the particle size and morphology
of the photocatalyst can have profound effects on the performance of the material [42].
In the case of particle size, the literature suggests that there is a degree of compromise
that occurs [43]. That is, small particle sizes facilitate the diffusion of electron and
hole pairs to the surface of the semiconductor, which results in a lower recombination
rate. However, when the particle is too small, insufficient absorption of light can
occur due to a lower surface area [44]. Therefore, for any particular material system,
it is critical to optimize the effect of particle size. Morphology has a significant effect
on determining the anisotropic distribution of charge within a semiconductor and
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the overall efficiency of the water-splitting process. For example, La-doped NaTaO3
demonstrated the presence of different spatially resolved reaction sites where the
edges and grooves acted as reduction and oxidation sites, respectively [45]. Unfor-
tunately, there still exists a number of studies which do not specifically address the
effect of morphology on the performance, such as of ultra-aspect ratio nanofibers
and nanoribbons.

4. Heterostructures and cocatalysts: As mentioned previously, the cocatalyst is another
important component that is widely used in most of the literature on overall water
splitting in a single system. The literature states that the main purpose of the cocat-
alyst is to provide redox reaction sites. Theoretically, a cocatalyst should allow the
photoexcited electrons and holes to have a smooth migration towards the surface and
the reaction sites. This theory comes from the model of semiconductor and conductor
interfaces that generate a built-in electric field, which should promote interfacial
charge transfer [10,46,47]. However, this understanding and model is not experimen-
tally supported, and the results do not align with the current understanding of the
system. Even so, since an increased efficiency of overall water splitting in most of
the material system has been reported, it is now used in ongoing research in this
field [17]. On the other hand, these active sites could also promote the reverse reaction
of the hydrogen evolution reaction and oxygen evolution reaction, and these reverse
reactions are usually preferred to the forward reaction on a thermodynamic basis.
Therefore, the use of cocatalysts in studies that require a fundamental understanding
of this research area should be carried out with care. Ultimately, due to the nature
of the nanostructures, uniform deposition of the cocatalysts on the materials is not
usually achieved, which makes systematic studies difficult.

7. Current Material Systems and Limitations

As McKone and Lewis point out in their review of the ideal photocatalysts [48],
regardless of the chosen solar fuel systems, certain constraints are present for their further
development. These constraints arise from the three key system requirements: efficiency,
stability, and scalability, which are summarized in Figure 5. Hundreds of metal oxides,
nitride, and sulfide, with the electronic configuration of d0 and d10 metal cations, were
tested for water splitting. Other than these materials, perovskite materials that are formed
by group I and group II metals, along with some lanthanides, can also be used to catalyze
photochemical water splitting.
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As mentioned before, the key requirement for a one-step water-splitting catalyst is
how the CB edge and VB edge should straddle the H+/H2 and O2/H2O redox potentials.
Figure 6 represents different semiconductors with respect to the relative position of their
band edges. Furthermore, in order to be in the center of the Venn diagram above, the
following necessities must be met: the catalyst system should be made from one of the

https://pubs.acs.org/doi/10.1021/cm4021518
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earth-abundant materials, a scalable synthesis method should be present, the system
should be robust and susceptible to photo-corrosion in water, and the system should have
sufficient carrier mobility. Then, in order to increase efficiency, different strategies can
be implemented, such as band gap engineering to reduce the band gap and make the
photocatalyst activated by visible light; morphological advancement at the surface level
that improves the shape and size of the particle; and different methods of synthesis.
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Based on Figure 6 and Table 2 below, most of the options do not meet the primary re-
quirements of the band edge positions for single-step photocatalytic water splitting. A cou-
ple of remainder candidates, such as CdS, that depict high efficiencies in many studies suffer
from instability in water and oxidizing shortly after catalyzing the water-splitting reaction.

Table 2. List of recent one-step photochemical water-splitting materials.

Semiconductor
(Available

Wavelength)
Cocatalyst Light Source Reactant

Solution Efficiency Refs

Ultraviolet Light

TiO2 (<385 nm) Pt, RuO2 - 450 W Xe lamp
(>300 nm)

H2O with
pH

adjustment

AQY 1: 30%
at 360 nm

[50]

NaTaO3:La
(<300 nm) 0.2 wt% NiO - 400 W Hg lamp H2O AQY: 56% at

270 nm [45]

Visible Light

TaON (<495 nm)
3 wt% RuOx/2.5

wt% Cr2O3-4
wt% IrO2

ZrO2
450 W Hg lamp

(>400 nm) H2O AQY: 0.1%
at 420 nm [51]

Cu2O 2.0
(<620 nm) 3 wt% IrO2 - 300 W Xe lamp

(>440 nm) H2O AQY: 0.3%
at 550 nm [52]

CoO (<515 nm) - - AMI.5G solar
simulator H2O STH: 5% [53]

C3N4 (<442 nm) 3 wt% Pt-1 wt%
CoOx - 300 W Xe lamp

(>420 nm) H2O AQY: 0.3%
at 550 nm [54]

1 Apparent quantum yield.

The rest of the recently discovered/studied photochemical water-splitting examples
mentioned in Table 2 are all suffering from low efficiencies under visible light. Among
all the materials mentioned above, TiO2 is still studied due to its favorable conditions.
However, due to its large band gap, the pure form of titania only activates in the presence of
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UV light. Although many studies illustrated high efficiencies when TiO2 is used under UV
light, the attempts to achieve similar results when the material is transformed into visible-
light-active material through band gap engineering remained inefficient. The second barrier
that is widely mentioned is titania’s low carrier mobility that leads to a fast recombination
rate of the charged carriers.

8. TiO2 Systems

The crystallographic structure of TiO2 is shown in Figure 7 and listed in Table 3. Well-
known phases of TiO2 are rutile, anatase, and brookite. Rutile is a tetragonal (a = 4.594 Å,
c = 2.958 Å), anatase is also a tetragonal (a = 3.785 Å, c = 9.514 Å), and brookite is or-
thorhombic (a = 9.184 Å, b = 5.447 Å, c = 5.145 Å). The c coordinate of anatase is higher than
other phases, and the c/a ratio of its unit cell is greater than the rutile and brookite phases.
Among all three phases, anatase is the most active allotropic in terms of photocatalytic
activity when compared to rutile, brookite, and TiO2-B (artificial phase).
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Table 3. Physical properties of TiO2 phases.

Structure
Lattice Constant (Å)

System
a b c

Rutile 4.594 4.594 2.958 Tetragonal
Anatase 3.785 3.785 9.514 Tetragonal
Brookite 9.184 5.447 5.145 Orthorhombic

Rutile is thermodynamically stable at ambient conditions. Anatase is kinetically stable
and transforms to rutile at higher temperatures depending on the particle size, ambient
pressure, and other parameters [55]. The brookite phase is also metastable and difficult
to synthesize, and so it is seldom studied. Table 4 lists the oxide polymorphs of TiO2 that
have been synthesized at the nanoscale, along with the synthesis techniques, processing
conditions, and relative particle size of the transforming material [56]. If the particle sizes
of the three crystalline phases are equal, anatase is the most stable at sizes less than 11 nm
thermodynamically, brookite is the most stable between 11–35 nm, and rutile is the most
stable at sizes greater than 35 nm. These values are summarized in Table 4.

For bulk TiO2, the rutile phase is thought to be a more stable phase than the anatase
at room temperature. However, Zhang et al. [57] has suggested, and Gouma et al. has
confirmed [58], that the total free energy of rutile is higher than anatase when the particle
size is smaller than the critical size of 14 nm; therefore, anatase becomes a more stable
phase. After that, some studies have claimed that rutile and anatase together have higher
photocatalytic activity than pure anatase. For example, the commercial TiO2, Degussa P25,
is a mixture of anatase (~75%) and rutile (~25%) phases, and it is the most widely used
photocatalyst for environmental applications.

Anatase can be synthesized at lower temperatures (400 ◦C) to nanoscale size; it shows
better photocatalytic properties because nanoscale size increases the number of pores and
enhances solid–solid interactions. Conversely, at higher temperatures (above 300 ◦C),
nano-TiO2 has worse photocatalytic activity.
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The properties of brookite are poorly known due to the difficulties of obtaining it
as a pure phase [59]. Qiuling et al. [60] also shows that the synthesized two phases
(anatase/brookite) have higher photocatalytic activity due to the electron transfer from
brookite CB to anatase CB, resulting in effective electron–hole separation.

Table 4. Different phases of TiO2.

Phase Conditions Particle Size (nm) Techniques Refs

Brookite - 11–35 nm sol-gel [61]

Anatase room
temperature <11 nm sol-gel [62]

Rutile >850 ◦C >35 nm sol-gel [63]

Two principal factors mentioned before must be taken into account when designing
systems for conducting photocatalytic reactions. The first is the efficiency of e- and h+ pair
generation when absorbing solar irradiation. The second is the efficiency of the e-/h+ pair
separation before they lose their redox ability due to recombination. In order to enhance the
photocatalytic efficiency, the main issues that should be taken care of are the increase in the
charge separation and recombination lifetimes of charge carriers, increase in solar spectrum
response range, and changing of the selectivity or yielding of a particular product.

The efficiency of the photocatalytic process, the stability under light, the selectivity of
the product, and the activation range of the wavelength are factors in determining the right
aim of semiconductor photocatalysis systems. For the TiO2 system, the primary barrier
remains to be its activation by ultraviolet light (12′ 400 nm) due to the wide band gap of
TiO2 (~3.2 eV for anatase and ~3.0 eV for rutile), for which it only absorbs UV light. Another
major drawback of TiO2 is photogenerated electron–hole recombination, which deteriorates
photocatalytic activity [64]. Therefore, an obvious goal is reducing the band gap of TiO2 in
order to shift the absorption band to the visible region and to enhance the electron–hole
separation process. Modifications of TiO2 have been accomplished by different strategies
such as doping, cooping, sensitization, and coupling. The coupling of two semiconductors
provides different energy levels, which can allow a more efficient charge separation in order
to enhance the lifetime of charge carriers and also to increase interfacial charge transfer.
In order to overcome the drawback of TiO2, the rare earth (lanthanide) elements can also
be used.

Doped TiO2 Systems

Rare earth elements are ideal dopants for modifying the crystal structure, electronic
structure, and optical properties of TiO2 due to the 4f electronic configuration and spectro-
scopic properties [65,66]. Lanthanide ions could act as effective electron scavengers to trap
the CB electrons from TiO2 [67]. Xu et al. studied doping with rare earth ions including
La3+, Ce3+, Er 3+, Pr3+, Gd3+, Nd3+, and Sm3+ in TiO2, which improved photocatalytic activ-
ity in the degradation of nitrite. Wang et al. [68] also illustrated doping with lanthanide ions
(La3+, Er3+, Pr3+, Nd3+, and Sm3+), which improved the photoelectrochemical properties
and increased the photocurrent response and the photon current conversion efficiency in
the range of 300–400 nm.

9. Conclusions

Rapid growth in population and energy usage have resulted in increased environmen-
tal pollution and energy demands in recent years. In order to meet this demand, research
on innovative and efficient methods of using renewable energy sources such as sunlight
have become a necessity. In this review, we have discussed hydrogen as a fuel, its current in-
dustrial sources from fossil fuels, and its generation from the electrolysis of water. We then
illustrated the mechanics (thermos, chemical, and otherwise) that allow for water splitting,
specifically solar water splitting. Afterwards, we moved on to reviewing photocatalytic
water splitting and the difference between the one-step and two-step processes. From here,
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we concluded that one-step water splitting is more cost efficient and should be the focus of
future research. We then discussed the criteria for ideal photocatalytic materials, including
that the band positions should lie between 1.6 and 2.7 eV in order to use light in the visible
spectrum, and the limitations with the current material systems. We finally focused on the
TiO2 systems and their potential and drawbacks as photocatalysts for water splitting.

It is suggested that the TiO2 systems be further investigated as photocatalysts. Specif-
ically, investigations including effectively decreasing the band gap of TiO2 in order to
absorb light in the visible spectrum. This will increase the efficiency of TiO2 as a photocat-
alytic material and will further research in the areas of hydrogen fuel from a renewable
energy source.
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