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Abstract: Spin-polarized van der Waals corrected density functional theory calculations were ap-
plied to Sn–Pt alloys with Pt content ≤ 50% (referred to as low Pt alloys) to evaluate their catalytic
activity towards the dehydrogenation of methylcyclohexane (MCH), with the formation of toluene
as product. The calculated adsorption energies of MCH, its intermediates and toluene showed that
these molecules bind on the considered Sn–Pt alloys. Sn–Pt alloys had the lowest dehydrogenation
energetics, indicating that the activity of this catalytic material is superior to that of a pristine Pt cata-
lyst. Desorption of the intermediate species was feasible for all Sn–Pt alloy configurations considered.
The catalytic dehydrogenation reaction energetics for the various Sn–Pt alloy configurations were
more favourable than that achieved with pristine Pt surfaces. The current study should motivate
experimental realization of Sn–Pt alloys for the catalytic dehydrogenation reaction of MCH.

Keywords: Sn–Pt surfaces; methylcyclohexane; toluene; dehydrogenation

1. Introduction

The development of green energy technology is attracting wide attention due to the
need to replace health- and environment-damaging energy technologies. In this regard,
the application of catalytic materials is rapidly expanding; hence, it is necessary to address
energy challenges and cost implications for mass deployment. Several catalytic materials
require the use of expensive noble metals for their catalytic reactions [1]. Various means
of energy storage and deployment are available, all at various stages of development,
deployment, and application.

The focus on energy storage and deployment via the use of liquid organic hydrogen
carrier (LOHC) materials and, in particular, the development of more efficient and less
costly catalytic materials for the dehydrogenation of a LOHC molecule are gaining sig-
nificant traction [2–9]. LOHC molecules are organic compounds that consist of a carbon
backbone, and, in some cases, various functional groups attached to it. LOHC molecules
offer a very safe means for hydrogen storage and delivery because they are non-volatile
organic liquids. LOHC molecules undergo reversible removal of hydrogen gas (dehydro-
genation), resulting in a fully dehydrogenated aromatic compound that is hydrogen-lean,
as well as the addition of hydrogen (hydrogenation), resulting in a fully hydrogenated
aliphatic compound that is hydrogen-rich and hence, considered renewable [10–14].

The dehydrogenation reaction of the MCH to toluene molecule, for hydrogen storage
and production, has been (and is being) extensively investigated [15–20]. The reaction
of MCH to toluene is of interest, particularly because of the low cost of these molecules,
high hydrogen storage density (6.2 wt%) and low toxicity of the dehydrogenated product,
toluene [17,20].

Currently, Pt is the most widely used dehydrogenation catalyst for various LOHC
molecules [4,20–30]. A reduction in the catalyst’s Pt content, for the dehydrogenation
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reaction, is essential in efforts to reduce costs associated with LOHCs as energy storage
and transport materials. To this end, the use of Sn–Pt-based alloys in various catalytic
reactions has been considered, and investigations initiated. The Sn–Pt-based alloys have
been found to be useful as electrocatalysts in polymer electrolyte membrane fuel cells [31]
and for the dehydrogenation of n-butane to n-butenes [32], selective hydrogenation of
crotonaldehyde [33] and dehydrogenation of cyclohexene on Sn/Pt (111) surface alloys [34],
and also for the hydrogenation of cyclohexanone on Pt–Sn surface alloys [35].

In this study, we consider application of van der Waals (vdW) spin-polarized density
functional theory (DFT) calculations to different Sn–Pt alloys, where emphasis is on a low Pt
content in the alloys. Specifically, we considered Sn–Pt alloys with Pt concentration ≤ 50%,
i.e., SnPt, Sn2Pt, Sn3Pt2 and Sn4Pt, for the catalytic dehydrogenation of MCH (C7H14) to
toluene (C7H8). The considered Sn-Pt alloys were obtained using the convex hull procedure
as implemented in the Materials Project (https://materialsproject.org/, accessed on 6 June
2021). For the various Sn–Pt alloy configurations considered, the most dominant surface,
as evaluated using the Wulff construction, was taken as a representative surface for the
catalytic reaction. The adsorption of the C7H14 and dehydrogenation intermediates on the
various surfaces of the Sn–Pt alloy configurations was considered. Stable surface–adsorbate
complexes were observed for the various surface configurations. Overall, low Pt content of
Sn–Pt alloys gave improved catalytic activity (better than with a pristine Pt catalyst) due to
the lower dehydrogenation energy.

2. Results and Discussion

The results obtained for the catalytic properties of the various Sn–Pt alloy surfaces
considered are now reported and discussed. First, the lowest energy absorption site for the
C7H14 molecule on the Sn–Pt alloy surfaces was evaluated, followed by the removal of each
hydrogen molecule, as presented in Figure 1 and Table 1. This was carried out to obtain
information on the dehydrogenation of the C7H14 molecule (MCH) to the C7H8 molecule
(toluene).
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Figure 1. Full and stepwise dehydrogenation of methylcyclohexane to toluene molecule with the
suggestive position of the single hydrogen atom (1/2 H2(g)) removal site in the molecules shown.
The schematic shows that the 1/2H2(g) removal proceeds in the order 1–6, which is an idealised
configuration. The * represents removal of one 1/2 H2(g) followed by the formation of a double C–C
bond due to H2(g) removal. The other pathways show the removal of 3H2(g), resulting in the full
dehydrogenation of methylcyclohexane to toluene.
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Table 1. Methylcyclohexane (C7H14), the dehydrogenation intermediates and toluene (C7H8), and
the calculated adsorption energies (in eV) for Sn–Pt surfaces considered.

Molecules Sn4Pt Sn2Pt Sn3Pt2 SnPt

C7H14 −0.87 −0.91 −0.73 −2.97
C7H13 −3.76 −2.11 −3.51 −3.52
C7H12 −2.79 −1.31 −2.31 −3.05
C7H11 −3.68 −2.07 −3.32 −4.57
C7H10 −3.77 −1.32 −2.34 −3.91
C7H9 −4.24 −1.91 −3.11 −4.52
C7H8 −3.55 −1.03 −0.75 −3.29

Different approximations play a role in the calculated energetics of a material. The
full dehydrogenation of the dominant Pt surface, the Pt (111) surface, was determined
using the same approximations as presented in Section 2 to benchmark the various Sn–Pt
alloys considered. The calculated dehydrogenation energy of the reaction from C7H14 to
C7H8 on the Pt (111) surface was 89.28 kJ/mol. This is higher than recorded in previous
theoretical studies [18] and an experimental value of 68.3 kJ/mol; it is attributed to the
DFT approximations used in the calculations [16,36]. The application of DFT calculations
is known to predict and describe various properties of different materials [1,30,37,38]. As
such, our findings here show that a reduction in Pt concentration and alloying with Sn
results in overall qualitative and quantitative improvement of the catalytic properties
towards the dehydrogenation reaction of C7H14 to C7H8.

2.1. Adsorption Energies of C7H14(g) and Its Intermediates on the Surfaces of Sn–Pt Alloys

The adsorption energies of C7H14 and its intermediate products, as well as C7H8, ob-
tained because of 1/2H2(g) removal on the Sn–Pt surfaces, were evaluated using Equation (2),
see Section 3. We wished to determine whether these molecules can stably adsorb on the
Sn–Pt surfaces considered and effectively partake in the dehydrogenation reaction. The
adsorption locator module in BIOVIA Materials Studio was used to determine the optimal
adsorption configurations for the C7H14 molecule, as described in Section 3.

The calculated adsorption energies for the C7H14 molecule and its intermediate prod-
ucts, as well as the C7H8 molecule, were negative on the Sn4Pt, Sn2Pt, Sn3Pt2 and SnPt alloy
surfaces considered—as also determined in our previous studies [17]. The implication is
that C7H14 and its intermediates products, as well as C7H8, would favourably be formed on
the considered surfaces and C7H14 would be dehydrogenated to form C7H8. Furthermore,
the adsorption of C7H14 on the Sn–Pt alloy surface had the lowest adsorption energy,
compared to other intermediates and the C7H8. The most strongly adsorbed molecules
were C7H9, C7H11, C7H13 and C7H11 for the Sn4Pt, Sn2Pt, Sn3Pt2 and SnPt alloy surfaces,
respectively. According to results presented in Table 1, there was no clear trend for the
adsorption C7H14, its intermediates and the C7H8 molecule.

2.2. Pathways and Energetics of the Dehydrogenation Reaction
2.2.1. Monoatomic Removal of Hydrogen (1/2H2(g))

The dehydrogenation reaction of C7H14 to the C7H8 molecule on the Sn–Pt-based alloy
surfaces was undertaken via the removal of a single hydrogen atom from the C7H14 until
C7H8 was obtained. To carry out the removal of a single hydrogen atom, a choice should
be made on the order of removing the 1/2H2(g). The procedure used in previous studies,
which entails removal of a single hydrogen atom, was applied [12,18,28,39,40]. For the
Sn–Pt-based alloy surfaces, the 1/2H2(g) removal energies were obtained using Equation
(1) for the removal, where ERxN is

ERxN = (ESurf+Mol−H + ESurf + H)− (ESurf+Mol + ESurf) (1)
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Here, ERxN, ESurf+Mol−H, ESurf + H, ESurf+Mol, and ESurf are the reaction energies for H
removal, the total energy of the surface with the molecules and removed hydrogen, the
total energy of the surface with hydrogen, the total energy of the surface with the molecule
without removed hydrogen, and the total energy of the surface alone. The surface here
refers to the Sn–Pt-based alloy surfaces considered.

As an illustration, the first 1/2H2(g) removal from the MCH molecule was consid-
ered. The 1/2H2(g) removal energy was obtained using ERxN =

(
ESurf+C7H13 + ESurf+ H

)
−(

ESurf+C7H14 + ESurf
)
, where ESurf + C7H14 , ESurf+C7H13 , ESurf and ESurf+H are the calcu-

lated total energies of the surface–C7H14 system, surface–C7H13 (MCH with a removed
1/2H2(g)atom) system, surface alone, and a dissociated H adsorbed on the surface, respec-
tively. The calculated removal energies for the single hydrogen atom C7H14, leading to the
different intermediates and formation of C7H8, are tabulated in Table 2 for the Sn–Pt-based
alloy surfaces considered.

Table 2. Calculated energy for the removal of a half hydrogen molecule (1/2H2(g)) up to the sixth
hydrogen atom (3 H2(g)) on the different surfaces considered for the Sn–Pt alloys.

Sn–Pt Alloys Surface 1H 2H 3H 4H 5H 6H

Sn3Pt2 (0 0 2) −69.76 62.05 67.81 58.59 45.83 104.48
Sn4Pt (1 0 1) −78.49 39.11 79.04 −43.45 74.82 −56.41
Sn2Pt (1 1 1) 81.83 23.36 91.52 36.13 63.78 −38.08
SnPt (1−1 0) 143.75 −8.03 18.08 29.03 60.80 3.97

Figure 1 shows a schematic of the C atoms that form the benzene ring of C7H14(g).
The procedure was followed for the removal of half hydrogen molecule (1/2H2(g)) up to
the sixth hydrogen atom (3 H2(g)) on the different surfaces considered for the Sn–Pt-based
alloys. This is an elaborate process, as described above. The calculated energy for the
removal of each 1/2H2(g) on the Sn–Pt-based alloy surfaces is presented in Table 3. It is
observed that the highest removal energy of H atom on the Sn–Pt-based alloy surfaces does
not follow any specific trend for the different surfaces and alloys considered.

Table 3. Calculated reaction energies on the Sn–Pt-based alloy surfaces (in eV) for the pathways A–D.

Pathways A B C D

Sn–Pt Alloys Surfaces H2 H2 H2 H2 2H2 2H2 H2 3H2

Sn3Pt2 (0 0 2) −7.71 126.41 150.31 −7.71 276.72 118.70 150.31 83.33
Sn4Pt (1 0 1) −39.39 35.59 18.41 −39.39 54.00 −3.80 18.41 4.41
Sn2Pt (1 1 1) 105.19 127.65 25.70 105.19 153.36 232.84 25.70 85.72
SnPt (1 −1 0) 135.72 47.11 64.77 135.72 111.88 182.83 64.77 79.45

Pt (1 1 1) 89.28

The 1/2H2(g) removal pathways from the C7H14 molecule on the SnPt, Sn2Pt, Sn3Pt2
and Sn4Pt surfaces were 541263, 543216, 546123, and 432165, respectively (numbers refer to
positions of the aromatic ring: see Figure 1). For the different alloy surfaces, the pathways
were not the same. The removal of a single hydrogen atom from the different alloys
followed different pathways. However, we did observe that the next nearest 1/2H2(g) to
the first abstracted 1/2H2(g) was always preferred, irrespective of the Sn–Pt-based alloy
surface. This is a result of the ease of formation of a double bond due to the formation of
a free radical initially. The above observation would subsequently reduce the number of
calculations required to be carried out in future investigations.

2.2.2. Possible Pathways for H2(g) Removal

The different possible pathways for H2(g) abstraction resulting in the dehydrogenation
reaction of C7H14 to the C7H8 molecule on the Sn–Pt-based alloy surfaces are presented in
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Table 3. This has been shown in previous studies [12,18]. The reaction proceeds stepwise via
four different pathways, as presented in Table 3. These pathways entail: (i) the removal of
each H2(g), as presented in step A; (ii) the removal of H2(g) followed by 2H2(g), as presented
in step B; (iii) the removal of 2H2(g) followed by H2(g), as presented in step C; and (iv) the
removal of all 3H2(g) in a single step. The removal of all 3H2(g) is the full dehydrogenation
reaction of MCH to toluene, as presented in pathway D. The calculated reaction energies
for these pathways and each step were obtained using a modified version of Equation (1).

Taking pathways A, B and C into consideration, the highest energy step for the removal
of the first H2(g) on the different Sn–Pt-based alloy surfaces does not follow the similar or
equivalent steps or a specific trend. The difference in pathways is attributed to the nature
of each of the Sn–Pt-based alloy surfaces considered here and their electronic properties.
Thus, different steps are the reaction-limiting cases for the pathways A, B and C. However,
no specific trend in terms of reaction pathway was observed. The implication is that Sn–Pt-
based catalysts do not follow any specific trend in terms of the dehydrogenation pathways.
For the removal of 3H2, which results in the overall dehydrogenation of C7H14 to C7H8,
which is pathway D, the pristine Pt has the highest dehydrogenation energy (compared
to the various alloys considered). The implication is that alloying Pt with Sn leads to
a reduction in the overall activation energy and hence an improvement in the catalytic
properties of the material.

The Brønsted–Evans–Polanyi linear scaling relationship uses both the reaction energies
and activation energies of the dehydrogenation reactions to determine the activation energy,
as reported earlier [41], as has been applied to some studies [15,42,43]. The surface with the
highest reaction energy also has the highest activation energy, as determined in an earlier
investigation by Obodo et al. [15]. Thus, the catalytic activation energy can be described
using only the reaction energies.

3. Computational Method

The spin-polarized vdW DFT [44–46] calculations were carried as implemented in the
CASTEP code [47,48] within the Materials Studio package. The Perdew–Burke–Ernzerhof
form [49] of the generalized gradient approximation [50,51] exchange-correlation functional
and ultra-soft pseudopotential were applied to describe the electron–ion interactions. The
Tkatcheno–Scheffler method [52] for semi-empirical dispersion correction was applied to
account for the vdW interactions.

The SnPt, Sn2Pt, Sn3Pt2 and Sn4Pt in the P63/MMC, P63/MMC, P63/MMC and CCCA
space groups were considered. These configurations were obtained using the convex hull
from the Materials Project database as the most optimal structures. The various surface
configurations for the Sn–Pt-based alloys were determined. We found that the (1 −1 0),
(1 1 1), (0 0 2) and (1 −1 0) were the most dominant surface configurations, using the
Wulff construction as implemented in the morphology module of the Materials Studio 2020
suite for the SnPt, Sn2Pt, Sn3Pt2 and Sn4Pt, respectively, as presented in Figure 2. These
configurations were used to create surface slabs with 4/5 atomic layers in the c-axes. The
k-point mesh separation of 0.07 Å−1, an adequately converged kinetic energy cut-off of
408.20 eV, and 10−6 eV/atom convergence criteria for the calculated total energies were
applied to optimize the various alloys of the Sn–Pt unit cell considered. The forces in the
various alloys of the Sn–Pt unit cell considered were converged up to 0.03 eV/Å for the full
geometric optimization.
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Various super-cell slabs of the Sn–Pt alloys with vacuum distance 15 Å, and consisting
of five-layer slabs, were used for all of the calculations in this study. The vacuum distance
applied in the z-direction was adequate to prevent periodic image interactions [53]. The
convergence criteria enforced for the unit cell and the super-cell slab calculations were
the same. For the super-cell slab calculations, the volume was fixed with the atomic
positions optimized. The size of the molecular adsorbates considered, and tractability of
the calculations, influenced the choice for the area of the surface slab (length × width). To
avoid, first, the straining of the relaxed molecular adsorbates on the surface and, second,
the interaction of mirror images, >5 Å was added to the length and width of the longest
molecular species to form the length and width of the surface slab, as consistent with
previous studies [12].

The lowest energy adsorption sites for the molecular adsorbates (C7H14, C7H13,
C7H12, C7H11, C7H10, C7H9 and C7H8) on the Sn–Pt alloy surfaces were evaluated using
the adsorption locator module. The latter has been applied in various studies to evaluate the
lowest energy surface–adsorbate configuration (SAC) [4,12,18]. The molecular adsorbates
were pre-adsorbed to determine the optimal SAC, which is the lowest energy configuration.
The determined optimal surface–adsorbate configurations were subsequently relaxed using
vdW corrected spin-polarized DFT calculations to determine the final configurations and
total energies [54]. Next, the adsorption energy (EAds) of each SAC on the Sn–Pt surfaces
was evaluated using Equation (2) [18,55]

EAds = ESAC − ESurf − Emol (2)

where ESAC, ESurf , and Emol are the following, respectively: the total energy of the Sn–Pt
surface slabs with the C7H14 molecule and its intermediates, the total energy of the Sn–Pt
surface slabs without the C7H14 molecule and its intermediates, and the total energy of the
C7H14 molecule and its intermediates. The activation energies were not considered in the
current investigation (as in our previous studies) [15].

4. Conclusions

DFT with spin-polarized vdW correction was applied to investigate Sn–Pt-based
alloy surfaces, specifically, low-concentration Sn–Pt-based alloy surfaces. The convex hull
and Wulff construction were used to determine the dominant surfaces. The calculated
adsorption energies of C7H14, its intermediates and C7H8 were determined—they absorb
exothermically on the considered Sn–Pt-based alloy surfaces.



Catalysts 2022, 12, 1221 7 of 9

The determined reaction energies for the various surfaces of Sn–Pt-based alloys demon-
strated that the dehydrogenation pathways differ. The Sn4Pt (101) surface had the lowest
overall dehydrogenation energy of all the considered surfaces. Hence, among the Sn–
Pt-based alloys, the Sn4Pt alloy is the best dehydrogenation catalyst. Furthermore, all
the considered Sn–Pt-based alloys considered in this study had lower dehydrogenation
energies compared to Pt (Pt being the optimal dehydrogenation catalyst to date).
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