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Abstract: The latest generation of heavy-duty vehicles (Euro VI step E) have to respect low emission
limits both in the laboratory and on the road. The most challenging pollutants for diesel vehicles are
NOx and particles; nevertheless, NH3 and N2O need attention. In this study, we measured regulated
and unregulated pollutants of a Euro VI step E Diesel vehicle. Samples were taken downstream of
(i) the engine, (ii) the Diesel oxidation catalyst (DOC) and catalyzed Diesel particulate filter (cDPF),
and (iii) the selective catalytic reduction (SCR) unit for NOx with an ammonia slip catalyst (ASC). In
addition to typical laboratory and real-world cycles, various challenging tests were conducted (urban
driving with low payload, high-speed full-load driving, and idling) at 23 ◦C and 5 ◦C. The results
showed high efficiencies of the DOC, DPF, and SCR under most testing conditions. Cold start cycles
resulted in high NOx emissions, while high-temperature cycles resulted in high particle emissions.
The main message of this study is that further improvements are necessary, also considering possible
reductions in the emission limits in future EU regulations.

Keywords: heavy-duty emissions; DOC; DPF; SCR; NH3; N2O; passive regeneration; ISC; idling;
cold start

1. Introduction

Air pollution is the largest environmental health risk in Europe. Road transport is
one of the principal sources, responsible for approximately 40% of NOx, 20% of CO, and
10% of particulate matter (PM) emissions [1]. In addition to its impact on air quality and
public health, the transport sector produced a quarter of EU’s greenhouse gas emissions,
with road transport representing the greatest share (72% in 2019). Within on-road diesel
vehicles, heavy-duty vehicles are a significant contributor to exhaust emissions and health
effects [2,3].

Emissions of heavy-duty vehicles are regulated with a test on an engine dynamometer.
A big step in controlling the emissions of vehicles under actual operating conditions was
the introduction of the on-road tests with portable emissions measurement systems [4].
Many studies have been conducted with vehicles fulfilling the latest standards (e.g., Euro
VI or China VI) [5–11]. Some have demonstrated significant reductions compared to
previous technologies [12–15]. Some studies have reported that differences can be found
between engine-type-approval and actual application of the vehicle, but the regulatory test
procedure has not always been followed at the on-road tests [16–18]. Some researchers
have argued that the exclusion of cold start emissions from the evaluation resulted in
significant underestimation of the total emissions [14,19]. In other cases, environmental
conditions differing from those in the laboratory (e.g., low ambient temperatures) [20]
or undetected failures [21] or tampering [22] can result in high emissions. To address
these topics, in Europe, the last regulatory step (Euro VI, step E applicable since 2021)
added cold start emissions during the on-road in-service conformity (ISC) evaluation and
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lowered the lower power threshold to 10% (from 20%). Furthermore, particulate emission
measurements on the road were added. In Europe, a proposal for the next regulatory step
is under discussion [23]. In addition to wider environmental conditions and lower emission
limits, additional pollutants may be added. Some studies have presented demonstrator
vehicles with extremely low emissions under a wide range of conditions [24–26]. However,
the literature on the currently unregulated pollutants is limited [27].

The aim of this study was to measure the emissions of a Euro VI step E vehicle. The
vehicle was equipped with, in this order, a Diesel oxidation catalyst (DOC), a catalyzed
Diesel particulate filter (cDPF), a selective catalytic reduction unit (SCR) for NOx, and
an ammonia slip catalyst (ASC). Measurements at engine out and downstream of the
aftertreatment devices permitted us to assess the efficiency of the aftertreatment devices. In
addition to the world harmonized vehicle cycle (WHVC) and real-world cycle (RWC), some
challenging situations were examined (at 23 ◦C): long idling, driving at maximum load,
urban driving with low payload, cold start, and low ambient temperature (5 ◦C). Details
can be found in the Materials and Methods section.

2. Results
2.1. WHVC (World Harmonized Vehicle Cycle)

Figure 1 (lower panel) plots the NOx emissions over a cold start WHVC at 23 ◦C,
separately for the three sampling positions: (1) engine out (black line), (2) DOC + cDPF
out (blue lines), and (3) SCR + ASC out (tailpipe) (red lines). The middle panel gives the
NH3 and N2O concentrations at the tailpipe (position 3) and the NO/NOx ratio for the two
positions 2 and 3. The upper panel plots the speed profile, the exhaust gas temperatures at
the DOC inlet and the SCR inlet, and the H2O concentration. Note that temperatures were
measured at the three sampling positions stated above and we assumed that, given the
closed-coupled configuration, differences between engine out and DOC in or DOC out and
SCR in were minor. The pre-conditioning the day before was a high-load steady driving to
passively regenerate the cDPF.

Comparing the engine out and DOC + cDPF out emissions, the total NOx were
practically the same. Small differences can be attributed to limited NOx reduction in the
DOC [28,29]. At the engine out position, there was no information regarding the NO and
NO2 ratio, but typically, the majority is NO [28]. At the DPF outlet, the NO2 to NOx ratio
was, on average, around 0.4 (middle panel), in agreement with other studies of similar
vehicle technologies [30]. Such a high ratio is necessary for the passive regeneration of soot
in the DPF at relatively low temperatures and later for higher NOx conversion efficiency
through the Fast-SCR reaction on the SCR catalyst (Equation (1)) [28,31–33].

2 NH3 + NO + NO2 → 2 N2 + 3 H2O (1)

Comparing the DOC + cDPF and SCR + ASC outlet emissions, a significant decrease
in the NOx emissions started at approximately 500 s. The exhaust gas temperature at the
SCR inlet was around 200 ◦C, a temperature considered safe for urea injection that can,
on the one hand, promote a fast urea decomposition and, on the other, avoid unwanted
deposition of ammonium nitrate (NH4NO3) [29,32,34].

It is worth mentioning that during the first 60 s, no NOx emissions were measured
at the SCR + ASC outlet position. This has been mentioned in the literature under both
laboratory [35,36] or vehicle conditions [25,26] and has been attributed to NOx adsorption
at the SCR catalyst with dry exhaust [37,38], taking place due to condensation on the
cold surfaces [39]. As soon as water reached the SCR catalyst, due to its exothermic
condensation within zeolite pores, a significant spike of NOx associated with the thermal
decomposition of adsorbed species, such as nitrates, previously stored on the catalyst was
released. Interestingly, the peak was composed of both NO2 and NO at variance with what
was expected from nitrates decomposition. This has been explained by the presence of CO
and unburned hydrocarbons in the exhaust gas that can reduce NO2 to NO on the SCR
catalyst in these conditions [38].
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locations. ASC = ammonia slip catalyst; DOC = Diesel oxidation catalyst; cDPF = catalyzed Diesel 
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In the last part of the cycle, with almost constant-speed driving, SCR outlet NOx grad-
ually increased. A few points are worth noting. First, in these conditions, the DOC was 
converting most of the NOx to NO2, with a NO2/NOx ratio exceeding 0.7 (see middle panel, 
NO/NOx is 0.3). Due to our pre-conditioning protocol (long high-load test the day before), 
there was not much soot in the DPF to consume NO2. In such a situation, all NO was 
effectively converted through the Fast SCR reaction (Equation (1)), which consumes 
equimolar amounts of NO and NO2. However, the remaining NO2 could be converted 
through two competing reactions, as long as NH3 was available: 

8 NH3 + 6 NO2  7 N2 + 12 H2O (2)

2 NH3 + 2 NO2  N2 + 3 H2O + N2O (3)

Figure 1. Cold start world harmonized vehicle cycle (WHVC) at 23 ◦C. The upper panel plots the
speed profile, the temperatures at the inlet of the DOC and the SCR, and the H2O concentration in
the exhaust gas. The middle panel plots NH3 and N2O at position 3, and the NO/NOx ratios for
positions 2 and 3. The lower panel plots the NOx emissions (continuous lines) at the three sampling
locations. ASC = ammonia slip catalyst; DOC = Diesel oxidation catalyst; cDPF = catalyzed Diesel
particulate filter; SCR = selective catalytic reduction.

In the last part of the cycle, with almost constant-speed driving, SCR outlet NOx
gradually increased. A few points are worth noting. First, in these conditions, the DOC
was converting most of the NOx to NO2, with a NO2/NOx ratio exceeding 0.7 (see middle
panel, NO/NOx is 0.3). Due to our pre-conditioning protocol (long high-load test the day
before), there was not much soot in the DPF to consume NO2. In such a situation, all NO
was effectively converted through the Fast SCR reaction (Equation (1)), which consumes
equimolar amounts of NO and NO2. However, the remaining NO2 could be converted
through two competing reactions, as long as NH3 was available:

8 NH3 + 6 NO2 → 7 N2 + 12 H2O (2)

2 NH3 + 2 NO2 → N2 + 3 H2O + N2O (3)

At these temperatures (approximately 300 ◦C, upper panel) in an environment with
excess NO2, it is not uncommon to see significant production of N2O (Equation (3)), as
we indeed also measured here (approximately 40 ppm, middle panel) [40,41]. NH3 was
completely consumed, indicating that, probably in this situation, injection was not sufficient
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to completely convert the available NOx, even through the less efficient NO2 SCR pathway
(Equation (2)).

Figure 2 plots the SPN emissions for the same cold start WHVC of Figure 1. The
color code is the same: black lines for position 1 (engine out), blue lines for position 2
(DOC + cDPF out), and red lines for position 3 (SCR + ASC out). Dotted lines indicate the
>23 nm (SPN23) emissions, while continuous lines indicate > 10 nm (SPN10).
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2.2. Idling 
Figure 3 summarizes the idling test results. The cycle preceding the “idling” test was 

the real-world cycle (RWC), which finished with 50 min of motorway driving. The 
“idling” test consisted of warmup driving at 50 km/h and 5 min of urban driving, and 
then the engine was left to idle for the rest of the test. The temperature at the inlet of the 
SCR was around 250 °C at the end of the driving and at the beginning of idling (grey line) 

Figure 2. Cold start world harmonized vehicle cycle (WHVC) at 23 ◦C. The different colors represent
different sampling locations. Continuous lines indicate solid particle numbers >10 nm, SPN10; dotted
lines indicate > 23 nm, SPN23, emissions. ASC = ammonia slip catalyst; DOC = Diesel oxidation
catalyst; cDPF = catalyzed Diesel particulate filter; SCR = selective catalytic reduction.

The engine out emission levels were high (black lines), while the DPF out emissions
(blue emissions) were practically zero, except during cold start. Nevertheless, even during
cold start, the DPF filtration efficiency was 85% (first seconds) to 99.5% (first minutes). It
reached >99.9% after four minutes, in agreement with other studies [20]. The SPN23 and
SPN10 lines were on top of each other, meaning that there were no particles <23 nm and
that they were mainly soot particles. The high cold start emissions were due to the “empty”
DPF at the beginning of the test (it should be reminded that the preconditioning the day
before consisted of a long high-load test in order to passively regenerate the filter).

The SCR + ASC out (and tailpipe) emissions followed the same trend as with the
DPF out emissions during the first minutes, but then they remained at a higher level after
approximately 500 s. Furthermore, the SPN23 and SPN10 lines had large differences after
the first minutes, indicating the presence of sub-23 nm particles. The appearance of these
particles coincided with the time that NOx were reduced (and the exhaust gas temperature
at the inlet of the SCR was around 200 ◦C). NOx reduction occurred at the same time there
was a sharp drop in the temperature close to the tip of the urea injector, supporting the idea
that urea started to be injected (there were no other data from the electronic control unit
(ECU) to confirm this). Thus, it can be assumed that the formed particles were urea-related.
This finding is in agreement with the literature, which reports the formation of particles
due to urea injection in the SCR [42].

2.2. Idling

Figure 3 summarizes the idling test results. The cycle preceding the “idling” test
was the real-world cycle (RWC), which finished with 50 min of motorway driving. The
“idling” test consisted of warmup driving at 50 km/h and 5 min of urban driving, and
then the engine was left to idle for the rest of the test. The temperature at the inlet of the
SCR was around 250 ◦C at the end of the driving and at the beginning of idling (grey
line) and gradually decreased during the idling period. The tailpipe NOx (green line,
position SCR + ASC out) were relatively low during the driving and very low when the
idling started (<35 ppm). They remained low for 15 min (approximately until a time of
1300 s) and then they gradually started increasing, approaching the engine out levels at
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the end of the test. The NOx spikes coincided with the exhaust flow and CO2 variations,
indicating that they originated from the engine, such as exhaust gas re-circulation, and not
the aftertreatment systems.
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Figure 3. Idling test. The different colors represent different sampling locations. ASC = ammonia slip
catalyst; DOC = Diesel oxidation catalyst; cDPF = catalyzed Diesel particulate filter; SCR = selective
catalytic reduction; SPN = solid particle number.

Although there is no information regarding the urea injection, it can be assumed that
urea was injected until a time of 700 s, because the particles downstream of the SCR were
elevated compared to the upstream position (compare red and blue lines). As with the test
in the previous section, this time also coincided with a temperature at the inlet of the SCR
of at least 200 ◦C. The NOx emissions without urea injection from a time of 800 s remained
low because the NOx reduction continued with the stored NH3 in the SCR. This has been
shown and discussed in the literature [25]. The amount of stored NH3 available depends,
among other things, on SCR volume and the previous operation. Another idling test (not
shown) that followed a WHVC, instead of motorway driving as in Figure 3, maintained
low NOx emissions for 20 min.

This test, in combination with previous work [25], shows a simple test that can be used
to search for vehicles with malfunctioning SCR during the periodic technical inspection
(PTI). For some period of time, the NOx emissions remained at low levels, in the presence of
stored NH3, which is an indication that urea was injected before the test and consequently
indicates a working SCR.

The same test can be used to assess the DPF status of the vehicle during PTI. Figure 3
plots the SPN23 emissions at engine out, DOC + cDPF out, and SCR + ASC out positions.
Although the DOC + cDPF out concentrations were practically zero, the tailpipe concen-
trations (SCR + ASC out) were zero (background of the instrument) only when no urea
was injected (time after 700 s). When urea was injected, the concentration was 0.5 × 104

to 1.4 × 104 #/cm3 (for SPN10: 1.2 × 104 to 2.5 × 104 #/cm3). The concentrations were
well below solid particle number (SPN) PTI limits that will be employed for light-duty
vehicles in different European countries; 2.5 × 105 #/cm3 in Germany and 1 × 106 #/cm3

in Netherlands and Belgium [43]. The engine out emissions were 4.5 × 106 #/cm3.

2.3. Maximum Load (Passive Regeneration)

Figure 4 plots a maximum load test, typically performed at the end of the day to
precondition the aftertreatment devices for the next day’s cold start test. This test was
selected in order to passively regenerate the cDPF and reach the same cDPF soot load
(around 10%, as indicated by the vehicle) at the end of every day.
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Figure 4. Maximum load test. The different colors represent different sampling locations. ASC = am-
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The driver accelerated the vehicle at 80 km/h, then the dynamometer was set to an
80 km/h constant-speed mode, and the driver was fully pressing the accelerator pedal
(starting at approximately 150 s). The vehicle speed remained at 80 km/h, but the load was
the maximum available (indicated as “max load” in the figure).

The NOx emissions at the inlet and outlet of the SCR were at the same levels for
the first minutes of driving (green lines). When the exhaust gas temperature at the SCR
exceeded 200 ◦C, the NOx emissions at the outlet of the SCR dropped to very low levels.
After 400 s, the NOx emissions started to gradually increase (but remained at low levels).
The increase was mainly due to NO (from 15 ppm to 72 ppm). NO2 remained practically at
the same levels (from 6 ppm to 11 ppm). At this high exhaust gas temperature (500 ◦C), the
NO to NO2 conversion was low due to the thermodynamic equilibrium. It is interesting to
notice that these conditions of high flowrate and high temperature are compatible with the
onset of mass transfer limitations [44]. Nevertheless, the NOx reduction remained at high
levels (94.3% from 97.8%).

The engine out SPN10 emissions were around 1012 #/s (black line). They were at
very low levels at the outlet of the DOC + cDPF (blue line) and the SCR + ASC outlet
(tailpipe) (red line) during the first minutes. When the vehicle started to inject urea,
particles were formed (time 200–400 s). Due to the high exhaust gas temperature, the filter
started regenerating passively. As the soot was being oxidized, the filtration efficiency was
dropping and more particles started appearing downstream of the cDPF. At a time around
650 s, an equilibrium was reached. The filtration efficiency from that point of time was
around 93%.

2.4. NOx Conversions

Figure 5a presents the NO to NOx ratios measured downstream of the DOC + cDPF
(position 2) for a few constant speeds and the max load test (at 80 km/h) as a function of the
exhaust gas temperature at the inlet of the DOC. The max load and high speed points lay on
the equilibrium curve, which indicate the thermodynamic limitation for higher conversions.
The other points lay on a typical NO to NO2 conversion curve for the Pt catalyst [31,45].
However, as the DOC formulation was unknown, the Pt curve is mainly an aid to the eye,
rather than the expected performance of the catalyst.
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Figure 5. NOx conversions in the aftertreatment device: (a) NO to NOx ratio at the outlet of the
DOC + cDPF as a function of the exhaust gas temperature in the DOC inlet. Circles are the measured
data. The blue dotted line is a typical curve for the Pt catalyst and the grey dashed line is the
equilibrium; (b) NOx reduction efficiency in the SCR + ASC for NOx as a function of the exhaust gas
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55 ◦C). DOC = Diesel oxidation catalyst; cDPF = catalyzed Diesel particulate filter; SCR = selective
catalytic reduction.

Figure 5b presents the NOx conversion (i.e., reduction to N2) in the SCR + ASC
(position 3) as a function of the SCR inlet temperature. The conversions were >80%, with
the exception of a few points that, instead of hot (coolant temperature > 70 ◦C), were
performed with a warm engine (coolant temperature around 55 ◦C), and the exhaust gas
temperature at the inlet of the SCR was <200 ◦C. The stored NH3 also played a very
important role contributing to the final NOx reduction, particularly for the points where
no urea was injected, due to low exhaust gas temperature. Similar efficiencies have been
reported in the literature [46].

2.5. Emission Factors

The following figures present the emission factors of various cycles at different lo-
cations: position 1 (engine out, grey bars), position 2 (DOC + cDPF out, blue bars), and
position 3 (SCR + ASC out, tailpipe, red bars). The cycles were the WHVC, the urban, the
rural, and the motorway parts of a real-world cycle (RWC), an urban cycle with a low
payload, and the max load test. All tests were conducted at around 23 ◦C, except a cold start
WHVC at 5 ◦C. Cold start means that the coolant (and oil) temperature was the same as
the ambient temperature (5 ◦C or 23 ◦C). Hot start means the coolant (and oil) temperature
was >70 ◦C.

Figure 6 plots the NOx emissions and, when the information was available, the NO
and NO2 splitting. The engine out and DOC + cDPF out emissions were almost the
same, ranging from 7 to 11 g/kWh. The SCR + ASC out (tailpipe) emissions were 55–97%
lower. The lower percentages and higher absolute levels were noted for the cold start tests,
where no urea injection could take place until the exhaust gas temperature had reached
approximately 200 ◦C. For the cold start tests, the NOx emissions were 1.7–3.2 g/kWh.
The results are higher than other Euro VI or China VI vehicles, having NOx emissions
<1 g/kWh [6,8,10,13,14,18], highlighting the challenges of cold start, urban cycles, and
lower ambient temperatures of our tests.



Catalysts 2022, 12, 1230 8 of 15Catalysts 2022, 12, x FOR PEER REVIEW 8 of 15 
 

 

 
Figure 6. NOx emission factors for various cycles at different sampling positions of the aftertreat-
ment system. When available, NO and NO2 are given with different color shading. Position 1 (en-
gine out, grey bars); position 2 (DOC + cDPF out, blue bars); position 3 (SCR + ASC out, tailpipe, red 
bars). Percentages give emissions reductions compared to the previous position. Tests at 23 °C, ex-
cept “cold 5 °C WHVC”, and 66% of maximum payload, except “Urban empty” (9%). “Cold” and 
“hot” refer to the coolant temperature at engine cranking, i.e., at ambient temperature or >70 °C, 
respectively. ASC = ammonia slip catalyst; DOC = Diesel oxidation catalyst; cDPF = catalyzed Diesel 
particulate filter; RWC = real-world cycle; SCR = selective catalytic reduction; WHVC = world har-
monized vehicle cycle. 

 
Figure 7. CO emission factors for various cycles at different sampling positions of the aftertreatment 
system. Position 1 (engine out, grey bars); position 2 (DOC + cDPF out, blue bars); position 3 (SCR 
+ ASC out, tailpipe, red bars). Percentages give emissions reductions compared to the previous po-
sition. Tests at 23 °C, except “cold 5 °C WHVC”, and 66% of maximum payload, except “Urban 
empty” (9%). “Cold” and “hot” refer to the coolant temperature at engine cranking, i.e., at ambient 
temperature or >70 °C, respectively. ASC = ammonia slip catalyst; DOC = Diesel oxidation catalyst; 
cDPF = catalyzed Diesel particulate filter; RWC = real-world cycle; SCR = selective catalytic reduc-
tion; WHVC = world harmonized vehicle cycle. 

Figure 8 plots the SPN emissions. Both SPN23 and SPN10 are given for all three posi-
tions, but the difference is very small for the engine out (position 1) and DOC + cDPF out 
(position 2) and is, thus, indistinguishable in the plot. The cDPF efficiency was >98% (for 
cold start cycles), reaching almost 100% for hot start cycles. The reason for the relatively 
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cDPF and some time was necessary to fill the cDPF with some soot. The SCR operation 
resulted in an increase in the emissions of approximately 1 × 1011 #/kWh (position 3), as 
determined by the hot cycles where the DPF out emissions were very low. These results 
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Figure 6. NOx emission factors for various cycles at different sampling positions of the aftertreatment
system. When available, NO and NO2 are given with different color shading. Position 1 (engine out,
grey bars); position 2 (DOC + cDPF out, blue bars); position 3 (SCR + ASC out, tailpipe, red bars).
Percentages give emissions reductions compared to the previous position. Tests at 23 ◦C, except “cold
5 ◦C WHVC”, and 66% of maximum payload, except “Urban empty” (9%). “Cold” and “hot” refer
to the coolant temperature at engine cranking, i.e., at ambient temperature or >70 ◦C, respectively.
ASC = ammonia slip catalyst; DOC = Diesel oxidation catalyst; cDPF = catalyzed Diesel particulate
filter; RWC = real-world cycle; SCR = selective catalytic reduction; WHVC = world harmonized
vehicle cycle.

Figure 7 plots the CO emissions. The highest engine out emissions were during
cold start cycles. The DOC and the catalyzed DPF oxidized most of the CO: from 2.5 to
5.0 g/kWh (position 1) to <1 g/kWh (position 2), with the exception of the cold start urban
cycle (around 2.5 g/kWh). The efficiency for CO ranged from 46 to 100% The SCR reduced
CO by 14–38% relative to the DOC + cDPF position (position 3). This reduction is likely due
to the conversion of an equimolar amount of NO2 to NO, as also suggested by previous
results discussed in Figure 1. The results are in agreement with other studies with Euro VI
or China VI vehicles (around 1 g/kWh) [10,13] or lower [6,8].
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position. Tests at 23 ◦C, except “cold 5 ◦C WHVC”, and 66% of maximum payload, except “Urban
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Figure 8 plots the SPN emissions. Both SPN23 and SPN10 are given for all three
positions, but the difference is very small for the engine out (position 1) and DOC + cDPF
out (position 2) and is, thus, indistinguishable in the plot. The cDPF efficiency was >98%
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(for cold start cycles), reaching almost 100% for hot start cycles. The reason for the relatively
lower filtration efficiency of the cold start cycles is that the tests started with an “empty”
cDPF and some time was necessary to fill the cDPF with some soot. The SCR operation
resulted in an increase in the emissions of approximately 1 × 1011 #/kWh (position 3), as
determined by the hot cycles where the DPF out emissions were very low. These results are
in agreement with other studies [10,20,47,48].
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Figure 8. Solid particle number (SPN) emission factors for various cycles at different sampling
positions of the aftertreatment system. SPN23 and SPN10 are given with different color shading.
Position 1 (engine out, grey bars); position 2 (DOC + cDPF out, blue bars); position 3 (SCR + ASC out,
tailpipe, red bars). Percentages give emissions reductions compared to the previous position. Tests
at 23 ◦C, except “cold 5 ◦C WHVC”, and 66% of maximum payload, except “Urban empty” (9%).
“Cold” and “hot” refer to the coolant temperature at engine cranking, i.e., at ambient temperature or
>70 ◦C, respectively. ASC = ammonia slip catalyst; DOC = Diesel oxidation catalyst; cDPF = catalyzed
Diesel particulate filter; RWC = real world cycle; SCR = selective catalytic reduction; WHVC = world
harmonized vehicle cycle.

Table 1 presents the tailpipe greenhouse gases emissions of the vehicle for various test
cycles. It should be noted that in addition to promoting global warming, N2O is a pollutant
currently considered as the most important Ozone-Depleting Substance [49]. In general,
N2O was elevated (50–200 mg/kWh). The emissions of cold start and hot start WHVC
were similar. N2O is formed as a by-product of (i) the DOC, aiming to increase the NO2
to NOx fraction; (ii) the SCR via formation of ammonium-nitrate-like surface species and
their subsequent decomposition (lower temperatures) or via ammonia oxidation (higher
temperatures); (iii) the ASC, via unselective oxidation of unreacted NH3 [29]. The tailpipe
NH3 was practically close to zero for all conditions and, thus, no emissions were reported.

Table 1. Emissions of greenhouse gases for the various cycles (measured at the tailpipe with an FTIR).
All tests at around 23 ◦C, unless otherwise specified.

Pollutant WHVC
Cold 5 ◦C

WHVC
Cold

WHVC
Hot

Urban
Cold

Urban RWC
Cold

Rural RWC
Hot

Motor RWC
Hot

Max Load
Hot

CO2 (g/kWh) 710.3 654.4 649.7 716.4 727.9 650.1 640.8 614.7
N2O (mg/kWh) 82.2 161.3 176.3 52.8 91.8 196.4 196.3 63.9
CH4 (mg/kWh) 4.9 3.0 2.9 13.0 6.6 1.9 1.0 0.1

FTIR = Fourier transform infrared; RWC = real-world cycle; WHVC = world harmonized vehicle cycle.

2.6. Euro VI and Future

In order to put the results into perspective, the emissions were compared with the
Euro VI emission limits. The type-approval of an engine was performed in the engine dy-
namometer with the world harmonized transient cycle (WHTC). The cycle was conducted
twice, first with a cold engine (i.e., at ambient temperature) and after 10 min of soaking
with a hot engine. The results were weighted 14% and 86%, respectively. Even though not
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according to the regulation, we used the cold and hot WHVCs on the chassis dynamometer
to calculate the emissions (Table 2). The emissions were well below the limits for CO and
SPN23, but not for NOx, which were double.

Table 2. Emission factors of type-approval-like WHVC of the vehicle of our study and the respective
limits in the regulation for WHTC and engine dynamometer testing.

Pollutant Cold Hot Weighted 1 Limit

NOx (g/kWh) 1.71 0.79 0.92 0.46
CO (g/kWh) 0.75 0.40 0.45 4.00

SPN23 × 1011 (#/kWh) 8.94 0.40 1.59 6.00
1 Applying 14% for the cold start and 86% for hot start cycle. SPN = solid particle number; WHTC = world
harmonized transient cycle; WHVC = world harmonized vehicle cycle.

Euro VI regulation includes an in-service conformity (ISC) test on the road with a
portable emissions measurement system (PEMS). The evaluation was performed with the
moving window methodology. The cold part is considered the maximum window from
the windows after the coolant has exceeded 30 ◦C and has reached 70 ◦C (but no later than
10 min). The hot part is the 90th percentile of the windows after the coolant has reached
70 ◦C. The results of this methodology are summarized in Table 3 for the real-world cycle
(RWC), which had similarities with the in-service conformity (ISC) requirements. The
results were similar to the WHVC results: they were below the limits for CO and SPN23,
but above for‘NOx.

Table 3. Conformity factors of the real-world cycle (RWC) according to the Euro VI step E methodol-
ogy for in-service conformity (ISC)-like testing.

Pollutant Cold Hot (90th) Weighted 1 On-Road 2

NOx (-) 3.56 1.87 2.11 1.50
CO (-) 0.31 0.21 0.22 1.50

SPN23 × 1011 (-) 0.84 0.07 0.18 1.63
1 Applying 14% to the 100th% of the cold windows and 86% to the 90th% of the hot windows. 2 For on-road
testing, a conformity factor of 1.50 applies for the gaseous pollutants and 1.63 for SPN23.

The methodology that has been suggested for the post-Euro VI regulation is slightly
different [50]: there are two limits, one for the 100th percentile and one for the 90th percentile
and all the windows are included in one single analysis. The results are presented in
Table 4, along with ranges of possible limits that could be achieved by future diesel-fueled
technologies (with or without pre-heating).

Table 4. Emission factors of the real-world cycle (RWC) and the respective limits ranges that have
been suggested for the future regulation [50]. Note that on-road testing will not include any confor-
mity factors.

Pollutant 100th Limit 100th 90th Limit 90th

NOx (g/kWh) 1.67 0.18–0.35 1.02 0.09
CO (g/kWh) 1.13 1.5–3.5 1.08 0.20

SPN10 × 1011 (#/kWh) 1 8.7 5.0 1.3 1.0
N2O (g/kWh) 0.22 0.16 0.21 0.06

1 The proposal includes particles from 10 nm.

The results of the present study clearly demonstrated the need for further improve-
ments of the aftertreatment devices for upcoming regulations with lower emission limits.
For NOx, various solutions have been presented, requiring a closed coupled SCR in order to
address the cold start NOx emissions [25,26]. Increased urea dosing might also be required,
which will also lead to high particle number emissions. A second DPF at the end of the
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tailpipe seems a viable solution, as it was recently demonstrated [51,52]. The increased N2O
emissions from the DOC, SCR, and ASC need optimization of the catalyst materials and
formulations, system architecture, and the operating strategies, as its subsequent removal
is challenging [53,54].

3. Materials and Methods

The test vehicle was a N3 category truck, compliant with the Euro VI step E regulation
(registration December 2021). The diesel engine was 12.8 L with 375 kW power. The
aftertreatment configuration (Figure 9) consisted of a Diesel oxidation catalyst (DOC),
a 12′′ ×12′′ catalyzed Diesel particulate filter (cDPF), and a double selective catalytic
reduction (SCR) for NOx with an ammonia slip catalyst (ASC). All systems were packed
together in a box.
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Figure 9. Experimental setup. Sampling positions and the naming conventions. Asterisks indicate
exhaust gas temperature measurements. ASC = ammonia slip catalyst; cDPF = catalyzed Diesel
particulate filter; DOC = Diesel oxidation catalyst; SCR = selective catalytic reduction; SPN = solid
particle number.

The tests were conducted at the vehicle emissions laboratory (VELA 7) of the Joint
Research Centre (JRC) of the European Commission, in Italy. The vehicle was fixed on
the 4-wheel drive roller dynamometer. The road load coefficients were estimated to be
F0 = 1460 N and F2 = 0.247 N/(km/h)2 for an inertia of 29,000 kg, corresponding to 66%
of maximum payload. One test (Urban empty) was conducted with 9% of the maximum
payload to challenge the SCR system due to the lower exhaust gas temperatures. The
dynamometer coefficients for this test were: F0 = 510 N, F2 = 0.191 N/(km/h)2, and
10,000 kg.

The instruments were sampling from three positions simultaneously (Figure 9):

• Engine out (or DOC in);
• DOC + cDPF out (or SCR in);
• SCR + ASC out (corresponding to the end of the tailpipe).

For particle emissions, three AVL particle counters were used (models APC 489 and
APX xApp) [55] with similar characteristics: hot dilution at 150 ◦C (10:1 up to 300:1 de-
pending on the position), catalytic stripper at 350 ◦C [56,57], cold dilution at ambient
temperature (10:1), and two counters measuring from 23 nm [58] and 10 nm [59].

For gaseous emissions, AMA i60 analyzers were used at the first two positions and an
AVL Sesam FTIR (Fourier transform infrared) spectrometer [60] at position three. The gas
analyzers applied the following principles: nondispersive infrared for CO and CO2, and
chemiluminescence for NOx.

The test protocol consisted of test cycles covering urban driving, up to high speed and
load driving. The basis was the world harmonized vehicle cycle (WHVC), which is a cycle
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developed using the same data with which the engine-type-approval dynamometer tran-
sient cycle was developed: world harmonized transient cycle (WHTC). It consisted of urban,
rural, and motorway parts with a total duration of 1800 s. The test was conducted with cold
engine start (i.e., coolant temperature within ±3 ◦C ambient temperature) and hot engine
start (i.e., coolant temperature > 70 ◦C), similarly to the engine-type-approval procedure.

The “urban empty” cycle represented driving in a city with low load, conditions
challenging for the SCR system due to the low exhaust gas temperatures. The real-world
cycle (RWC) was a typical cycle consisting of urban (28%), rural (30%), and motorway
(42%) parts (shares in time). The “idling” test was conducted to test the emissions after
prolonged idling. This test served to assess the future periodic technical inspection (PTI)
procedures. The “max load” cycle was typically used at the end of the day to passively
regenerate the DPF and reach a low level of soot in the DPF, as a challenging condition for
the next day’s cold start (for particle emissions).

The ambient temperature was approximately 23 ◦C (±2 ◦C), except one WHVC con-
ducted at 5 ◦C. Table 5 summarizes the tests in the order that were conducted and their
basic characteristics. In the Results section, when two or more repetitions are available, the
average is reported.

Table 5. Test protocol and main characteristics of the test cycles. All tests with 66% payload except
“Urban empty” (9% payload).

Cycle Duration
(s)

D
(km)

Speed
(km/h)

W/D
(kWh/km)

Tamb
(◦C)

Tcoolant
(◦C)

DPF 1

(%)

WHVC cold 1800 20.2 40.4 1.52 24 29 11.8/11.8
WHVC hot 1800 20.2 40.5 1.40 25 79 11.8/11.8
Max load 1300 27.1 75.1 3.26 25 84 11.8/9.8

RWC urban 2085 15.7 27.2 1.24 23 23 9.8/9.8
RWC rural 2190 28.1 46.2 1.34 23 80 9.8/25.8

RWC motorway 3150 71.3 81.5 1.00 24 80 25.8/26.7
Idling 3150 0.0 0.0 - 25 80 26.7/26.7

Max load 2745 58.4 76.6 3.33 25 79 26.7/11.0
WHVC cold 1800 20.2 40.3 1.44 22 21 11.0/11.0
WHVC hot 1800 20.1 40.2 1.40 21 81 11.0/11.0

Urban empty 2745 13.2 17.3 0.99 22 26 11.0/13.7
WHVC hot 1800 20.1 40.3 1.34 22 79 13.7/13.7
WHVC cold 1800 20.2 40.4 1.43 4 6 13.7/13.7

30–60–90 km/h 1800 25.5 30.0 0.87 24 55 13.7/13.7
1 Fill state of the DPF as stated at the respective channel of the electronic control unit (ECU). D = distance;
DPF = Diesel particulate filter; RWC = real-world cycle; T = temperature; W = work; WHVC = world harmonized
vehicle cycle.

4. Conclusions

A heavy-duty vehicle fulfilling the latest Euro VI step E requirements was tested on a
chassis dynamometer with various cycles. The NOx reduction was 55% (cold start urban
cycle) to 97% (high load steady driving), resulting in low emissions for hot start cycles
(<0.8 g/kWh), but 2–3 g/kWh for cold start cycles. The CO emissions were <1 g/kWh,
except for the cold start urban cycles (around 2.5 g/kWh). The particle number emissions
were around 1 × 1011 #/kWh. It was clearly shown that these particles were formed by
the urea injection downstream of the particulate filter. During cold start cycles, emissions
were 10 times higher. The empty particulate filter had a filtration efficiency of 85% at
the beginning of the cycle, reaching >99.9% after approximately four minutes. During
the passive regeneration, the filtration efficiency was around 93%. The N2O emissions
reached 200 mg/kWh, while the NH3 slip was negligible. Of particular interest was the
high NO2/NOx ratio needed for the passive regeneration of the particulate filter and
the more efficient NOx reduction in the SCR. Emissions during idling were low (particle
number emissions < 2.5 × 104 #/cm3). NOx were <35 ppm and started increasing only after
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15–20 min of idling. During the first 60 s of cold start, no NOx were measured. This was
attributed to NOx storage when no water existed (i.e., during condensation on the surfaces).
The results of this study highlight the need of better control of the emissions during cold
start and challenging situations (e.g., extensive idling and passive regeneration), especially
if the limits will be decreased in the future.
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