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Abstract: Hexavalent chromium is very carcinogenic, and it is, therefore, important to remove it
from wastewater prior to disposal. This study reports the photoreduction of Cr(VI) under simulated
sunlight using graphene-derived TiO2 nanowire (TNW) composites. Electrophoretic deposition (EPD)
of graphene oxide (GO) and reduced graphene oxide (rGO) was carried out on rutile phase TNWs.
The TNWs were fabricated by thermal oxidation of titanium foil in the presence of 1M potassium
hydroxide mist at 750 ◦C. The TNWs uniformly covered the surface of the titanium foil. EPD of GO or
rGO was done as a function of time to produce deposits of different thicknesses. The photocatalytic
performances of the GO/TNWs or rGO/TNWs were tested to reduce Cr(VI) under visible light. The
performance of rGO/TNWs in reducing Cr(VI) was better than GO/TNWs. A 10-second-deposited
rGO on TNW samples can reduce 10 mg/L Cr(VI) within 30 min under visible light, likely as a result
of the high electron transfer from rGO to TNWs accelerating the Cr(VI) reduction.

Keywords: graphene oxide; reduced graphene oxide nanosheets; titanium oxide nanowires; elec-
trophoretic deposition; photocatalysis; hexavalent chromium reduction

1. Introduction

Chromates are used in many industrial processes, including metal fabrication, leather
tanning, pulp and paper production, and electroplating [1]. Chromic acid, for example, has
been used for electroplating chromium onto metal components to improve their corrosion
resistance and increase their abrasive wear. In a typical electroplating process, a metal to be
plated is immersed in a sodium cyanide or caustic soda solution as a pretreatment, followed
by cleaning and rinsing before being transferred to a chrome bath for chromium plating.
After this process, the metal parts are rinsed again. All of these processes result in a large
volume of wastewater containing released cyanide and acidic Cr(VI). Cr(VI) is carcinogenic,
highly corrosive, and very toxic [2,3]—considerably more toxic than Cr(III)—and hence
must be removed from the wastewater. Chemical reduction of Cr(VI) to Cr(III) is commonly
carried out to remove Cr(VI) from wastewater, for example, by using sulfur dioxide gas
or sodium bisulfite and sulfuric acid. That treatment lowers the Cr(VI) concentration
from the effluent, but not to zero, and it generally involves subsequent adjustment of the
solution to precipitate the Cr(III) ions. Chemical reduction utilizes hazardous chemicals
and can generate dangerous by-products and, potentially, the evolution of toxic gases.
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Therefore, an alternative process that results in zero Cr(VI) effluent without the use or
release of toxic chemicals or gases is sought. Among the strategies for total Cr(VI) re-
moval using a more benign process, photocatalytic reduction is considered a promising
approach [3]. In photocatalytic reduction, the Cr(VI) reduction occurs with free electrons
that are generated when a semiconductor photocatalyst is illuminated with light with an
appropriate amount of energy [4]. Titanium dioxide (TiO2) is a well-known and efficient
semiconductor photocatalyst that is also non-toxic, biologically and chemically inert, stable,
and inexpensive [5].

TiO2 can be synthesized in the form of one-dimensional (1D) nanostructures, which is
beneficial because 1D nanomaterials have a large surface-to-volume ratio. This translates to
a high-reactivity catalyst, thus leading to an enhanced photocatalytic performance [6]. There
are many ways to synthesize 1-D TiO2 nanostructures containing different morphologies,
such as nanotubes, nanowires, and nanorods [7–11].

In this work, thermal oxidation of titanium was conducted in the presence of 1M
potassium hydroxide (KOH) mist to produce rutile TiO2 nanowires (TNWs). Oxidation is a
simple process that can produce highly crystalline TNWs in a short processing time. Never-
theless, rutile TiO2 is a wide-band-gap semiconductor (3.2 eV) and, hence, can only produce
free electrons under ultraviolet (UV) light illumination (wavelength range <400 nm) [12,13].
Rutile TiO2 is thus not very photoactive under sunlight. In efforts to produce a semiconduc-
tor photocatalyst that can be activated under sunlight, TiO2 is often doped or coupled with
organic materials such as graphene. The coupling has been shown to increase the visible
light activity of TiO2 by creating a new energy level within the energy band gap [14–16].
However, the defect levels can also act as recombination centers for the photogenerated
electron-hole pairs [17]. In addition, graphene, which is known for various applications,
such as electromagnetic interference shielding [18], supercapacitors [19–21], and other
energy storage applications [22,23], when coupled with TiO2, does not create defect states
although electron transfer is expected [24]. This will create more electrons in the semi-
conductor. As a semi-metal with a very small band gap, graphene can also extend light
absorption of TiO2 to the visible light spectrum [25,26], and, hence, sunlight activation can
be achieved.

Methods to combine TiO2 with graphene or reduced graphene oxide (rGO) may vary
depending on the thickness of the layers desired, the way the rGO is produced, and the
features and geometry of the substrate. In this work, graphene oxide (GO) was used
in an electrophoretic deposition (EPD) method to fabricate GO/TNWs. Another set of
experiments was carried out by reducing GO to form reduced GO (rGO), and EPD was
used to produce rGO/TNWs. EPD is a well-known technique whereby suspended particles
are impelled from the suspension medium to a substrate using an electric field, and it has
been shown to be a successful method for GO and rGO deposition [27]. Herein, GO and
rGO in liquid suspension were used with deposition done on titanium foil comprising the
TNWs. Nanocatalysts in dispersed particles have been reported to possess good catalytic
performance due to a large, accessible surface area for a reaction to occur. However, they
tend to form superfine particles in water, making it difficult to separate them from the
treated water; thus, they become secondary pollutants in the water system.

A supported photocatalyst is proposed to address this problem: rGO/TiO2 has several
significant advantages, including good photoelectron injection from one material to another
and simple post-separation and recycling of the system from the effluent after treatment.
Moreover, to date, little work has explored the effect of EPD time and, therefore, the effect
of the thickness of the GO or rGO on the photocatalytic reduction of Cr(VI) to Cr(III). It is
anticipated that a thicker deposit will mean more electron transfer can occur, which may
improve the reduction process of Cr(VI). In addition, the study on Cr(VI) reduction using
supported rGO/TNWs is also rather limited.
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2. Results and Discussion

Figure 1 shows a typical low-magnification FESEM image of the TNWs synthesized
at 750 ◦C. As can be seen, the pristine sample comprises TNWs that uniformly cover the
titanium foil. The length of the TNWs is ca. 500 nm, and the diameter ranges from 10 to
50 nm. The growth mechanism of the TNWs may be due to preferential oxide growth in
the presence of the KOH mist. Accumulating a K-rich compound, such as K2Ti6O13, at the
sides of the growing TNWs, impedes radial growth and allows for c-axis growth [6].
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Figure 1. Surface morphology of pristine TNWs before GO/rGO nanosheet deposition.

Surface FESEM morphologies of GO and rGO deposited on the TNWs using EPD at
several deposition times are shown in Figures 2 and 3, respectively. Images on the left are
low-magnification (100 µm), whereas higher magnification (1 µm) surface morphologies
can be seen in the right column. From the low-magnification images, it can be observed that
the amount of GO nanosheets and rGO nanosheets deposited on the surface of the TNWs
increased as EPD time increased, as shown in Figures 2 and 3a–d-i. Higher magnification
images, in Figures 2 and 3a–d-ii, were taken at the edge of the GO and rGO. In these images,
the clear presence of TNWs with GO and rGO can be seen.

The XRD pattern of the TNWs, shown in Figure 4a, exhibited the presence of a rutile
phase TiO2 structure (ICSD No. 98-001-7802), with dominant diffraction peaks present at
2θ = 27.5◦, 36.1◦, and 54.3◦. These diffraction peaks correspond to (110), (011), and (121)
rutile-TiO2, respectively. The appearance of two diffraction peaks at 11.4◦ and 29.8◦ can be
ascribed to the K2Ti6O13 phase (ICSD No. 98-001-1919), and the presence of KOH during
the oxidation process may have resulted in this phase, which inhibited radial growth
and induced the formation of 1D TNW structure. The XRD patterns of the GO/TNW
and rGO/TNW samples show a similarity to the TNW sample, which indicates that the
presence of GO or rGO does not affect the crystal planes of the underlying TNWs. No
typical diffraction peaks of carbon species were observed in either sample, which may be
due to the low quantity and relatively low diffraction intensity of GO or rGO [28].
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Figure 2. FESEM images of GO deposited on TNWs using EPD with different deposition times:
(a) 10 s; (b) 30 s; (c) 1 min; and (d) 5 min. Low-magnification images: left side ((a-i) to (d-i)) and
high-magnification images: right side ((a-ii) to (d-ii)).
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Figure 3. FESEM images of rGO deposited on TNWs using EPD with different deposition times: (a) 
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Figure 3. FESEM images of rGO deposited on TNWs using EPD with different deposition times:
(a) 10 s; (b) 30 s; (c) 1 min; and (d) 5 min. Low-magnification images: left side ((a-i) to (d-i)) and
high-magnification images: right side ((a-ii) to (d-ii)).
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Raman spectra (see Figure 4b,c) further indicate the existence of rutile TiO2 peaks
(B1g = 142 cm−1; Eg = 449 cm−1; A1g = 613 cm−1) [29,30], and a K2Ti6O13 peak (at approxi-
mately 240 cm−1) [31] for all samples studied. The broad Raman peaks present at 1358 cm−1

and 1605 cm−1 correspond to D- and G-bands, respectively, and result from the presence of
graphene derivatives as GO/rGO nanosheets in the GO/TNW and rGO/TNW samples
but not in the pristine TNW sample. These Raman peaks belong to D-band and G-band
carbon atoms from GO or rGO that are on the surface of the samples [19,22,32–35]. The
stronger intensity of D over G peaks (ID/IG) may indicate a reduction of oxygen-functional
groups in GO [36]. All Raman spectra for rGO/TNW samples show a higher intensity of D
over G, thus indicating effective reduction from GO to rGO using chemical reduction with
ascorbic acid.
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Figure 4. (a) XRD patterns of TNWs, GO/TNWs, and rGO/TNWs samples; (b) Raman spectra of
TNWs and GO/TNWs samples with different deposition times; and (c) Raman spectra of TNWs and
rGO/TNWs samples with different deposition times.

Possible interactions between GO or rGO with TiO2, as well as the chemical state
of all the elements, can be studied with a high-resolution XPS. The high-resolution XPS
images of C 1s core spectra are shown in Figure 5a for both GO/TNWs and rGO/TNWs. A
peak at 285.1 eV, assigned to C-C from the sp3 hybridized graphitic carbon atoms, can be
detected for both samples. Deconvolution of the peak reveals several other peaks, such
as for C=C bonds at 284.4 eV or C-C from sp2 hybridized graphitic carbon atoms [37,38].
Oxygen-bound species can be seen at around 286–287 eV, possibly from C-O, carbonyl
or carboxyl C=O, and C-O-C. It can only be detected for the GO/TNWs sample because
GO contains more of such oxygen-functionalized species compared with rGO. Chemical
reduction using ascorbic acid, therefore, significantly reduces the number of oxygen-bound
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species and successfully reduces GO to rGO [37]. The XPS results of O1s core level spectra
are displayed in Figure 5b. The XPS peaks at 529.8 eV in rGO/TNWs and 530.6 eV in
GO/TNWs correspond to the Ti-O bond of TiO2 [37,39]. A small peak at ca. 531.8 eV is
likely to come from OH absorbed on the surface of the oxide [39]. The oxygen-bound
species C-O is detected at 532.7 eV in GO/TNWs but not in rGO/TNWs, further confirming
the reduction from GO to rGO.
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Figure 5. (a) Typical high-resolution XPS spectra of C 1s and (b) O 1s XPS spectra of rGO/TNW and
GO/TNW samples.

The photocatalytic performance of TNW, GO/TNW, and rGO/TNW samples in reduc-
ing Cr(VI) ions under visible light is illustrated in Figure 6. As can be seen, the reduction on
the TNWs was negligible until GO or rGO was deposited onto them. For the GO/TNWs,
the reduction performance improved as the deposition of GO was extended. The thicker the
GO, the faster the removal of Cr(VI) that was observed. The maximum reduction of Cr(VI)
was achieved for GO/TNWs with a 5-min deposition of GO on the TNWs. However, the
reduction performance for rGO/TNWs is seen to be even better than GO/TNWs (Figure 6b).
On rGO/TNWs, total removal of Cr(VI) can be observed after 60 min of illumination. In
contrast to the previous set of samples, regarding rGO/TNWs, the reduction is faster for
thinner rGO samples. For example, a 10-s deposited sample showed total removal of
Cr(VI) after 30 min. The thickness of the rGO is obviously dependent on the time of rGO
deposition. Typically, based on FESEM cross-section images, the rGO deposited has thick-
nesses of 50–90 nm after >30-s of deposition. For shorter deposition times, the thickness
can be estimated to be ~ 10–40 nm. Several samples were then used for reusability tests;
nevertheless, it appears that the adherence of the rGO weakened after being used more than
once. This could be due to the very acidic nature of the Cr(VI) solution and the variation of
thickness of the rGO on the surface of the TNWs.

The PL spectra of TNW, GO/TNW, and rGO/TNW samples are shown in Figure 7.
The clear PL peak centered at 570 nm may be related to defects that are recombination
centers of the photogenerated electron-hole pairs. Some examples are oxygen vacancies,
the K2Ti6O13 phase, and interstitial defects within the TiO2 lattice [40–42]. Recombination
is obvious for the TNW sample but not for the GO/TNWs and very much reduced for the
rGO/TNW sample. This is possibly the result of the rapid transfer of electrons from GO
or rGO suppressing recombination [43,44]. With more free electrons available and higher
mobility of electrons in rGO, a more rapid reduction process leads to a fast and complete
removal of Cr(VI) within 30 min of exposure to visible light. Furthermore, the improved
photoreduction performance of the rGO/TNWs compared to TNWs is attributed to the
great enhancement of electron transport through the rGO in the rGO/TNW sample and its
consequent charge separation.
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Figure 6. Photocatalytic reduction of Cr(VI) illuminated under visible light using different samples:
(a) TNW and GO/TNW samples; and (b) TNW and rGO/TNW samples.
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Table 1 compares this work with recent literature on the photoreduction of
Cr(VI) [45–51]. It is evident that the photocatalytic reduction of rGO/TNWs formed
in this work is comparable, if not superior, to the rGO/TiO2 (nanoparticles) composite
under visible light irradiation. Moreover, it is known that the addition of a scavenger can
improve the efficiency of Cr(VI) photoreduction. There are several types of scavengers that
can be used, and phenol is one of them. It can be seen from Table 1 that reduction in the
presence of phenol (10 mM) is slower [46] than that of EDTA (this work), thus, concluding
that EDTA is perhaps a better scavenger for this purpose.

Table 1. Comparison of obtained Cr(VI) reduction efficiency with recent studies under UV–Vis light
irradiation (RGO = reduced graphene oxide; C = carbon).

Photocatalysts Method Sample
Amount/Size Scavenger pH Cr(VI) Conc.

(ppm)
Source of

Light

Removal
Efficiency

(%)

Time
(min) Ref.

TNTs-Air Anodization 1 cm2 – 2 10 Sunlight 10 180 [45]

C-Modified n-TiO2 Sol–gel 1 g/L Phenol
(10 mM) 5 5 Sunlight 100 120 [46]

TiO2-5%rGO Hydrothemal – – 2 10 Solar 98 180 [47]

TiO2/rGO Sol–gel – – 2.6 12 Mercury
lamp 86.5 240 [38]

Mn-TiO2/rGO Hydrothermal 1 g/L – - 20 Sunlight 99.02 60 [48]

CoS2/g-C3N4-rGO Solvothermal 10 mg – 2 20 350 W Xe
lamp 99.8 150 [49]

TiO2/rGO/CuO Hydrothermal 50 mg Citric acid
(100 ppm) - 100

500 W Au
halide
lamp

100 80 [50]

TiO2/g-C3N4
Microspheres/rGO Hydrothermal 50 mg - 3 100 300 W Xe

lamp 97 240 [51]

TiO2 NW-RGO Thermal
Oxidation 4 cm2 EDTA

(1 mM) 1 10 Xenon
lamp 100 30 This

work

As mentioned previously, the use of a supported photocatalyst for Cr(VI) removal
from contaminated water has several advantages, including better electron injection from
rGO to TiO2 and easy catalyst recovery after use. From Table 1, it is obvious from the
literature that no other work has reported on the use of a supported photocatalyst such as
that reported in this work. The majority of works reported on the used TiO2 nanoparticles
derived by sol-gel or a hydrothermal process. Anodization of titanium [45] produces a thin
anodic film composed of TiO2 nanotubes. Anodized titanium can therefore be considered
catalyst support. However, Cr(VI) reduction on such anodized Ti (without rGO—or GO—
deposition) is very slow, as shown in Table 1, indicating the importance of rGO for faster
Cr(VI) reduction. The morphology of TNWs obtained in this study is also thought to
provide a better anchor layer for the deposition of rGO nanosheets.

3. Materials and Methods
3.1. Synthesis of TiO2 Nanowires

Titanium foils (0.10-mm-thick, 99.7% pure, 20 × 20 mm; Stream Chemical, USA)
were first polished and then ultrasonically cleaned in acetone [(CH3)2CO, J. T. Baker-9254,
Phillipsburg, NJ, USA], ethanol (C2H5OH, 95.7%, Samchem, Malaysia), and deionized wa-
ter. The cleaned foils were placed in the hot zone of a horizontal tube furnace (Lenton 1200)
for oxidation. The foils were oxidized using two heating profiles: first, at 400 ◦C for 10 min
(heating rate = 5 ◦C/min), during which 1 M potassium hydroxide (KOH, Merck, Germany)
mist was injected into the furnace, and second, at 750 ◦C (heating rate = 30 ◦C/min) for
120 min, during which water mist was injected into the furnace.
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3.2. Synthesis of rGO Nanosheets

10 mg/L GO nanosheet solution (Tokyo Chemical Industry Ltd., Tokyo, Japan) was
diluted with deionized water to obtain a 0.1 mg/L GO nanosheet solution. Then, 50 mL of
the solution was ultrasonically dispersed for 15 min in an ultrasonic bath; 1 mg of ascorbic
acid (C6H8O6) was then added to the solution, and the solution was heated to 95 ◦C. Prior
to the addition of ascorbic acid, the pH of the solution was adjusted to 10 using NaOH.

3.3. GO/rGO Deposition on TNWs Sample Using EPD

EPD was conducted in 0.1 mg/L GO or rGO solution as the electrolyte with TNWs
connected to the positive terminal of a DC power supply (GWS Instek GPS 3303, Transfer
Multisort Elektronik Ltd., Łódź, Poland) and a Pt rod connected to the negative terminal.
EPD in both electrolytes was performed at various deposition times (10 s, 30 s, 1 min, and
5 min) at 20 V. After the EPD process, the sample was dried in an oven at 100 ◦C for 15 min.

3.4. Characterizations

The surface structural morphologies of the GO/TNWs and rGO/TNWs were observed
using a field-emission-scanning electron microscope (FESEM; Zeiss Supra 35, Germany).
Phase identification and crystal-structure analysis were based on data obtained from an
X-ray diffractometer [XRD; Bruker Advanced X-ray Solution D8 with Cu-Kα radiation
(λ = 0.154 nm), United States] and a Raman spectrometer (Renishaw inVia Raman micro-
scope, Gloucestershire, UK). Raman spectra were used to identify the presence of GO and
rGO in the sample. Identification of chemical bonds in the sample was conducted by ana-
lyzing data from an X-ray photoelectron spectrometer [XPS; Kratos Axis Ultra with Al-Kα

radiation (Ephotons = 1486.7 eV), Shimadzu Co., Ltd., Kyoto, Japan]. Photoluminescence
studies were performed to identify impurities or defects that could be recombination centers
of electron-hole pairs in the sample, using a monochromatic beam generated from a He-Cd
laser (wavelength of 325 nm) and recorded using a monochromator (Nikon G250, Japan).

3.5. Cr (VI) Photoreduction Experiment

50 mL of the Cr(VI) (10 mg/L) solution was prepared by dissolving potassium dichro-
mate salt (K2Cr2O7) in distilled water. The pH value of the solution was adjusted to 2 by
adding HCl solution. Then, 0.015 g of ethylene diamine tetra acetic acid was added to
the solution and stirred for 5 min. GO/TNW or rGO/TNW samples were then immersed
in the solution. The solution was then kept in the dark for 1 h prior to irradiation with
visible light to achieve adsorption–desorption equilibrium. This was done using a solar
simulator AM 1.5 (Xenon lamp, 1410 W/m2 of intensity, LSPX150, Zolix Instruments Co.
Ltd., Beijing, China). 3 mL aliquot samples were taken every 15 min during irradiation,
and 1.5–diphenylcarbazide (DPC) was used to color the aliquot solution before subjecting
it to measurement using a UV/Vis spectrometer (Varian Cary 50, Mulgrave, Australia).

4. Conclusions

GO or rGO deposition using the EPD method was carried out on TNWs. The TNWs
were produced by thermal oxidation in the presence of KOH mist. rGO was obtained by
the chemical reduction of commercially available GO using ascorbic acid. The fabricated
TNW, GO/TNW, and rGO/TNW samples were used to reduce Cr(VI) in a photocatalysis
experiment under simulated sunlight irradiation. It was found that a GO/TNW sample
with 5 min of deposition was able to reduce 32.84% of the Cr(VI) ions after 1 h of irradiation,
but rGO/TNWs with 10 s of deposition displayed a 100% reduction after 30 min of exposure
to visible light. This could be due to the amount of transferred photogenerated electrons
from GO or rGO to the TNWs.
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