
Citation: Khononov, M.; Liu, H.;

Fridman, N.; Tamm, M.; Eisen, M.S.

Mono(imidazolin-2-iminato)

Hafnium Complexes: Synthesis and

Application in the Ring-Opening

Polymerization of ε-Caprolactone

and rac-Lactide. Catalysts 2022, 12,

1201. https://doi.org/10.3390/

catal12101201

Academic Editor: Ruaraidh McIntosh

Received: 2 September 2022

Accepted: 30 September 2022

Published: 9 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

catalysts

Article

Mono(imidazolin-2-iminato) Hafnium Complexes: Synthesis
and Application in the Ring-Opening Polymerization of
ε-Caprolactone and rac-Lactide
Maxim Khononov 1, Heng Liu 2,*, Natalia Fridman 1, Matthias Tamm 3 and Moris S. Eisen 1,*

1 Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City 3200003, Israel
2 Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of

Rubber-Plastics, Qingdao University of Science & Technology, Qingdao 266042, China
3 Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30,

38106 Braunschweig, Germany
* Correspondence: dr_hengliu@163.com (H.L.); chmoris@technion.ac.il (M.S.E.); Tel.: +972-4-8292680 (M.S.E.)

Abstract: Mono-substituted imidazolinX-2-iminato hafnium(IV) complexes (X = iPr, tBu, Mesityl,
Dipp) were synthesized and fully characterized, including solid-state X-ray diffraction analysis. When
the X group is small (iPr), a dimeric structure is obtained. In all the monomeric complexes, the Hf-N
bond can be regarded as a double bond with similar electronic properties. The main difference among
the monomeric complexes is the cone angle of the ligand, which induces varying steric hindrances
around the metal center. When the monomeric complex of mono(bis(diisopropylphenyl)imidazolin-
2-iminato) hafnium tribenzyl was reacted with three equivalents (equiv) of iPrOH, the benzyl groups
were easily replaced, forming the corresponding tri-isopropoxide complex. However, when BnOH
was used, dimeric complexes were obtained. When five equivalents of the corresponding alcohols
(BnOH, iPrOH) were reacted with the monomeric complex, different dimeric complexes were ob-
tained. Regardless of the high oxophilicity of the hafnium complexes, all complexes were active
catalysts for the ring-opening polymerization (ROP) of ε-caprolactone. Dimeric complexes 5 and 6
were found to be the most active catalysts, enabling polymerization to occur in a living, immortal
fashion, as well as the copolymerization of ε-caprolactone with rac-lactide, producing block copolymer
PCL-b-LAC. The introduction of imidazolin-2-iminato ligands enables the tailoring of the oxophilicity
of the complexes, allowing them to be active in catalytic processes with oxygen-containing substrates.

Keywords: hafnium complexes; imidazolin-2-iminato; polycaprolactone; polylactide

1. Introduction

Currently, polymers play an important role in our everyday lives, making them
convenient and leisurely in many ways. Polymers are employed as building blocks for
a wide variety of industrial and domestic applications. Their outstanding performances
are enabled by their diverse properties, which can be altered and tailored depending
on the polymerized monomer [1]. However, one of their disadvantages is that once a
plastic product is out of usage, it accumulates as waste. Most plastics are made from
non-biodegradable materials, and the process of decomposition lasts for decades [2,3]. In
addition to the challenge of selectively obtaining a polymer with a defined stereochemistry,
the consumption of polymer-based materials and the rate of plastic waste have increased
considerably within the last two decades, resulting in major environmental issues and
increasing the need for research on biodegradable and ecologically friendly materials [2,4–6].
In order to achieve the preparation of biodegradable materials, it is necessary to develop
novel catalytic systems that allow for the synthesis of these polymers with high yields and
without additional byproducts.
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To ensure their use, biodegradable polymers need to have similar or even superior
properties to those of traditional non-biodegradable polymers, such as analogous me-
chanical properties combined with a complete degradation process in the presence of
micro-organisms [7–9]. Biodegradable polymers can be natural polymers or synthetic
polymers. Starch, chitin, and cellulose are examples of natural polymers. On the other
hand, synthetic biodegradable polymers include poly(ε-caprolactone) (PCL), polylactides
(PLA), etc. PCL and PLA are biocompatible polymers used for medical and pharmaceutical
applications [10–12]. These aliphatic polyesters are formed by the convenient method of
ring-opening polymerization (ROP) of their monomeric cyclic esters [13]. Studies have
demonstrated the impact of the obtained molecular weight (Mn) of the polymer on its
degradation rate and mechanical strength [12]. ROP of these aliphatic esters can be per-
formed using metal complexes as catalysts based on main group metals, transition metals,
lanthanides, and actinides [14–67].

Despite the wide variety of complexes used today for ROP, complexes containing
hafnium(IV) have not yet been fully developed as compared to other metal complexes,
such as aluminum and zinc complexes. Hafnium complexes are often used in the field of
homogeneous catalysis, such as for the hydroboration of aldehydes, ketones, and carbodi-
imides [68]; in the catalytic addition of alcohols to carbodiimides; and the polymerization of
α-olefins [69–84]. However, in the ring-opening polymerization of cyclic esters, the variety
of hafnium metal complexes applied as catalysts is limited [20,85–91]. This limitation can be
associated with the formation of a catalytically inactive, stable hafnium–oxygen bond (Hf-O;
801 kJ/mol) [92]. Thus, the significance of the selection of the metal and the anchoring
ligand is substantial, as they directly affect the activity and the obtained polymer struc-
ture [89–91]. To deal with the oxophilicity of hafnium, a super-basic imidazolin-2-iminato
ligand was introduced to reduce its electrophilic nature. Imidazolin-2-imides (Structure A,
Scheme 1) represent highly nucleophilic ligands that can act as a 2σ, 4π electron donors
(Structure B, Scheme 1) toward early transition metals in high-oxidation states [93,94].
Because the ligand exhibits strong donating abilities and is an isolobal, monodentate analog
to cyclopentadienyl (Cp), it is expected to increase the electron density at the hafnium
atom, resulting in a more active catalyst toward oxygen-containing substrates, such as the
cyclic esters ε-caprolactone and lactide. In addition, we expect that the formation of the
imidazolin-2-iminato hafnium bond will result in short Hf-N bond distances and large,
almost linear Hf-N-C angles, suggesting a higher M-N bond order [68,95–102].
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Scheme 1. Resonance structures of the imidazolin-2-iminato ligand.

In this work, we focused on the synthesis and characterization of various hafnium(IV)
complexes containing the imidazolin-2-iminato ligand. These complexes were found to
be catalytically active in a saturated environment of oxygen-containing substrates (cyclic
esters ε-caprolactone and/or lactide), enabling the synthesis of biodegradable polymers
and copolymers with high yields and without further byproducts.



Catalysts 2022, 12, 1201 3 of 24

2. Results and Discussion
2.1. Synthesis and Characterization of Hafnium Complexes

Mono(imidazolin-2-iminato) hafnium(IV) complexes 1–4 (Scheme 2) were obtained
according to our previously published procedure for the preparation of complexes 2 and
4 [68]. The reaction of a toluene solution of the neutral imidazolin-2-imine was added to a
toluene solution of 1 equiv of the homoleptic hafnium tetrabenzyl complex (HfBn4). The
reaction mixture was stirred at room temperature for 16 h, followed by solvent removal
under a vacuum. Each complex was crystallized at −35 ◦C from a mixture of toluene
and hexane (10:1). Complex 1, (ImiPrN)HfBn3, (Figure 1) crystallizes in the monoclinic
space group C2/c as a dimeric complex with two hafnium centers. Each metal atom is
surrounded by three benzyl groups and two bridging imidazolin-2-iminato ligands bound
through the exocyclic-N1 moieties. The Hf-N bond lengths are 2.118(5) Å for Hf1-N1 and
2.175(5) Å for Hf1#1-N1, and the Hf-N-C bond angles are 129.5 (4)◦ and 127.6 (4)◦ for Hf1
and Hf1#1, respectively. We expected to obtain a short Hf-N bond length and a linear-angle
Hf-N-C, as previously observed in actinide, zirconium, and titanium complexes using this
family of ligands [26,96,99–114]. Hence, we suspected that the use of the small isopropyl
moieties enabled the formation of the dimeric structure and distribution of the electron
density of the ligands over two metal centers. Accordingly, by tailoring the bulkiness of the
substituents on the imidazoline skeleton (ImxN) instead of ImiPr, we decided to use the
larger ImtBu, ImMes, and ImDipp moieties to prevent the formation of the dimer structure
(Scheme 2). Complex 3 crystallizes in a monomeric structure with a distorted tetrahedral
geometry around the metal atom (Table 1). Complex 3 (Figure 2), as previously reported
for complexes 2 and 4 [68], crystallized in the triclinic space group P-1. Complexes 2–4
exhibit short Hf-N bond lengths of 1.925(4) Å, 1.909(5) Å, and 1.911(5) Å, respectively, as
compared to other hafnium complexes bearing amido ligands [115–118]. In addition, the
similarity among the exhibited Hf-N bond lengths on complexes 2–4 indicates a minimal
influence of the substituents on the electronic properties in these complexes. The selected
bond lengths (Å) and angles (◦) for complexes 1–4 are summarized in Table 1.
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Scheme 2. Synthesis of mono(imidazolin-2-iminato) hafnium(IV) complexes 1–4.

As expected, complexes 2–4 display shorter Hf-N bond lengths as compared to com-
plex 1 by ~0.2 Å, given the difference between single- and double-bond motifs. The long
Hf-N bond length in complex 1 is attributed to the four-electron donation of exocyclic
nitrogen to two different metal atoms (Hf1-N1-Hf1#) instead of one metal center. This
dimeric structure is the result of using less crowded ligands for the complexation of the
highly electrophilic hafnium center.
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Comparing complex 3 with complexes 2 or 4, complex 2 displayed a larger, almost
linear Hf-Nexocyclic-Cipso angle, with values of 176.3(3)◦, 164.1(4)◦, and 172.2(3)◦ for com-
plexes 2, 3, and 4, respectively. The disposition of the benzyl rings in complex 3 enables
an agostic interaction with the ipso carbon of one of the benzylic rings (Hf-CH2-Caromatic
= 88.9(4)◦). Despite the similarities among complexes 2–4, a noteworthy difference is the
cone angle—124◦, 155◦, and 262◦ for complexes 2–4, respectively—as expected given the
variable bulkiness of the imidazolin-2-iminato ligands in the corresponding complexes.
Furthermore, an outstanding difference between symmetric and asymmetric complexes
can be observed by comparing complex 3 with a similar asymmetric complex containing
only one mesityl and one methyl group instead of one mesityl substituent at each nitrogen
atom (Figure 3). The bulkiness of the abovementioned ligand induces a longer Hf-N bond
length in complex 3 of ~0.1 Å. In addition, this asymmetric complex, as expected, displays
a small cone angle (125◦), enabling the ligand to get closer to the hafnium center [69].
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A close examination of the exocyclic iminato, Nexocyclic-Cipso bonds in complexes 1–4
indicates similar bond lengths of 1.330(8), 1.323(6), 1.297(6), and 1.299(5) Å. These similari-
ties suggest a minimal electronic effect of the ligands on the metal center. Comparison of
the N Nexocyclic -Cipso bond lengths indicates the relative electron donation from the ring to
the metal center among the complexes (the neutral ligand ImDipp has an N Nexocyclic -Cipso

bond length of 1.279(3)Å).
Hf(IV) complexes 1–4 showed a high resemblance to the analogous Ti(IV) and actinide

(U, Th) complexes compared to the corresponding Nexocyclic-Cipso bond lengths and M-
Nexocyclic-Cipso angles [94,105]. However, in comparison with analogous lanthanide (Lu,
Gd, Yb, and Sm) complexes, the Hf(IV) complexes have longer Nexocyclic-Cipso bond lengths,
suggesting a higher electron donation from the ligand to the metal, probably due to the
difference in electrophilicity between the mentioned groups [119].

Mono(imidazolin-2-iminato) hafnium(IV) complexes 5 and 6 were obtained by reacting
a toluene solution of 1 equiv ImDippNHfBn3 (4) and 3 equiv of the alcohol ROH (R = benzyl
(Bn) or iPr). The reaction mixture was stirred at room temperature for 24 h, and the solvent
was removed under a vacuum. Complex 5 (Figure 4) crystallized at −35 ◦C from a mixture
of toluene and hexane (1:10).

Table 1. Selected bond lengths (Å) and angles (◦) for 1–4.

Bond Length (Å) and Angle (◦) 1 2 3 4

Hf-N1 2.118(5) 1.925(4) 1.907(4) 1.911(4)
Hf-N1#1 2.175(5)
Hf-CBenz 2.268(7) 2.267(5) 2.229(6) 2.254(5)
N-Cipso 1.330(8) 1.323(6) 1.297(6) 1.299(5)

Hf-CBenz 2.262(8) 2.270(5) 2.251(6) 2.279(5)
Hf-CBenz 2.326(5) 2.290(6) 2.278(5) 2.281(4)

Cone angle 128 124 155 262
N1-Hf1-N1#1 76.26(19)
Hf1-N1-Hf1#1 102.15(19)

C1-N1-Hf 129.5(4) 176.3(3) 164.1(4) 172.2(3)
CBenz-Hf-CBenz 91.5(3) 104.2(2) 107.1(2) 102.7(2)
CBenz-Hf-CBenz 98.5(3) 113.3(19) 109.6(2) 117.4(2)
CBenz-Hf-CBenz 118.2(3) 121.48(19) 122.3(2) 121.3(18)

In contrast to complex 4 [112], complex 5 crystallized in a dimeric form in the mono-
clinic space group P21/c. In complex 5, each hafnium center is coordinated to one ImDippN
ligand, two alkoxy moieties, and two bridging alkoxy motifs. The exocyclic N atom of
the imidazolin-2-iminato moiety exhibited a slightly longer bond length with the hafnium
center of 1.971(7) Å as compared to 1.911(5) Å in complex 4. This elongation is the result of
the increased electron density at the metal center caused by the oxygen ligands, decreasing
the need for π donation from the nitrogen donor ligand.

The Nexocyclic-Cipso bond length is slightly shorter in complex 5 (1.251(10) Å) than in
complex 4 (1.300(6) Å), indicating almost no electronic involvement of the ring in stabilizing
the metal center. Both complexes display almost linear angles with respect to the Hf-N-Cipso
vector. The strength of the Hf-N bond is not cleaved by protonation, even in the presence
of alcohol.

In complex 5, the two ImDipp moieties are almost parallel to one another (Figure 5)
and disposed with an angle of 111◦ between the ligand and a vector between the two metal
centers (Nexocyclic-Hf1-Hf1), displaying an antiperiplanar, chair-like dihedral structure (L-M-
M-L). The aromatic rings in each of the imidazolin-2-iminato ligands are almost coplanar;
therefore, two of the isopropyl groups in each ligand are directed toward the metal centers
(Figure 5). This disposition forces the other benzyloxy moieties to point “outside” the core
of the dimer, maximizing the distance from other ligands and reducing the steric repulsion
to a minimum.
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Figure 4. ORTEP drawing of 5 [(ImDippN)2Hf2(OBn)6]. Hydrogen atoms are omitted for clarity.
Selected bond lengths (Å) and angles (◦): Hf-N1 = 1.971(7), Hf-O1 = 2.136 (5), Hf1-O1 = 2.198(6);
Hf-O2 = 1.936(6), Hf-O3 = 1.958(7); N1-C1 = 1.251(10) Å; Hf-N1-C1 = 176.3(6), Hf-O1-Hf1= 113.2(2);
O1-Hf-O11 = 66.8(2) (◦).
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Figure 5. ORTEP drawing of 5 [(ImDippN)2Hf2(OBn)6] showing the chair-like structure. Benzyloxy
and imidazolin substituents atoms are shown in wireframe mode to clarify the structure. Hydrogen
atoms are omitted for clarity.

Complexes 7 (Figure 6) and 8 (Figure 7) were obtained via a similar procedure with
the addition of 5 equiv of the respective alcohols ROH instead of 3 equiv as mentioned
in Scheme 3. When an excess of ROH was utilized, the imidazolin-2-iminato ligand was
detached from the hafnium complex, as shown in complexes 7 and 8. Crystallographic data
for complexes 5, 7, and 8 are summarized in the Supplementary Materials.

Complex 7 crystallizes in the space group P21/c. The complex is dimeric, and each Hf
metal has a distorted octahedral coordination structure with three terminal and three bridg-
ing alkoxy moieties. The Hf-Obridge distances are between 2.166 and 2.208 Å and slightly
larger than the terminal alkoxo moieties (1.940(3)–1.984(3) Å). Because the formula of the
complex is [Hf2(OBn)8(BnOH)], the X-ray data indicate that the proton is scrambled among
the alkoxy moieties. The angles of the bridging Hf-Obridge-Cbenzyl (ranging 121.89◦–132.39◦)
than the terminal equivalent angles (ranging 138.17◦–170.64◦), as expected.
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Comparison of the conformation of the benzyloxy moieties bound directly to the metal
center, Hf-O-C-Cphenyl, in complexes 5 and 7 shows that they differ in terms of the values
of the dihedral angles (Figure 5). The bridging alkoxy moieties are disposed in an anti
direction to the imidazoline motif. In complex 7, an almost perfect anti-conformation is
observed for the oxygen moieties; O1, O2, and O3 are anti to O4, O5, and O6, respectively
(Figure 8).

Complexes 5 and 7 both have bridging BnO motifs. A close inspection of the bond
length between the CBenz-O moieties indicates that in complex 5, this bond is slightly longer
than in complex 7 by 0.078 Å, presumably due to the difference in electron donation of the
oxygen moieties as compared to the imidazolin-2-iminato ligand to the metal centers.
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In complex 5, the hafnium atoms are bridged by only two alkoxy units, whereas
in complex 7, the hafnium atoms are bridged by three alkoxy units. This coordination
difference is the result of the bulkiness and the steric repulsion of the alkoxy moieties with
the large imidazolin-2-iminato ligand. In the latter complex, due to the high oxophilicity of
the metal center, an additional neutral molecule of alcohol is also coordinated.

Furthermore, by using a similar procedure to prepare complex 7 but with less alcohol,
iPrOH, the dimeric structure of complex 8 is obtained (Figure 8). In complex 8, four
isopropoxide units are connected directly to each hafnium, and only two isopropoxides act
as bridging units. The complex obtained has the formula [Hf2(OiPr)8·(iPrOH)2] indicates
that fewer steric isopropoxy moieties enable the coordination of additional neutral alcohol
molecules. In complex 8, the oxygens (O1, O3, and O5) and both hafnium are disposed in
the same plane, whereas the O2 and O4 are almost perpendicular to that plane, inclined
toward the inner “dimer core”, with an angle of 86.6(4)◦ for O4-Hf1-O5 and of 78.0(4)◦ for
O2-Hf1-O5 (Figure 9). The O2-Hf1 bond length is the longest among other iPrO-Hf in the
same complex.

In addition, in complex 8, the four axial alkoxy ligands display smaller bending angles
(Hf-O2-C4 = 127.93, Hf-O4-C10 = 129.29 Hf-O2-C4= 127.93 Å) than the four alkoxo moieties
on the plane of the molecule (Hf-O1-C2 = 170.61, Hf-O3-C7 = 170.77 Å). Therefore, we
suggest that the two protons are involved in a hydrogen bond between the axial alkoxy
moieties O2-H-O4 (O2-O4 = 2.760 Å as compared to O1-O3 = 2.918 Å), and the lack of
bending in the plane of the molecule seems to be a result of steric interactions.
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2.2. Ring-Opening Polymerization Studies

The ring-opening polymerization of a cyclic lactone or lactide monomer is a desired,
straightforward method to afford biodegradable polyesters due to the absence of any by-
products. We were interested in investigating the reactivity of the oxophilic hafnium(IV)
complexes 1–4 as catalysts toward oxygen-containing monomers. Complexes 1–4 exhibit
similar electronic properties based on their similar bond lengths; however, their steric
properties differ considerably, i.e., a smaller cone angle of the ImtBuN ligand in complex 2,
followed by an increase in the cone angle of the ImMesN ligand in complex 3 and a very
large cone angle of the ligand ImDippN in complex 4. We predicted that a complex with
a smaller cone angle would have a more exposed metal center. Hence, a deactivation of
the complex will be inevitable as compared to a complex with a larger cone angle and a
more well-shielded complex, as in complex 4. The deactivation is expected to occur due
to oversaturated coordination by the incoming monomers and/or via the coordination
of the growing polymer chain(s) that will rotate toward the active site and block other
coordination sites. In a complex with a large cone angle, it is expected that monomer
insertion/polymer growth will be the preferred operative process. To corroborate our
expectations, we studied such effects, and these complexes were utilized in the ROP of
ε-caprolactone. Polymerization reactions were performed at room temperature and with
varying complex-to-monomer ratios: 1:100, 1:1000, and 1:2000. The polymerization results
are summarized in Table 2. As expected, the activity of complexes 1 and 2 are similar. With
increased monomer content, the activity increases, obtaining the best TOF at a ratio of 1:1000.
Increased monomer contents do not induce increased activities but transesterifications for
complexes 1–3. For example, using complexes 3 at a ratio of 1: 100, yields a polymer with
Mn of 3450 and a polydispersity (PDI) of 2.4. At a ratio of 1:1000, the polymer Mn increased
to 3700, whereas the polydispersity increased to 4.3. At a ratio of 1:2000, the polymer Mn
was 3950, and the polydispersity was increased to 6.4. In contrast, the polymerization of
caprolactone using the oxophilic complex (ImDippN)2U(NMeEt)2 in a catalyst-to-monomer
ratio of 1:60,000 was not inhibited, presumably due to the large cone angle of the ligands in
the complex, impeding chain coordination and enabling only polymerization growth by
inserting small monomers [26]. Hence, we decided to continue our studies using complex 4.

The polymerization results of complex 4 are summarized in Table 3. Analysis of
the polymers shows that even at very high cat:monomer ratios, the molecular weight of
the polymer (Mn) increases, indicating that a single site complex is responsible for the
reactivity [120].
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Table 2. Polymerization results for the ROP of ε-caprolactone mediated by complexes 1–4.

Complex Activity (g mol−1 h−1)·104

Cat:Monomer 1:100 1:1000 1:2000

1 4.5 11.4 6.1
2 3.9 9.8 6.3
3 2.5 4.9 4.4
4 10.7 19.8 27.5

Polymerization conditions: 41.67 µL of toluene, r.t, and 3 µmol of catalyst. The conversion was determined by 1H
NMR spectroscopy of the crude reaction. Cat: catalyst.

ε-Caprolactone polymerized using complex 4 with a catalyst:monomer ratio of 1:100
in a toluene solution (5 mL) to avoid the transesterification that occurs with high monomer
concentrations. Plotting of the polymerization conversion values obtained against the
measured Mn suggests that polymerization occurs in a linear fashion (R = 0.969), indicating
that the monomer continues to be consumed as the polymerization propagates (Chart 1A).
However, plotting the Mn against time (Chart 1B) indicates that this process is not a living
polymerization (R = 0.78), with PDI values ranging between 1.3 and 1.9 (Chart 1A). This
result suggests a single-site catalyst with almost no transesterification side reactions.

Table 3. Polymerization results for the ROP of ε-caprolactone mediated by complex 4.

Cat:Monomer 1:100 1:1000 1:2000

Yield (±0.03%) 78.3 14.6 10.8
A (g mol−1 h−1)·105 1.07 1.98 2.75

PDI 1.7 2.4 2.7
Mn corrected·103 (g/mol) 10.9 13.0 15.8

Polymerization conditions: 41.67 µL of toluene, r.t, 3 µmol of catalyst, 5 min. The conversion was determined by
1H NMR spectroscopy of the crude reaction. The Mn values were relatively calibrated by GPC using polystyrene
standards; the Mn values were multiplied by a factor of 0.58 and correlated to the actual PCL values [26,121,122].

The 1H NMR of the stoichiometric reactions between complex 4 and 1 equiv of ε-
caprolactone (Figure S17) or 2 equiv of ε-caprolactone (Figure S18) revealed the existence
of a caprolactonyl moiety at 5.82 ppm as the end group of the polymer, in addition to the
appearance of the one or two equiv of CH3-phenyl (toluene) as benzyl is the activated
leaving group. In addition, we performed poisoning experiments by adding 1 equiv and
2 equiv of deoxygenated water to complex 4, followed by the addition of monomer.
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Chart 1. Mn and PDI in the polymerization of caprolactone with complex 4 (A). Mn as a function
of time (B): 5 mL of toluene, r.t, 11 µmol of catalyst 4. Cat:ε-caprolactone; 1:100. The yield was
determined by 1H NMR spectroscopy of the crude reaction. The Mn values were relatively calibrated
using GPC with polystyrene standards; the Mn values were multiplied by a factor of 0.58 and
correlated to the actual PCL values [26,121,122].

In the case of 1 equiv of water, the polymerization proceeds as previously, showing a
similar conversion as compared to the results obtained without water, suggesting that not
all the benzyl groups are active in the polymerization. Performing the polymerization after
adding 2 equiv of water inhibits the polymerization. This result strongly indicates that one
active site is needed for polymerization to proceed.

Because in the polymerization of ε-caprolactone performed by complex 4, the Hf-
Bn motif is transformed into an Hf-OR group, we decided to study complexes 5 and 6.
Polymerization with complex 7 is almost identical to that with complex 5, so we did not
investigate this further. We decided to start with an oxophilic complex with a very strong
Hf-OR bond because polymerization was started with am Hf-O motif that propagates
through the polymerization, resulting in a similar Hf-O bond. Therefore, there is not an
energetic cost for breaking such a strong bond. Hence, the polymerization carried out with
complex 5, (Chart 2) describes the conversion versus the molecular weight (Mn), showing
a linear trend with a very narrow PDI, indicating that the polymerization proceeds in a
living fashion, as demonstrated by the obtained Mn of the polymer after 100% conversion.
In addition, this result indicates that all the Hf-O motifs are active during polymerization.

1H NMR analysis of the polymer shows the CH2 moiety belonging to the benzyl
alcohol end group (Figure S21) at 5.11 ppm. Moreover, the aromatic hydrogens are found
at 7.35 ppm, correlating well with the integration values (5:2). An additional chain-end
group, a hydroxyl, was observed at 3.64 ppm (Figure S20) after the reaction mixture was
washed with methanol.

Additional studies were performed using complex 6. The obtained results were similar
to those obtained with complex 5, also displaying a linear trend in the plot of conversion
versus Mn (R = 0.986) (Chart 3), with very narrow polydispersity. Based on the chart
values, a living polymerization of ε-caprolactone is obtained, catalyzed by complex 6.
These results indicate the high probability that complexes 5 and 6 are similar in terms of
structure/active sites. Examination of the 1H NMR spectrum demonstrated the presence of
the distinctive end-group (CH3)2CH-O- of the iPrO group at 4.88 ppm (“g” in Figure S22).
The additional end group, i.e., the hydroxyl group, was conspicuously located at 3.41 ppm,
which was confirmed using D2O [123]. It seems that the mechanism of the polymerization
for complexes 5–8 is the same as those reported in the literature with alkoxo complexes.



Catalysts 2022, 12, 1201 12 of 24
Catalysts 2022, 12, x FOR PEER REVIEW 12 of 25 
 

 

 

Chart 2. Linear increase in the molecular weight Mn as a function of conversion and polydispersity 

in the polymerization of ε-caprolactone catalyzed by complex 5. Conditions: 5 mL of toluene, r.t, 11 

μmol of catalyst 5. Cat: ε-caprolactone; 1:100 The yield was determined by 1H NMR spectroscopy of 

the crude reaction. The Mn values were relatively calibrated using a GPC with polystyrene 

standards; the Mn values were multiplied by a factor of 0.58 [26,121,122]. 

Additional studies were performed using complex 6. The obtained results were 

similar to those obtained with complex 5, also displaying a linear trend in the plot of 

conversion versus Mn (R = 0.986) (Chart 3), with very narrow polydispersity. Based on the 

chart values, a living polymerization of ε-caprolactone is obtained, catalyzed by complex 

6. These results indicate the high probability that complexes 5 and 6 are similar in terms 

of structure/active sites. Examination of the 1H NMR spectrum demonstrated the presence 

of the distinctive end-group (CH3)2CH-O- of the iPrO group at 4.88 ppm (“g” in Figure 

S22). The additional end group, i.e., the hydroxyl group, was conspicuously located at 

3.41 ppm, which was confirmed using D2O [123]. It seems that the mechanism of the 

polymerization for complexes 5–8 is the same as those reported in the literature with 

alkoxo complexes. 

 

Chart 3. Linear increase in the molecular weight Mn as a function of conversion and polydispersity 

in the polymerization of ε-caprolactone catalyzed by complex 6. Conditions: 5 mL of toluene, r.t, 11 

μmol of catalyst 6. Cat: ε-caprolactone; 1:100. The yield was determined by 1H NMR spectroscopy 

of the crude reaction. The Mn values were relatively calibrated using a GPC with polystyrene 

standards; the Mn values were multiplied by a factor of 0.58 [26,121,122]. 

Complexes 5 and 6 carry alkoxide moieties, as well as the symmetric imidazolinDipp-

2-iminato ligand. The exchange of the benzylic groups (complex 4) for a benzyloxy group 

(complex 5) afforded a higher TOF of 140 × 105 h−1, and a similar result was obtained when 

switching to the isopropoxide groups (complex 6), resulting in a TOF of 130 × 105 h−1. As 

expected, complexes 5 and 6 provided polymers with low molecular weights as compared 

to the polymers obtained by complex 4 due to their living fashion divided by the number 

of active alkoxy units. This result is also the outcome of the different mechanisms for the 

Chart 2. Linear increase in the molecular weight Mn as a function of conversion and polydispersity
in the polymerization of ε-caprolactone catalyzed by complex 5. Conditions: 5 mL of toluene, r.t,
11 µmol of catalyst 5. Cat: ε-caprolactone; 1:100 The yield was determined by 1H NMR spectroscopy
of the crude reaction. The Mn values were relatively calibrated using a GPC with polystyrene
standards; the Mn values were multiplied by a factor of 0.58 [26,121,122].
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Chart 3. Linear increase in the molecular weight Mn as a function of conversion and polydispersity
in the polymerization of ε-caprolactone catalyzed by complex 6. Conditions: 5 mL of toluene, r.t, 11
µmol of catalyst 6. Cat: ε-caprolactone; 1:100. The yield was determined by 1H NMR spectroscopy of
the crude reaction. The Mn values were relatively calibrated using a GPC with polystyrene standards;
the Mn values were multiplied by a factor of 0.58 [26,121,122].

Complexes 5 and 6 carry alkoxide moieties, as well as the symmetric imidazolinDipp-2-
iminato ligand. The exchange of the benzylic groups (complex 4) for a benzyloxy group
(complex 5) afforded a higher TOF of 140 × 105 h−1, and a similar result was obtained when
switching to the isopropoxide groups (complex 6), resulting in a TOF of 130 × 105 h−1. As
expected, complexes 5 and 6 provided polymers with low molecular weights as compared
to the polymers obtained by complex 4 due to their living fashion divided by the number
of active alkoxy units. This result is also the outcome of the different mechanisms for
the polymerizations. Whereas polymerization with complexes 5 and 6 proceeds in a
living fashion, protonolysis of the chain is observed in the case of complex 4, producing
a caprolactonyl end group. The polymerization data are summarized in Table 4, and a
plausible mechanism is presented in Scheme 4.
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Scheme 4. A plausible mechanism for the polymerization of caprolactone with complex 4.

The mechanism presented in Scheme 4 is based on J-Young NMR stoichiometric
experiments (see supporting information). The first step is the protonolysis of the benzyl
group with the α-hydrogen of the caprolactone, as observed in the evolution of toluene in
the NMR. The enolate hafnium is rapidly isomerized to the alkoxo complex, which is the
active species. Additional insertions of caprolactone induce the formation of the polymeric
chain, and cleavage via the same α-hydrogen acidic protonolysis releases the polymer and
regenerates the active species after the rapid rearrangement. The caprolactonyl terminal
group is easy to observe (the double bond) in the NMR of the polymer (see SI, spectra S20).

A comparison of complexes 6 and 8 reveals the effect of the imidazolin-2-iminato
ligand. Complex 6 was found to be more active than complex 8, consuming 100% of the
monomer, whereas 8 consumes only 58% of the monomer at the same time (after 30 min,
complex 8 afforded a polymer with Mn = 69,000).

Because complex 6 allows for living polymerization, we studied its performance upon
a second addition of the monomer. We ran the polymerization reaction of ε-caprolactone
with complex 6 (20:1 respectively), monitoring the reaction via 1H NMR. After all the
monomer was polymerized, a second amount of ε-caprolactone was added, which was
polymerized at a slightly lower rate, probably due to the increase in viscosity (Chart 4).
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Chart 4. Polymerization of ε-caprolactone displaying the conversion as a function of time. After
reaching 100% yield, an equal amount of ε-caprolactone was added. Conditions: 5 mL of toluene,
r.t, 35 µmol of catalyst 6. Cat: ε-caprolactone; 1:20 for the first and second additions. The yield was
determined by 1H NMR spectroscopy of the crude reaction.
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Table 4. Polymerization results for the ROP of ε-caprolactone mediated by complexes 4–6.

Complex Time (min) Conversion % Mn (g/mol) PDI

4 10 23 4030 1.36
4 30 34 6160 1.90
4 50 44 7950 1.88
4 70 50 7450 1.70
4 90 57 8790 1.66
5 10 38 1120 1.25
5 20 60 1340 1.08
5 30 78 1680 1.10
5 50 95 1900 1.50
5 60 100 2130 1.10
6 10 22 670 1.20
6 20 46 1230 1.12
6 30 71 1850 1.40
6 40 86 2000 1.20

Polymerization conditions: 5 mL of toluene, r.t, 11 µmol of catalyst. Cat: ε-caprolactone; 1:100. The conversion
was determined by 1H NMR spectroscopy of the crude reaction. The Mn values were relatively calibrated
using polystyrene standards; the Mn values were multiplied by a factor of 0.58 (Mark–Houwink coefficient) and
correlated to the actual PCL values.

We decided to study the ROP of rac-lactide to get a better understanding of whether
the ability of complex 4 to polymerize would be compromised in a more crowded oxo
environment, enabling the chelation of the monomer or the last inserted monomer unit to
the metal center.

rac-Lactide polymerization with complex 4 indicates that the reaction proceeds in a
linear fashion (Chart 5) according to the plot of Mn versus the conversion to produce an
atactic polymer, as expected. However, the rate of the reaction is slower as compared to
PCL polymerization. The polymerization of the rac-lactide by complex 6 (Chart 6) is much
faster, suggesting facile access of the monomer to the active site.

We were interested to explore the possibility of obtaining block copolymer PCL-b-PLA.
This polymerization was performed by a method similar to that described for the immortal
ε-caprolactone experiment. A Schlenk tube was charged with a solution of complex 4
dissolved in toluene, followed by the addition of 3 equiv of iPrOH to produce the “in situ”
complex 6. Then, a measured amount of ε-caprolactone was added, and after complete
consumption, the corresponding amount of rac-lactide was added. ε-caprolactone was
polymerized at room temperature, whereas the lactide was polymerized at 70 ◦C (Chart 7).
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Chart 5. Mn and PDI in the polymerization of rac-lactide with complex 4. Conditions: 5 mL of
toluene, 70 ◦C, 8.2 µmol of catalyst 4. Cat: rac-lactide; 1:200. The conversion was determined by
1H NMR spectroscopy of the crude reaction. Mn values were relatively calibrated using GPC with
polystyrene standards; the Mn values were multiplied by a factor of 0.56 and correlated to the actual
PLA values [124,125].
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Chart 6. Conversion (%) in the polymerization of rac-lactide with complexes 4 (N) and 6 (�). 5 mL
of toluene, 70 ◦C, 8.2 µmol of catalysts 4 and 6. The conversion was determined by 1H NMR
spectroscopy of the crude reaction. Ratio of catalyst 4:rac-lactide, 1:200; ratio of catalyst 6:rac-lactide,
1:300.
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Chart 7. Polymerization conditions: 5 mL of toluene, 25 ◦C, 11 µmol of catalyst. Cat: ε-caprolactone;
1:100 for the first addition. The ratio of lactide monomer for the second addition was the same
as in the first addition; 70 ◦C; the yield was determined by 1H NMR spectroscopy of the crude
reaction mixture.

The 1H NMR spectrum of the formed copolymer was measured 55 min after the
lactide addition, indicating that 90% of the lactide monomer was consumed (Chart 7). In
addition, the spectrum indicates the appearance of both PCL and PLA in the copolymer.
GPC analysis of each polymer/copolymer formed after each addition indicates that the
polymer weight of the PCL was Mn = 5000 Dalton, with a PDI of 1.1; after the lactide
addition, the Mn of the copolymer increased to 15,000, with a similar polydispersity of
1.2. (Figure S23). To ensure that only one type of polymer was obtained rather than
mixtures of two homopolymers, PCL and PLA, a diffusion-ordered spectroscopy (DOSY)
experiment was performed. This experiment allowed us to determine whether there was
more than one polymer type, as polymers with different masses possess different diffusion
coefficients. The DOSY experiment (Figure S24) revealed that there was only one copolymer
type present.
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3. Experimental Section
3.1. General Considerations

All manipulations of air-sensitive materials were performed with the rigorous ex-
clusion of oxygen and moisture in flamed Schlenk-type glassware on a high vacuum
line (10−5 Torr) or in nitrogen-filled MBraun and vacuum atmosphere gloveboxes with a
medium-capacity recirculator (1–2 ppm oxygen). Argon and nitrogen were purified by
passage through am MnO oxygen-removal column and a Davison 4 Å molecular sieve
column. Analytically pure solvents were dried and stored with Na/K alloy and degassed
by three freeze−pump−thaw cycles prior to use (hexane, toluene, benzene-d6, and toluene-
d8). ImDippNH, ImMesNH, ImtBuNH, ImiPrNH, and the metal complex precursor hafnium
tetrabenzyl were synthesized according to published literature procedures [125–127]. ε-CL
was distilled and stored in the glovebox before use. rac-Lactide was recrystallized from
Et2O. iPrOH, BnOH was distilled under CaH2 and stored over 4Å molecular sieves in a
glovebox prior to use. NMR spectra were recorded on Avance 200, Avance 300, Avance III
400, Avance 500, and Avance III 600 Bruker spectrometers (Karlsruhe, Germany). Chemical
shifts for 1H NMR and 13C NMR measurements are reported in ppm and referenced using
residual proton or carbon signals of the deuterated solvent relative to tetramethylsilane.
MS experiments were performed at 200 ◦C (source temperature) on a Maxis Impact (Bruker)
mass spectrometer with an APPI solid probe method. For X-ray crystallographic mea-
surements, the single-crystalline material was immersed in perfluoropolyalkylether oil,
quickly fished with a glass rod, and mounted on a Kappa CCD diffractometer under a cold
stream of nitrogen. Data were collected using monochromated Mo Kα radiation with ϕ
and ω scans to cover the Ewald sphere. The structure was solved by SHELXS-97 direct
methods and refined by the SHELXL-97 program package 128-130]. The deposition CCDC
number of complexes 1, 3, 5, 7, and 8 are 1,945,369, 1,945,366, 1,946,808, 1,945,247, and
1,946,807, respectively. These data are provided free of charge by the joint Cambridge
Crystallographic Data Centre and Fach Information Zentrum Karlsruhe Access Structures
Service www.ccdc.cam.ac.uk/structures (accessed on 1 September 2022).

GPC measurements were conducted on a Waters Breeze system with a styrogel RT
column with THF (HPLC grade, T.G. Baker (Vaughan, ON, Canada)) as a mobile phase at
room temperature. Relative calibration was performed with polystyrene standards (Aldrich,
2000–1,800,000 Dalton). Mn values were multiplied by a factor of 0.56 and correlated to
actual PCL values [26,122]. Additional measurements for gel permeation chromatography
(GPC) analyses were performed using tetrahydrofuran (THF) as a solvent at room tem-
perature, using a Thermo LC system equipped with one Tosoh’s TSKgel guard column
HHR-L and four TSKgel G4000HHR columns in sequence. Detection was performed with
a penta-detector system, including a Dionex DAD-3000 PDI UV–Vis detector, a Wyatt
Viscostar II, Wyatt OPTILAB T-rEX, Wyatt MALS DAWN HELEOS II 8 + TR, and Wyatt
QELS DLS. Wyatt’s Astra 7.1.4 software was used for GPC data analysis and to calculate
polymer properties (molecular weights, PDIs, intrinsic viscosities, and hydrodynamic
radii). Molecular weights were calculated using Zimm plots with data from MALS and
RI detectors.

3.2. Synthesis of (Imidazolin-2-iminato) Hafnium (IV) Complexes 1–4:

Synthesis was performed following the previously published procedure for complexes
2 and 4 [68]. A toluene solution of the respective (imidazolin-2-imine) ImRNH (0.184 mmol)
in 5 mL of toluene was added dropwise to a pre-prepared solution of hafnium tetrabenzyl
(100 mg 0.184 mmol) in toluene (5 mL) at room temperature. The reaction mixture was
stirred overnight at room temperature. The solvent was removed under vacuum to afford
crude complexes 1–4. In each case, the product was recrystallized from a concentrated
toluene solution at −35 ◦C to yield complexes 1–4 as crystalline materials.

[(ImiPrN)Hf(Bn)3], (Complex 1): Yield: 98 mg, 0.158 mmol, 86%.
1H NMR (300 MHz, C6D6) δ 7.06 (m, 15H, H-Ar), 5.78 (s, 2H, NCH), 4.14 (m, 2H,

CH(CH3)2), 2.08 (toluene), 1.20 (s, 6H, Hf-CH2-Ph), 0.94–0.86 (m, 12H, CH3). 13C NMR

www.ccdc.cam.ac.uk/structures
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(75 MHz, C6D6) δ 152.64, 141.42, 137.39, 128.83, 125.72, 125.20, 106.17, 43.99, 37.71, 20.90.
Elemental analysis calculated for C60H74Hf2N6: C, 58.29; H, 6.03; N, 6.80; found: C, 58.67; H,
5.74; N, 6.99. MS(APPI) calculated for C60H74Hf2N6 (M + H2O from the APPI)) = 1253.4978,
Found = 1253, 4959.

[(ImtBuN)Hf(Bn)3], (Complex 2): Yield: 97 mg, 0.151 mmol, 82%.
1H NMR (300.0 MHz, C6D6) δ 7.19 (t, 3J = 7.7 Hz, 6H, m-Ar), 6.97 (t, 3J = 7.4 Hz, 3H,

p-Ar), 6.88 (d, 2J = 7.3 Hz, 6H, o-Ar), 5.91 (s, 2H, NCH), 1.94 (s, 6H, Hf-CH2-Ph), 1.39 (s,
18H, CCH3). 13C NMR (150.0 MHz, C6D6) δ 143.75, 137.1, 128.98, 127.79, 122.15, 107.13,
75.05, 55.84, 27.79. Elemental analysis calculated for C32H41HfN3: C, 59.48; H, 6.40; N, 6.50;
found: C, 59.33; H, 5.51; N, 6.76.

[(ImMesN)Hf(Bn)3], (Complex 3): Yield: 127 mg, 0.165 mmol, 90%.
1H NMR (600.0 MHz, C6D6) δ 7.52 (s, 4H, m-Ph), 7.43 (t, 3J = 7.7 Hz, 6H, m-Ph), 7.27

(t, 3J = 7.4 Hz, 3H, p-Ph), 6.82 (d, 2J = 7.1 Hz, 6H, o-Ph), 6.01 (s, 2H, NCH), 2.52 (s, 12H,
o-CH3Ph), 2.46 (s, 6H, p-CH3Ph), 1.62 (s, 6H, Hf-CH2-Ph). 13C NMR (150. 0 MHz, C6D6) δ
143.81, 142.97, 138.69, 136.50, 133.12, 129.19, 129.02, 127.36, 121.90, 112.09, 69.08, 20.65, 17.67.
Elemental analysis calculated for C42H45HfN3: C, 65.49; H, 5.89; N, 5.45; found: C, 64.93; H,
5.40; N, 5.89. MS(APPI) calculated for C42H45HfN3 (M+ Na from the APPI)) = 794.2977,
found = 794.2782.

[(ImDippN)Hf(Bn)3], (Complex 4): Yield: 149 mg, 0.175 mmol, 95%.
1H NMR (300.0 MHz, C6D6) δ 7.10–7.15 (m, 6H, ArH), 7.03 (t, 3J = 7.5 Hz, 6H, m-Ph),

6.85 (t, 3J = 7.3 Hz, 3H, p-Ph), 6.35 (d, 2J = 7.0 Hz, 6H, o-Ph), 5.91 (s, 2H, NCH), 4.33 (s, 4H,
PhCH(CH3)2), 1.35 (d, 2J = 6.9 Hz, 12H, CH3), 1.17 (s, 6H, HfCH2Ph), 1.10 (d, 3J = 6.9 Hz,
12H, CH3). 13C NMR (150.0 MHz, C6D6) δ 146.91, 142.61, 133.48, 129.73, 129.08, 127.66,
127.44, 123.94, 121.91, 113.78, 70.24, 28.67, 23.92, 23.20. Elemental analysis calculated for
C48H57HfN3: C, 67.47; H, 6.72; N, 4.92; found C, 67.52; H, 6.85; N, 4.94.

3.3. Synthesis of (2,6-diisopropylphenyl)imidazolin-2-imine Hafnium tris BnO
[(ImDippNH)Hf(BnO)3], (Complex 5):

A solution of BnOH (18 µL, 0.176 mmol) in 5 mL of toluene was added to a pre-
prepared solution of complex 4 (50 mg, 0.058 mmol) in toluene (5 mL) at room temperature,
and the reaction mixture was stirred overnight at room temperature. The solvent was
removed under vacuum to afford crude complex 5. The crude product of 5 was recrystal-
lized from a concentrated toluene solution at −35 ◦C to yield 0.052 g, 0.058 mmol, and 99%
crystalline material.

1H NMR (600 MHz, C6D6) δ 7.19–6.96 (m, H-Ar), 5.72 (s, 2H, NCH), 4.34 (brH, 6H,
OCH2Ph), 3.03 (q, 4H, CCH(CH3)2), 1.11 (d, 2J = 6.9 Hz, 12H, CH3), 1.01 (d, 2J = 6.9 Hz, 12H,
CH3). 13C NMR (150 MHz, C6D6) δ 147.40, 145.73, 137.55, 134.83, 129.19, 128.95, 128.17,
125.29, 124.00, 114.00, 31.59, 28.61, 25.43, 24.01, 23.69, 22.65, 21.04, 13.97. MS(APPI) for
C96H114Hf2N6O6 (M + 2H from the APPI)) = 1807.7892, found = 1807.7875. Elemental
analysis calculated for C96H114Hf2N6O6: C, 63.88; H, 6.37; N, 4.66; found C, 63.64; H, 6.58;
N, 4.49.

3.4. Synthesis of (2,6-diisopropylphenyl)imidazolin-2-imine Hafnium tris(iPrO) iPrOH
[(ImDippNH)Hf(iPrO)3 (iPrOH)], (Complex 6):

A solution of iPrOH (175 µL, 0.176 mmol) in 5 mL of toluene was added to a pre-
prepared solution of complex 4 (50 mg, 0.058 mmol) in toluene (5 mL) at room temperature,
and the reaction mixture was stirred overnight at room temperature. The solvent was
removed under vacuum to afford crude complex 6. The product was precipitated by the
addition of 6 mL of hexane, and the solvent was removed by decantation to yield 0.039 g,
0.052 mmol, and 90% material. One molecule of the isopropanol was co-crystallized with
the complex, and its proton was exchanged with the isopropoxide moieties. Hence, the
isopropyl moieties were not equivalent, resulting in a broad spectrum. However, the MS
and microanalysis corroborate the formation of the complex.
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1H NMR (300 MHz, C6D6) δ 7.20–6.32 (m, H-Ar), 5.80 (s, 2H, NCH), 4.68 (m, 3H,
CH(CH3)2), 4.11 (s, 1H, CH(CH3)2), 3.12 (m, 4H, CH(CH3)2), 1.41 (d, 2J = 6.4 Hz, 18H, CH3),
1.34(d, 2J = 6.2 Hz, 6H, CH3), 1.16 (m, 24H, CH3).

13C NMR (75 MHz, C6D6) δ 154.08, 146.89, 142.61, 133.43, 129.11, 128.84, 125.18, 123.89,
121.90, 70.83, 36.60, 31.44, 28.54, 26.28, 23.46, 20.91, 13.86. HRMS(APPI) for C39H65HfN3O4
+ H (from the APPI) (M + H) = 819.6044. Elemental analysis calculated for C39H65HfN3O4:
C, 57.23; H, 8.01; N, 5.13; found C, 56.98;. H, 8.48; N, 4.99.

3.5. Synthesis of Tetrakis Benzyloxy Hafnium, [(Hf(OBn)8(ROH)], (Complex 7):

A solution of BnOH (48 µL, 0.460 mmol) in toluene (5 mL) was added to a prepared
solution of the corresponding hafnium tetrabenzyl (50 mg, 0.092 mmol) in 5 mL of toluene
at room temperature. The reaction mixture was stirred overnight at room temperature. The
solvent was removed under vacuum to afford crude complex 7. The crude product of 7
was recrystallized from a concentrated toluene solution at room temperature.

[Hf2(OBn)8(BnOH)], (Complex 7): Yield: 53 mg, 0.081 mmol, 88%.
1H NMR (500 MHz, C6D6) δ 7.12–7.04 (45H, m, H-Ar), 4.35 (s, 12H, OCH2Ph), 4.28(s,

6H, OCH2Ph). 13C NMR (126 MHz, C6D6) δ 141.10, 128.06, 127.74, 127.54, 127.35, 126.95,
126.70, 64.17. MS(APPI) for C63H64Hf2O9 (M-HOBn) = 1321.3448 found = 1321.34854 (low
intensity). Elemental analysis calculated for C63H64Hf2O9: C, 57.23; H, 4.88; found C, 56.94;
H, 5.02.

3.6. Synthesis of Tetrakis Isopropoxy Hafnium, [(Hf(OiPr)8(iPrOH)2], (Complex 8):

Hafnium tetrabenzyl (50 mg, 0.092 mmol) was dissolved in 5 mL of toluene at room
temperature. In addition, a solution of iPrOH was prepared by the addition of iPrOH
(32 µL, 0.460 mmol) to 5 mL of toluene. The iPrOH solution was added dropwise to the
hafnium tetrabenzyl solution under vigorous stirring at room temperature. The reaction
was stirred overnight before the solvent was removed under vacuum, resulting in crude
complex 8. The crude product of 8 was crystallized from a concentrated hexane solution at
room temperature. [Hf2(OiPr)8(iPrOH)2], (Complex 8): Yield: 40 mg, 0.085 mmol, 93%. The
rapid exchange of the proton hydrogens resulted in a very broad NMR. Cooling the solution
precipitated the complex, and complex coalescence was obtained by heating. Additional
heating decomposed the complex.

1H NMR (500 MHz, C6D6) δ 4.64 (m, 1H, CH(CH3)2), 1.40 (m, 6H, CH3). 13C NMR
(126 MHz, C6D6) δ 69.31, 26.30. MS(APPI) calculated for C30H72Hf2O10 (M) = 950.4028,
found = 950.4084.

Elemental analysis calculated for C30H72Hf2O10: C, 37.93; H, 7.64; found C, 38.04;
H, 8.44.

3.7. ROP of ε-Caprolactone

A toluene solution of 3 mL charged with ε-caprolactone (130 µL, 1.1 mmol) was
injected with a 2 mL toluene solution with complex 6 (9 mg,11 µmol). At the appropriate
time, 0.4–0.5 mL samples were removed with a pipet to a vial and immediately removed
from the glovebox and quenched with cold methanol. These samples were taken to the
NMR to measure conversion via 1H NMR analysis. Afterward, these samples were dried
under a vacuum and measured by GPC. The polymerization reaction was performed in a
glovebox at room temperature.

3.8. ROP of rac-Lactide

A Schlenk tube charged with rac-lactide (170 mg, 1.1 mmol) and 3 mL of toluene was
prepared in the glovebox and transferred to a preheated oil bath at 70 ◦C until all the lactide
was dissolved. Then, the lactide solution was injected into a 2 mL toluene-containing
complex (6) (9 mg, 11 µmol) under a nitrogen stream. The reaction was monitored by
samples taken from the reaction. The molecular weight was measured by GPC.
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3.9. PCL-b-PLA

The copolymerization reaction was started with a solution of 3 mL of ε-CL (77 µL,
0.7 mmol) dissolved in toluene. The monomer solution was added to a vial charged with
complex 6 (27 mg, 35 µmol) and 2 mL of toluene. The characterization procedure was
performed as mentioned previously. After monomer consumption was achieved, the
mixture was heated to 70 ◦C. A Schlenk tube with rac-lactide (100 mg, 0.7 mmol) was
charged in the glovebox and transferred and heated in an oil bath to 70 ◦C until the lactide
was dissolved. Afterward, the lactide solution was injected into the first polymerization
reaction. The reaction was monitored by samples taken from the reaction and quenched
with methanol out of the glovebox. The molecular weight was measured by GPC.

4. Conclusions

In this work, we described the structural properties of several imidazolin-2-iminato
hafnium complexes. These complexes differ in terms of their steric properties, which
influence their reactivity towards the ROP of cyclic esters. All investigated catalysts
showed tolerance toward oxygen-containing monomers, such as ε-caprolactone and rac-
lactide. Owing to their stability, the complexes were also found to be suitable for block
copolymerization between ε-caprolactone and rac-lactide. Therefore, it is possible to tailor
the oxophilicity of hafnium complexes, allowing the new complexes to be active catalysts
with oxygen-containing substrates.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal12101201/s1. The supplementary material contains: 1.
General Considerations, 2. General Procedure for the Synthesis of Mono(imidazolin-2-minato)
Hafnium(IV) Complexes, 3. 1H NMR and 13C NMR of Complexes. 3.1. Complex 1, 3.2. Complex
2, 3.3. Complex 3, 3.4. Complex 4, 3.5. Complex 5: 3.6. Complex 6, 3.7. Complex 7, 3.8. Complex 8.
4. 1H NMR of Polymers, 4.1. PCL, 4.1.1. Stochiometric Reaction—Complex 4: ε-Caprolactone; 1:1,
4.1.2. Stochiometric Reaction—Complex 4: ε-Caprolactone; 1:2, 4.1.3. 1H NMR of PCL Performed by
Complex 4: ε-Caprolactone, 1:100, 4.1.4. 1H NMR of PCL Performed by Complex 5: ε-Caprolactone,
1:100—End Group. 4.1.5. 1H NMR of PCL Performed by Complex 6: ε-Caprolactone, 1:100—End
Group, 4.2. PLA, 4.2.1. 1H NMR of PLA Performed by Complex 6: rac-lactide, 1:100, 4.3. PCL-b-PLA,
4.3.1. 2D-DOSY NMR of the PCL-b-PLA, 4.4. D2O Experiments, 4.5. Kinetic Graph and MALDI-TOF
Spectra, 5. Crystallographic Data of complexes 1, 3, 5, 7, 8, 6. References [26,68,107,121,126–130] are
cited in the Supplementary Materials.
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