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Abstract: Semiconductor-based photocatalyst materials play an important role in solar hydrogen
production. In the present work, we achieved the successful synthesis of a CeO2/MoS2 composite
using a facile hydrothermal method. For the preparation of the CeO2/MoS2 composite, the hy-
drothermal process was carried out at a temperature of 120 ◦C for 24 h, and its performance in
hydrogen production was tested. The CeO2/MoS2 composite was characterized using XRD, XPS,
Raman spectroscopy, SEM, and optical investigation. The optical study showed that after forming a
composite with MoS2, the absorption edge of CeO2 is shifted from the ultraviolet to the visible light
region. Bandgap values decreased from 2.93 for CeO2 to 2.34 eV for the CeO2/MoS2 composite. In
photocatalytic hydrogen production, Na2SO3–Na2S was used as a sacrificial agent. The CeO2/MoS2

composite exhibited superior photocatalytic hydrogen production performance compared to CeO2

and MoS2. The CeO2/MoS2 composite achieved higher charge separation efficiency, faster charge
transfer, more active sites available for redox reactions, and greater affinity towards the reactant ions
due to such properties its hydrogen evolution rate has reached 112.5 µmol/h. The photostability of
the CeO2/MoS2 composite was tested in up to four cycles, with each cycle being four hours.

Keywords: hydrogen production; hydrothermal method; composite

1. Introduction

The synthesis of visible light-responsive semiconductor photocatalyst materials to
harvest hydrogen as a clean energy source by the photocatalytic method is an attractive,
economical, and environmentally friendly process. It involves capturing light (Ultraviolet,
visible, sunlight) by photocatalyst material and converting it into hydrogen [1,2]. Numer-
ous methods have been adopted to generate hydrogen. These include steam reforming
of hydrocarbons, electrolysis of water, fermentation, gasification of biomass, and photo-
catalytic hydrogen production. Compared to photocatalytic hydrogen production, steam
reforming of hydrocarbons is an endothermic, reversible, and high-temperature reaction
that generates CO2. Other methods have the same drawbacks. Photocatalytic hydrogen
production is a green technology in which photo-created H2 can easily be stored, and it is a
potential approach to meet energy demands and is safe for the environment. It has gained
more attention due to its easy operation, cost-effectiveness, efficiency, and pollution-free
technique, and hydrogen energy can replace fossil fuels in the near future [3–5].

Different kinds of semiconductor materials have been used for photocatalytic hydro-
gen production under sunlight, UV, and visible light illumination. Among the semiconduc-
tors, TiO2, CuO, ZnO2, Fe2O3, CdS, AgX, V2O3, g-C3N4, and WO3 are commonly used in
photocatalytic hydrogen production [6]. CeO2 has been studied as a catalyst material for
decades. CeO2 has similar properties to TiO2 and ZnO. It is chemically stable, non-toxic,
inexpensive, etc., and it is a substitute for TiO2 and ZnO materials [7]. Its applications as a
photocatalyst are limited due to its disadvantages such as its large bandgap, the ability to
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absorb only a small portion of UV light, and more recombination of photogenerated charge
carriers. Most studies proved that the photocatalytic activity of CeO2 can be enhanced
using different strategies such as bandgap engineering, doping, heterojunction, composites,
etc. Among the different strategies, the most effective method is making a composite of
CeO2 with visible light response semiconductor materials that have a lower bandgap, such
as transition metal dichalcogenides (TMDs), which cover the broader solar spectrum and
promote charge generation and separation [8,9].

In the past few years, TMDs have received considerable attention because of their
impressive structural, optical, electronic properties, and efficient co-catalytic supports,
and suitable bandgaps. Thus, they are used in different fields such as photonics, energy,
technology, electronics, physics, and chemistry. TMDs have layered structures similar to
graphene. MoS2 is widely used as a visible light-active photocatalyst material in which
Mo atoms are sandwiched between two layers of hexagonal, closely packed sulfur atoms.
Such layered structures can be used in different applications such as photocatalysis, bat-
teries, supercapacitors, CO2 reduction, water splitting, hydrogen production, etc. [10,11].
Furthermore, MoS2 is reported to be an alternative option for noble metals such as Pt, Ag,
Au, etc. In addition, it is considered a suitable co-catalyst material for H2 generation using
the photocatalytic and electrocatalytic methods. In many studies, MoS2 has been used
as a co-catalyst or component material in the formation of a composite/heterojunction.
A heterojunction provides a potential driving force, which is helpful for the generation
and separation of photogenerated charge carriers, fast charge transfer, better interface
contact, etc. [12,13]. MoS2 possesses favorable electronic properties and thermal stability, a
large surface area, and a narrow bandgap, responsible for visible light absorption due to its
efficient charge transfer properties and for increasing the photocatalytic H2 evolution activ-
ity [14]. Gong et al. synthesized MoS2/CeO2 material by a facile two-step wet chemistry
process and studied the catalytic activity toward H2 production [15]. Li et al. prepared a
CeO2@MoS2 core-shell nanocomposite and used it to study supercapacitor applications
(symmetric supercapacitors) [16]. Li et al. fabricated a ternary attapulgite–CeO2/MoS2
nanocomposite and studied the degradation of dibenzothiophene in gasoline under visible
light irradiation [17]. Liu et al. prepared a MoS2/CeO2 heterojunction and studied the
photocatalytic degradation of methyl orange under visible light illumination [18]. From
the above discussion, we can conclude that there are few reports available on H2 evolution
using MoS2/CeO2 photocatalyst.

In this work, CeO2 and CeO2/MoS2 composite were prepared by the hydrothermal
route and used to study photocatalytic hydrogen production. Prepared catalyst materials
were characterized using different techniques, including X-ray diffraction (XRD), Raman
spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM),
and UV–Vis spectroscopy, etc. A comparative study of CeO2, MoS2, and the CeO2/MoS2
composite was conducted to evaluate the photocatalytic hydrogen production activity. To
evaluate the photostability of the CeO2/MoS2 composite, recycling tests were performed
with up to four cycles, each cycle being four hours. The presence of a sacrificial agent
(Na2S/Na2SO3) stimulated H2 evolution by scavenging photogenerated holes.

2. Results and Discussion

The crystallographic structures of the prepared catalyst materials were investigated
using the XRD technique. Figure 1 presents the XRD patterns of CeO2, MoS2, and the
CeO2/MoS2 composite. The XRD pattern shows that all the prepared materials were well
crystallized. For CeO2, major diffraction peaks located at 28.5◦, 33.1◦, 47.5◦, and 56.3◦ were
well indexed as (111), (200), (220), and (311) crystal planes, respectively. The matching of
standard and observed d values confirm the cubic crystal structure (Powder Diffraction
File no. 34-0394) of CeO2 [19]. For MoS2, major diffraction peaks located at 14.44◦, 32.79◦,
and 39.66◦ correspond to (002), (100), and (103), respectively. The matching of standard
and observed d values using the Powder Diffraction File no. (PDF no. 77-1716) confirmed
the hexagonal crystal structure of MoS2 [20]. In the case of the CeO2/MoS2 composite,
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MoS2 and CeO2 peaks are denoted by symbols # and *, respectively. Major CeO2 and MoS2
diffraction peaks remain in the same positions in the CeO2/MoS2 composite. XRD results
confirm the formation of the CeO2/MoS2 composite without any impurities. Additionally,
prepared materials were characterized using Raman spectroscopy.
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Figure 1. X-ray diffraction patterns of CeO2, MoS2, and CeO2/MoS2 composite.

Raman spectroscopy is primarily used to characterize composite materials, and it also
reveals information about types of bonding, symmetry, and structure in two-dimensional
nanostructures [21]. Figure S1 presents the Raman spectrum of CeO2. From Figure S1, it
is observed that the sharp and most intense characteristic peak was found at 442.48 cm−1

(F2g band) which is associated with the symmetrical stretching mode of the oxygen atoms
around each Ce cation [22]. Figure 2 presents Raman spectra of MoS2 and the CeO2/MoS2
composite. For MoS2, two major peaks positioned at 379.15 cm−1 and 404.48 cm−1 corre-
spond to E1 2g and A1g modes respectively of pure MoS2. Out of these two modes, the E1
2g mode is associated with the in-plane opposite vibration of two S atoms, while the A1g
mode is associated with the out-of-plane vibration of the S atoms in opposite directions
with respect to the Mo atom. Peaks were observed at 820.55 and 993.22 cm−1 due to the
oxidation of MoS2 by laser irradiation, leading to the formation of MoO3, which presents
the vibrational energy of MoO3 [23]. In the case of the CeO2/MoS2 composite, CeO2 peaks
are denoted by the symbol *. The E1 2g, A1g, and F2g modes correspond to the pure
CeO2 and MoS2 samples. A small shift was detected in the CeO2 peaks of the CeO2/MoS2
composite due to an alteration or tension in the crystal lattice during the formation of the
composite [24].
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The CeO2/MoS2 composite was further characterized by XPS. XPS study provides
information about the chemical composition as well as the valence state of the CeO2/MoS2
composite [25]. Figure 3a presents the XPS survey scan spectrum of the CeO2/MoS2
composite. From the XPS survey scan spectrum, Mo 3d, S 2p, Ce 3d, and O 1s elements
were detected. No other impurity elements were found. The Mo 3d high-resolution
spectrum is presented in Figure 3b. The Mo 3d spectrum split into Mo 3d 5/2 and Mo
3d 3/2, which correspond to the binding energy of 229.05 and 232.20 eV, respectively,
suggesting that Mo exists in a +4 oxidation state [26]. Figure 3c presents the S 2p spectrum,
featuring two major bands with a binding energy of 161.85 and 162.79 eV, which correspond
to S 2p 3/2 and S 2p 1/2, respectively [27]. Figure 3d shows the Ce (3d) XPS spectrum,
which is deconvoluted into two sets. One set is in the range 880–900 eV, which is associated
with Ce 3d 5/2, and the second one is in the range 900–920 eV, which corresponds to Ce 3d
3/2. Splitting of Ce 3d 5/2 and 3/2 reveals that Ce exists in the mixed valence state with
oxidation states Ce3+ and Ce4+. The main characteristic peaks of Ce at 900.05 and 882.02 eV
belong to Ce3+ 3d 3/2 and 3d 5/2, respectively. Along with this satellite, peaks observed at
907.1 eV correspond to Ce3+ 3d 3/2, and those at 889.01 and 885.08 eV correspond to Ce3+

3d 5/2. In addition, three other satellite peaks were observed at 907.1 eV for Ce3+ 3d 3/2
and at 888.7 and 885.1 eV for Ce3+ 3d 5/2 [28]. The O 1s spectrum is shown in Figure 3e,
and it is split into three major peaks with a binding energy of 529.40 eV (O1), 532.15 eV
(O2), and 533.21 eV (O3), which correspond to the lattice, core level O2, and S-O bonds,
respectively [29].
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After structural characterization, a morphological study of the CeO2/MoS2 composite
catalyst was performed using scanning electron microscopy. Figure 4 shows the SEM
images of the CeO2/MoS2 composite at different magnifications. From the SEM images,
it is observed that small flakes shaped MoS2 particles, and CeO2 particles have grains of
different sizes and shapes (Figure 4a,b). Furthermore, a uniform distribution of both CeO2
and MoS2 in the particles is observed. At higher magnification (1 µm), particles are clearly
seen (Figure 4c–e).
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An optical study is important while investigating the photocatalytic properties of
MoS2, CeO2, and the CeO2/MoS2 composite. Figure 5 shows the optical properties of
prepared photocatalyst materials. Figure 5a presents the UV–Vis absorption spectra. CeO2
shows the absorption edge at 460 nm and exhibits strong absorption in the ultraviolet
region. For MoS2, the absorption edge is found at 875 nm, and it covers the visible
region. The formation of the CeO2/MoS2 composite caused the absorption edge of CeO2
to shift towards the higher wavelength side due to the electronic interactions between the
CeO2 and MoS2 grains through physical contact while making the composite [30]. The
CeO2/MoS2 composite covers both the visible and ultraviolet regions, which is beneficial
for photocatalytic activity.
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Using the absorption data, the bandgap values were estimated. Figure 5b shows the
plot of (αhν)2 vs. hν for MoS2, CeO2, and the CeO2/MoS2 composite. Using the following
equation, bandgap energy, i.e., the energy difference between the conduction and valence
bands, was calculated [31]:

αhν = A(hν − Eg)n (1)

where A is a constant, Eg is the difference between the bottom of the conduction band and
the top of the valence band, hν is the photon energy, and n is the order. Bandgap values
were found to be 1.60, 2.93, and 2.34 eV for MoS2, CeO2, and the CeO2/MoS2 composite
respectively. Making the composite was beneficial for enhancing light absorption and
reducing the bandgap energy of CeO2, suggesting a change in the electronic structure of
CeO2. Along with this, it is essential to understand the band positions of CeO2 and MoS2.
The following equations were used to calculate the band positions [10],

EVB = X − Ee + 0.5 Eg (2)

ECB = EVB − Eg (3)

where X represents the electronegativity of the catalyst material, EVB is valence band
potential, ECB is conduction band potential, Eg is the bandgap energy, and Ee is the free
electron energy (4.5 eV on the hydrogen scale). The electronegativity values for CeO2 and
MoS2 were calculated as 5.56 eV and 5.32 eV, respectively [32]. Calculated values for CB
potential for CeO2 and MoS2 were −0.41 and 0.02 eV, and VB potential values were 2.52 and
1.62 eV, respectively. Table S1 (Supplementary Materials) presents the bandgap values and
the CB and VB potentials (band positions) of MoS2, CeO2, and the CeO2/MoS2 composite.

The specific surface area and pore size distribution are important parameters while
studying photocatalytic activity. To study these surface properties, nitrogen adsorption and
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desorption isotherm studies were performed for the CeO2/MoS2 composite (Figure S2a,b).
The CeO2/MoS2 composite has H3 hysteresis-like loop and type IV adsorption and des-
orption, confirming its porous nature [33]. In Figure S2a, the calculated active surface area
for the CeO2/MoS2 composite is 48.72 m2 g−1. The BJH model was used to study the pore
size distribution of the CeO2/MoS2 composite (Figure S2b). From the graph, the pore size
was found to be ~6.5 nm. This study shows that the porous nature of the CeO2/MoS2
composite, which is useful for redox reactions and thereby photocatalytic study [34].

3. Photocatalytic Hydrogen Evolution Activity

The photocatalytic hydrogen evolution activity of MoS2, CeO2, and the CeO2/MoS2
composite was measured under illumination. The yield of the hydrogen evolution rate
of all the samples increased with the irradiation time increasing from 0 to 2 h. Figure 6a
presents a plot of hydrogen evolution vs. time. For CeO2, MoS2 and the CeO2/MoS2
composite, the hydrogen production rates were 12.2, 21.5, and 112.5 µmol/h, respectively.
The CeO2/MoS2 composite exhibits superior photocatalytic activity towards hydrogen
production as compared to CeO2 and MoS2. Higher hydrogen production activity of the
CeO2/MoS2 composite sample corresponds to the effective charge generation, separation,
and transfer, along with more active sites available for redox reactions and minimum charge
recombination [10,35]. Active redox sites are situated at the edges and corners of the MoS2
plane, helping to improve the hydrogen production rate of CeO2. Recycling tests of the
CeO2/MoS2 composite were performed to further study its stability. Figure 6b presents
the recycling study of the CeO2/MoS2 composite to observe its photostability. Recycling
tests were performed with up to four cycles, each cycle being four hours. From the graph,
it is observed that the CeO2/MoS2 composite exhibits adequate photostability. For the first
cycle, 472.5 µmol hydrogen evolution was detected. After the fourth cycle, this value was.
A slight decrease in the hydrogen production rate was observed after the fourth cycle. The
loss of the photocatalyst during the recovery process and the generation of the hydroxide
layer on the catalyst surface are responsible for the decrease in H2 production activity [36].
In addition, the photo-corrosion of photocatalysts is also responsible for the decrease in the
H2 production rate.

A possible mechanism of hydrogen production is proposed using the CeO2/MoS2
composite. Under illumination, the CeO2/MoS2 composite was easily excited, resulting in
the generation of electrons and holes in the VB and CB respectively. The photo-generated
electrons in the conduction band of CeO2 can be transferred into the conduction band
of MoS2 because the conduction band potential of MoS2 was more positive than that of
CeO2. This type of composite can improve the lifetime of charge carriers, along with
charge separation efficiency and the fast transfer of charge carriers from the CB of CeO2 to
the CB of MoS2 for hydrogen evolution [37,38]. The CB electrons of MoS2 exhibit strong
reducibility and can easily reduce H+ to H2, which agrees well with the results from the
experiments of H2 evolution. Furthermore, the role of MoS2 as a co-catalyst is highly active
for H2 evolution as a result of the quantum confinement effect [39–41]. A comparison of
photocatalytic hydrogen production activity using MoS2-based photocatalysts is presented
in Table S2.

A photo-response study gives evidence regarding the highest current density and
charge recombination process in the prepared materials. Figure 6c presents the transient
chopping photocurrent responses of MoS2, CeO2, and the CeO2/MoS2 composite deposited
onto FTO-coated glass substrates, checked every 50 s of on/off cycles at an applied voltage
of 0 V vs. Ag/AgCl. For all samples, under illumination, a swift photocurrent response
was detected. The study revealed that the CeO2/MoS2 composite exhibits a higher current
density than pure MoS2 and CeO2. The CeO2/MoS2 composite sample achieved the highest
current density of 6.15 µA/cm2, which is nearly double that of CeO2. The higher current
density of the CeO2/MoS2 composite sample corresponds to the appropriate band positions
for effective charge transfer [42]. For CeO2 and MoS2, the lowest current density values
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of 3.40 and 4.35 µA/cm2 were observed due to higher recombination of photo-generated
charge carriers.
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4. Experimental Details

Materials: Sodium hydroxide (NaOH, 99.8%), cerium hexahydrate nitrate (Ce(NO)3·6H2O,
99%), and MoS2 powder (flakes, 98.8%) were all purchased from Sigma-Aldrich. Deionized
water (D.W.) was used during the experiment. Analytical-grade (A.R.) chemical reagents
were used in the experiment.

4.1. Synthesis of Cerium Oxide

CeO2 was prepared using the hydrothermal method. A certain amount of Ce(NO)3·6H2O
was dissolved in 40 mL D.W. NaOH (5 M) solution was added dropwise to the solu-
tion. Then, the reaction mixture was transferred into a 50 mL Teflon-lined autoclave. The
hydrothermal process was carried out at 120 ◦C for 24 h. After the completion of the hy-
drothermal process, the formed product was filtered out, washed with D.W., and calcinated
at 300 ◦C.

4.2. Synthesis of CeO2/MoS2 Composite

To synthesize the CeO2/MoS2 composite, the CeO2 solution was prepared as men-
tioned above. A certain amount of MoS2 powder was put into a distilled water-ethanol
mixture. To achieve better dispersion of MoS2 flakes in the water-ethanol mixture, it was
sonicated for 30 min. Finally, the two reaction solutions were mixed well. The reaction
solution was kept in a 50 mL hydrothermal reactor at 120 ◦C for 24 h in an oven.
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4.3. Characterizations

Crystal structures of the prepared materials were analyzed using X-ray diffraction
(XRD; CuKα radiation (λ = 1.5406 A◦) from a Bruker D2 Phaser, Germany). Raman spectra
were recorded in the range 100–875 cm−1 using the NRS-5100 instrument of the Japan
Spectroscopic Company (JASCO, Tokyo, Japan) with an excitation wavelength of 532 nm.
Elemental composition was analyzed by X-ray photoelectron spectroscopy (XPS, Thermo
Scientific, Waltham, MA, USA. K-Alpha set up using monochromatic Al Kα X-ray source).
The morphology of the prepared material was observed using the SEM instrument JSM-
7600F of the Japan Electron Optics Laboratory (JEOL, Tokyo, Japan). Optical properties were
studied using UV–Vis absorption spectroscopy (Shimadzu: UV-1800, Kyoto, Japan). The
measurement of the BET-specific surface area of the photocatalysts was carried out using a
nitrogen adsorption instrument at 77 K (Micrometrics, Norcross, GA, USA, ASAP 2020).

4.4. Photocatalytic H2 Production Study

A photocatalytic H2 evolution study was conducted in a 100 mL sealed quartz batch
reactor. A 150 W xenon arc lamp (>400 nm) was used as a light source. First, 50 mg of the
catalyst was dispersed into a 100 mL aqueous solution containing 0.3 M Na2SO3/Na2S.
Before light irradiation, N2 gas was purged in a reaction mixture for 30 min through the
reactor to remove the dissolved oxygen. After a particular interval of time, the quantity of
gas was collected through a gas syringe. The collected gas sample was analyzed by gas
chromatography (GC; GC-2014AT, Shimadzu, Japan) to observe the gas composition and
quantity. Recycling (stability) tests were conducted using the same experimental conditions.
In the recycling experiment, after each cycle, the catalyst powder was collected, washed
with DI water, and reused. A total of four cycles were performed, with each cycle being 4 h.

5. Conclusions

Visible light-activated photocatalyst materials such as CeO2/MoS2 composite can
be successfully synthesized by the hydrothermal route. XRD, Raman spectroscopy, and
XPS results confirmed the formation of a CeO2/MoS2 composite without any impurities.
An optical study revealed that the bandgap of CeO2 reduced from 2.93 eV to 2.34 eV
upon forming a composite with MoS2. The photocurrent response study showed that
the CeO2/MoS2 composite sample achieved the highest current density of 6.15 µA/cm2.
The study of photocatalytic hydrogen production activity revealed that the CeO2/MoS2
composite exhibits superior photocatalytic activity compared to pure MoS2 and CeO2. For
MoS2, CeO2, and the CeO2/MoS2 composite, the hydrogen production rates were found to
be 12.2, 21.5, and 112.5 µmol/h, respectively. The enhanced photocatalytic activity of the
CeO2/MoS2 composite is attributed to its effective photo-response and charge generation,
separation, and transfer, as well as its minimal recombination of photogenerated charge
carriers. Thus, the CeO2/MoS2 composite is a suitable photocatalytic material to support
environmental remediation.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/catal12101185/s1, Figure S1. Raman spectrum of CeO2, Figure S2. (a) BET
surface area and (b) pore size distribution curves of CeO2/MoS2 composite, Table S1. Bandgap
values of prepared photocatalyst materials with CB and VB potentials, Table S2. A comparison
table showing photocatalytic hydrogen production activity using MoS2-based photo-catalysts. The
references [40,43–45] are cited int supplementary materials.
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