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Abstract: CO2 resourceful utilization contributes to the goal of carbon neutrality. Chemical Looping
Dry Reforming (CLDR) has attracted significant attention as a method for converting CO2 to CO.
NiFe2O4 oxygen carrier (OC) is found to be a potential material for CLDR. However, the migration
process of lattice oxygen, which are critical for the conversion of CO2 to CO, was not extensively
investigated. In this study, the reduction and oxidation degrees of the NiFe2O4 were finely modulated
in a thermogravimetric analyzer. The lattice oxygen migration mechanism of the NiFe2O4 in redox
cycles was characterized by means of X-ray diffraction (XRD), transmission electron microscopy
(TEM), X-ray photoelectron spectroscopy (XPS), and in-situ Raman. The novelty of this paper is
clarifying the release-uptake paths of lattice oxygen during CO2 resourceful utilization. The result
indicates that the concentration gradient between the surface and the bulk drives the diffusion of
lattice oxygen. The stabilization of surface lattice oxygen content is attributed to the rapid migration
of O anion, which is closely associated with the movement process of Ni particles inward and outward
through the spinel bulk. In addition, a highly reactive chemical reaction interface consisting of lattice
oxygen and the corresponding metal atoms is always present on the surface of the oxygen carrier and
is confirmed by an in-situ Raman and XPS during the whole process of CLDR. The results of this
paper offer reference and basis for further development and design of CLDR using spinel OC.

Keywords: chemical looping (CL); oxygen carrier (OC); CO2 splitting; lattice oxygen; NiFe2O4

1. Introduction

Excessive emission of greenhouse gases (mainly CO2) by human beings is considered
the primary factor leading to global warming. The CO2 resource utilization, an effective
pathway to reduce greenhouse gas emissions, contributes to the goal of global carbon
neutrality [1,2]. The chemical looping dry reforming (CLDR) has attracted much attention
for converting CO2 to CO with the aid of oxygen carriers (OC) [3,4]. The CLDR separates a
reforming process into three stages: (1) oxygen carrier reduction stage with a hydrocarbon
fuel; (2) CO2 oxidation stage; (3) air oxidation stage. At the reduction stage, the OC is
reduced to a metallic state (Me) and meanwhile partially oxidizes the hydrocarbon fuel into
high-quality syngas; At the CO2 oxidation stage, the reduced oxygen carrier in the metallic
state (Me) is oxidized by CO2 to replenish a part of its lattice oxygen to form a metal oxide
with lower oxygen content (MeO1−x) and meanwhile CO2 is converted to CO; At the air
oxidation stage, the partially oxygen-recovered OC (MeO1−x) is fully oxidized into its
initial state (MeO), as shown in Figure 1. In the reduction stage, many fuels including
but not limited to methane can be used as long as the oxygen carrier exhibits enough
reactivity with the fuels in the CLDR process such as H2, CO, pyrolysis gas, etc. Due to the
separation of the redox process, CLDR has a few of potential advantages such as inherent
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CO2 separation, highly efficient activation of CO2 with a minimal energy penalty, and low
operating cost [5–8].
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The OC is viewed as the cornerstone of the chemical looping dry reforming [9]. Due
to the considerably steady molecule structure and low free energy characteristic of CO2,
the capacity of oxygen carriers to maintain enough high reactivity toward CO2 reforming
is regarded as the most critical issue [10]. Single metal (Co, Ce, Fe, etc.) oxides have been
evaluated as oxygen carriers for the CLDR process [11,12]. Among them, Fe-based OC
showed the highest CO2 reducibility. Tt is also abundant, low-cost, has more oxygen
capacity, and is environmentally benign [10]. Thus, Fe-based OCs are considered excellent
OC candidates for CLDR [13,14]. In addition, in order to further improve the reactivity
of Fe-based oxygen carriers, the use of compound metal oxides (e.g., Ni/Fe, Mn/Fe,
Co/Fe, Cu/Fe, and Ca/Fe) as oxygen carrier candidates has been proposed with promising
prospect [15–17]. CoFeOy OC formed from Co-doped Fe-based oxygen carriers exhibited a
high syngas yield and maintained stability for 10 cycles in a chemical looping reaction [18].
The synergistic effect of Co doping in ferrite materials to promote Fe reduction. Cu-doped
Fe2O3 led to the formation of oxygen vacancies, which reduced the reaction activation
energy [19], and its reaction rate remained high after 15 cycles. For the methane-carbon
dioxide reaction system in CLDR, MnFe2O4 OC exhibits the maximum conversion of
CH4 and CO2 are 63% and 99% [20]. Sun et al. designed a Ca2Fe2O5 OC [21], and the
cyclic performance of reduced OC is much better than that of Fe2O3. Furthermore, several
literatures indicate that the different metals form some unique crystalline structures, such
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as spinel (AB2O4) [22,23] and perovskites (ABO3) [24–26], can also obtain some excellent
reactivity in CLDR.

In our group, we found that NiFe2O4 spinel OC is a potential OC for the CLDR of
methane [27]. The capability of CO2 reduction of reduced NiFe2O4 OC is up to 238 mL/g,
which is 2.14 times that of reduced Fe2O3 + NiO OC, which gives an average of 185 mL
of CO was generated in a single cycle in the 10 successive redox cycles, indicating that
the NiFe2O4 spinel OC shows a relatively stable and good recyclability [28]. As well,
the NiFe2O4 OCs evidently improve the reactivity of Fe-based OCs.

It is known that all the reactions in the three stages of the CLDR involve the migration
of lattice oxygen, therefore it is considered the key factor determining the reactivity of
OC [29]. However, a lack of fundamental understanding of lattice oxygen migration
paths in oxygen carriers limits high-performance oxygen carriers design and development.
To date, some exploratory investigations on oxygen ion migration in oxygen carriers have
been performed. Chen et al. [30] studied the role of oxygen species in cerium-based
oxygen carriers at 450 ◦C using CH3SH as a model compound by XPS. they found that the
improvement in catalytic stability is closely related to faster migration of bulk phase lattice
oxygen. Liu et al. [31] studied the evolution of the active components of copper-iron-based
oxygen carriers in the chemical looping combustion of CO, and the results of XPS analysis
combined with DFT theory calculation indicated that the bulk phase lattice oxygen tends
to migrate outward rather than CO diffusion inward into the particle. Zhao et al. [32]
investigated the reaction mechanism of La1.6Sr0.4FeCoO6 oxygen carriers in chemical
looping methane steam reforming using XRD and XPS. As well, the results showed that the
reaction boundary was fixed on the surface of the oxygen carriers. The oxygen vacancies
formed on the surface promoted the migration of lattice oxygen from the bulk phase to the
surface. In addition, there are several literatures to discuss the oxygen transfer mechanisms,
especially using the density functional theory (DFT) method [33,34]. But there is still a lack
of in-depth and systematic understanding of lattice oxygen migration in the bulk of oxygen
carriers. As well, experimental investigations on the lattice oxygen transfer in spinel OCs
were not extensively investigated. It’s rarely found the studies on migration mechanism
of lattice oxygen in CLDR to achieve CO2 resource utilization. Thus, the investigations
on release-recovery paths of lattice oxygen are of great significance for understanding the
oxidation–reduction reaction mechanisms of OCs.

In order to clarify the release-uptake paths of lattice oxygen during the CLDR process,
a thermogravimetric analyzer (TGA) is used to control the reduction degree and oxidation
degree of OCs. The migration of lattice oxygen and the evolution of active components
during chemical looping reactions were studied by means of XPS, XRD, TEM-EDS, and
in-situ Raman. The results of this paper offer reference and basis for further development
and design of CLDR using spinel OC.

2. Results and Discussion
2.1. XRD Analysis
2.1.1. Crystalline Phase Evolution of the OC in Reduction

The changes in XRD patterns of OC in the reduction stage are shown in Figure 2.
The XRD patterns of the as-synthesized OC showed 12 characteristic peaks, which were
found to be in perfect agreement with the standard NiFe2O4 card 00-054-0964 indicating
that the as-synthesized OC by the sol-gel method is pure NiFe2O4 spinel. When the
oxygen carrier was reduced by CO for 5 min, two small Ni peaks (card: 03-065-0380,
marked as C) are observed. It indicates that NiO in the NiFe2O4 is firstly reduced by
releasing lattice oxygen and separated from the spinel structure to form free metallic Ni.
Another phenomenon was observed in that the rest of the characteristic peaks were slightly
broadened and weakened due to a part of NiFe2O4 converted to Fe3-xO4 (card: 01-086-1355,
marked as B). NiFe2O4 and Fe3-xO4 are both spinel structures, and the XRD spectra of them
are very consistent.
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Figure 2. XRD patterns of NiFe2O4 OC at different reduction times. (A: NiFe2O4, B: Fe3−xO4, C:
Ni, D: Fe1−xO, E: Fe).

As the reduction degree deepens, three characteristic peaks of Fe1−xO (card: 01-
089-0687) are observed (marked as D). It means that the spinel structure of NiFe2O4 and
Fe3−xO4 gradually collapsed due to Fe3+ ions being continuously reduced. Finally, when
reduction time is above 100 min, almost Ni and Fe cations are completely reduced into
metallic Ni and Fe (card: 96-901-4712).

2.1.2. Crystalline Phase Evolution of the Reduced OC in Oxidation

The metallic Fe and Ni, as the completely reduced product of NiFe2O4 OC, show
a stepwise oxidation behavior under a CO2 atmosphere. As well, no apparent carbon
deposits were found during the CO2 oxidation process. As shown in Figure 3.
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Figure 3. XRD patterns of reduced OC at different oxidation times. (A: Ni, B: Fe, C: Fe1−xO,
D: Fe3−xO4, E: Fe2O3, F: NiFe2O4).

When the oxygen carrier was oxidized by CO2 for 5 min, a part of metallic Fe is oxidized
recovering a fraction of lattice oxygen to form the Fe1−xO phase (marked as C). As the
oxidation degree deepens, the characteristic peaks of Fe3−δO4 are observed (marked as D).
It is worth noting that the Ni atoms still exist in the form of metallic Ni due to thermodynamic
limitations. It is difficult to replenish all the lattice oxygen under the CO2 atmosphere owing
to the weak oxidation performance of CO2. Thus, in order to recover all the lattice oxygen,
an air oxidation step is necessary to achieve a whole chemical looping cycle. The OC after
CO2 oxidation is further oxidized by air to recover all the lattice oxygen to form the NiFe2O4
phase (marked as F) with spinel structure and a small amount of Fe2O3 phase (card: 00-004-
0755, marked as E). Although it is difficult to re-oxidize the reduced OC back into its original
state, it still exhibits good performance after multi-cycles during the CLDR [27,35].

2.2. XPS Analysis
2.2.1. The Release of Lattice Oxygen

The nature of the oxygen species and the transformation of metal species (Fe and Ni) on
the near-surface of OC with reaction time were explored in detail using XPS combined with
XRD to further clarify the mechanism of the migration of lattice oxygen. The experimental
results are shown in Figures 4 and 5 (the samples analyzed by XPS and XRD are consistent).
And the XPS analysis of the O element and the Fe, Ni elements will form a corroboration
relation, which strongly supports the migration mechanisms of lattice oxygen during the
reduction of NiFe2O4 OC.
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The oxygen species on the oxygen carrier surface mainly include lattice oxygen,
chemisorbed oxygen, and physiosorbed oxygen [30]. The binding energy of lattice oxygen,
chemisorbed oxygen, and physiosorbed oxygen are 529.0–530.0 eV, 530.0–532.0 eV, and
>532.0 eV, respectively [36–40]. Previous literature reported that the different oxygen species
can be transformed into each other as follows: O2(g)↔O2−(ads)↔O2

2−(ads)↔2O−(ads)
↔2O2−(ads)↔2O2−(lat) [41].

As shown in Figure 4, the XPS spectra shows that three oxygen species (lattice oxygen;
chemisorbed oxygen; and physiosorbed oxygen) can be found on the near-surface of the
fresh NiFe2O4 oxygen carrier particles. At the initial reduction stage (5–20 min), the relative
content of physiosorbed oxygen gradually decreases with the increase of reduction time
(between 5–20 min), which decreases from ~15% at 5 min to ~0% at 20 min. On the contrary,
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the relative content of chemisorbed oxygen gradually increases with reduction time, which
increases from ~40% at 5 min to ~60% at 30 min. It is worth noting that the relative content of
lattice oxygen tends to stabilize at ~40% for the first 20 min at the reduction stage (Figure 5).
Meanwhile, the result of XRD shows that the OC maintains the spinel structure and the main
phase is Ni0.6Fe2.4O4 and Fe3−xO4 during the first 20 min (Figure 5). As well, the oxygen
carrier exhibits a fast reduction rate at the initial stage. The results of XRD combined with
XPS indicate that the physiosorbed oxygen was first consumed from the surface of the
oxygen carrier due to the weak adsorption capacity for CO2/CO. As well, the surface lattice
oxygen is easily converted into chemically adsorbed oxygen due to being highly active in the
chemical reaction interface [41]. Thus, the relative content of physiosorbed oxygen decreased
whereas chemisorbed oxygen increased. It also indicates that the conversion rate of the
surface lattice oxygen to the chemisorbed oxygen is less than the rate of bulk lattice oxygen
migration to the surface, which causes the relative content of surface lattice oxygen to be
stable. In other words, three reaction rates determine the changing trend of different oxygen
species, namely the consumption rate of chemisorbed oxygen bound to fuel, the conversion
rate of surface lattice oxygen to chemisorbed oxygen, and the migration rate of bulk lattice
oxygen to the surface, respectively. In the initial stage of the reduction reaction, the migration
rate of bulk phase lattice oxygen to the surface is fairly rapid due to the presence of a large
amount of lattice oxygen in the bulk of OC and the concentration gradient between the
surface and the bulk. This process is accompanied by a part of the Ni element in OC being
reduced into free metallic nickel and divorces from the spinel lattice of the NiFe2O4. As well,
it also caused the gas-solid reaction interface of was fixed at the surface of the oxygen carrier.
Hence, the reaction pathway can be described as follows: CO is firstly adsorbed at the active
sites on the surface of the OC particles and then it combines with chemically adsorbed
oxygen at the reaction interface to form CO2 or CO3

2−. The surface lattice oxygen is rapidly
and continuously converted into the chemically adsorbed oxygen, meanwhile, the bulk
lattice oxygen rapidly migrates to the surface of the spinel structure to replace the consumed
lattice oxygen at the initial stage of the reduction reaction. Thus, we inferred that as Ni
migrates outward to the particle surface, promoting oxygen vacancies formation and the
diffusion of lattice oxygen. It finally leads to a fast rate and the stabilization of the surface
lattice oxygen content at the initial reduction stage.

In the intermediate stage of the reduction reaction (20–125 min), the relative content
of lattice oxygen gradually decreases with the increase of reduction time, which decreases
from ~40% at 20 min (Main phase: Fe3−xO4) to ~10% at 125 min (Main phase: metallic Fe
and metallic Ni), and then it gradually tends to stabilize (Figure 5). Whereas, the content
of physiosorbed oxygen gradually increases from ~0% at 20 min (Main phase: Fe3−xO4) to
~25% at 125 min (Main phase: metallic Fe and metallic Ni), and then it is gradually stabilized.
It indicates that with the collapse of the spinel structure, the bulk lattice oxygen of OC is
continuously consumed. In other words, the rate of migration of bulk-phase lattice oxygen to
the surface slows down due to the concentration of the lattice oxygen decreasing gradually.

Interestingly, the XRD and XPS analysis show that even if the NiFe2O4 OC is com-
pletely reduced to the metallic Ni and Fe phases, which means the bulk lattice oxygen
is almost fully consumed, and a fraction of lattice oxygen always appears at the surface
of the reduced OC (Figure 5). At the same time, the physiosorbed oxygen content of the
fully reduced OC (125–150 min) was significantly higher than those of the OC in the initial
reduction stage (0–20 min). It indicates that the completely reduced OC, namely the metallic
Fe and Ni phase, easily adsorbs CO2. As CO2 is adsorbed on the surface of the reduced
OC, a CO2-splitting reaction occurs on the active metallic Fe. The O anions extracted from
CO2 transform into surface adsorbed oxygen. Subsequently, the adsorbed oxygen further
transforms into lattice oxygen induced by the oxygen vacancies on the surface. These two
reactions are represented as R (1) [35] and R (2) [41]. Eventually, the relative concentrations
of each oxygen species remain unchanged.

Fe + CO2→Feδ+ + [O−ads] + CO R (1)
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[O−ads]↔[O−lat] R (2)

Therefore, an active interface consisting of lattice oxygen and the corresponding
metallic ions is maintained during the whole reduction process.

The valence evolution of metal cations has a corroborative relationship with the surface
oxygen species, thereby shedding light on the migration mechanism of lattice oxygen. It was
reported that the peaks with binding energy at around ~856.2 eV, ~854 eV, and ~852.6 eV
are assigned to Ni2+, Ni0 (metallic Ni), and Ni0 (Fe-Ni), respectively [42,43]. As shown
in Figure 6, only Ni2+ peaks can be observed in the XPS spectra of the fresh NiFe2O4 OC.
After reduction for 5 min, a peak for Ni0 appears in the Ni 2p spectra, indicating that the
metallic Ni phase is formed on the surface at the initial reduction stage. This is consistent
with the XRD observations. In the reduction time from 5 to 15 min, the relative content
of Ni2+ ions decreased significantly reaching zero till 20 min, whereas the Ni0 content
increased rapidly. Combined with the O1s XPS spectra (see Figure 4), it can be observed
that physiosorbed oxygen decrease is accompanied by the initial reduction stage. Thus, the
presence of metallic Ni0 on the surface probably has no effect on the adsorption capacity
of OC for CO2/CO. It was probably due to thermodynamic limitations that metallic Ni0

cannot react with CO2 [22]. After 15 min, the peak of Ni2+ disappears. All Ni2+ is converted
to Ni0 on the surface.
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At 30 min, a peak for Fe-Ni alloy appears, corresponding to the formation of metallic
Fe with the decomposition of Fe3-xO4 to Fe1-xO and Fe. In the reduced NiFe2O4 OC, the
presence of metallic Fe may create an effect on the electronic structure of metallic Ni.
It further indicates that the complete reduction product of OC, is not a simple mixture of
Ni and Fe, but a composite with complex space structure, which performance is better than
that of the complete reduction product of NiO + Fe2O3 OC in CLDR [35].

The XPS spectrum of Fe appears in the form of double peaks. As shown in Figure 7.
The fresh OC has two Fe3+ peaks located at the binding energy of 713.2 eV and 715.5 eV
assigned to the spinel NiFe2O4 with the structure of the tetrahedron and octahedron
structure, respectively. With the reaction proceeding, Fe3+ is continuously reduced
to Fe2+ or Fe0. Thus, the Fe0, Fe2+ and Fe3+ peaks appear at ~706.7 eV, ~710 eV and
~713–715 eV, respectively [44]. It is worth noting that the Fe0 peak cannot be observed
on the surface of OC at an initial reduction of 30min. However, the XRD analysis of the
crystal phase and the XPS analysis of Ni is similarly observed in the presence of metallic
Fe0 at 30 min. It indicated that Fe0 is firstly formed inside of the OC particles. In other
words, the lattice oxygen tends to migrate to the surface at high temperatures, therefore
metallic phase begins to be formed from inside the OC bulk. Similar results have been
obtained in other literatures [31,45]. Hence, the metal ions migration pathway can be
described as follow: With the release of lattice oxygen, Ni2+ was firstly migrated to the
surface and reduced to Ni0 due to the higher reactivity of Ni. Then the lower active Fe2+

and Fe3+ are subsequently reduced thereby providing lattice oxygen to the fuel on the
surface. As the reduction degree deepens, Fe cations begin to be reduced into metallic
Fe0. The presence of metallic Fe in the bulk creates an effect on the electronic structure
of metallic Ni. The surface Fe/Ni ratio of the OC will be analyzed via EDS combined
with HRTEM, to further clarify the phenomenon of the migration and enrichment of
Fe and Ni atoms during the reduction process. In addition, it was observed that even
if OC is completely reduced to the metal phase, the Fe element on the surface is still
dominated by Fe2+ and Fe3+ and only a small amount of Fe0. It is due to the strong
surface adsorption of the metallic Fe in complete reduced OC, the reaction R (1) is
dominated in the later stage of the reaction, thus the relative concentration of surface Fe
species remains stable. As well, compared to the initial stage of the reaction, the relative
content of physiosorbed oxygen gradually increases. The analysis of different elements
forms a good corroboration relation, which strongly supports the migration mechanisms
of lattice oxygen during the reduction of NiFe2O4 OC.
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2.2.2. The Uptake of Lattice Oxygen

The O 1s XPS spectra of the oxygen species of the reduced OC re-oxidized in the
CO2-air atmosphere at different oxidation times are shown in Figure 8. It was observed
that the lattice oxygen content gradually increases from ~10% at 0 min to ~37% at 240 min
of CO2-oxidization (see Figure 9). However, the physiosorbed oxygen content gradually
decreases from ~23% at 0 min to ~0% at 120 min. It is noted that the physiosorbed oxygen
reappeared at oxidization for 240 min. These results should be attributed to a fact that
the chemical reaction interface is fixed on the surface of the OC particle during the CO2
oxidation. If the reaction interface migrates from the surface to the inside. The surface
lattice oxygen will reach a maximum at the initial stage of the reaction and then tends to
stabilize, rather than gradually increases. In other words, if the surface metal restores all
lattice oxygen at the initial stage of the reaction, CO2 molecules will penetrate through the
oxide layer to the interior of the particle to react with metallic Fe. Thus, it indicates that
the rate of conversion of the chemisorbed oxygen to the surface lattice oxygen is slightly
quicker than the rate of surface lattice oxygen migration to bulk, and then the surface lattice
oxygen gradually accumulates. The oxygen concentration gradient between the surface
and the bulk continuously drives the lattice oxygen inward transportation to the bulk.
In addition, with the recovery of lattice oxygen, the adsorption capacity of oxygen carriers
for physisorbed oxygen gradually weakens, which is consistent with the analysis of the
reduction process. However, at the end of CO2 oxidation, a large amount of chemisorbed
oxygen can be still observed due to the slower rate of CO2 splitting and the prolonged
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contact between CO2 and oxygen carriers. Because of the weak oxidizability of CO2, it is
very difficult to recover the entire lattice oxygen for the reduced OC. Thus, an air oxidation
process is required to recover the full lattice oxygen of the OC.
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Figure 9 illustrates the lattice contents as a function of oxidation reaction time in air
oxidation of the reduced OC. It was observed that the relative content of lattice oxygen
increases, which increases from ~37% (at 240 min of CO2-oxidization) to ~45%, and it
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tends to stabilize. The increase in the relative content of lattice oxygen is due to metallic
Ni0 recovery lattice oxygen on the surface, namely the formation of NiFe2O4 species.
The stability of the relative content of lattice oxygen is due to the rate of conversion of the
chemisorbed oxygen to the surface lattice oxygen is much quicker than the rate of surface
lattice oxygen migration to bulk. There is a concentration gradient of lattice oxygen between
the surface and the bulk, thus the lattice oxygen is continuously diffused from the surface
to the bulk to fill the oxygen vacancies and a relatively stable equilibrium is attained. Thus,
the concentrations of lattice oxygen remain stable. Through the above analysis, we infer
that the concentration gradient between the surface and the bulk drives the transmission
of lattice oxygen to achieve the reduction or oxidation of OC. The migration rate of lattice
oxygen is associated with the movement process of Ni particles into and out of spinel bulk.

The Ni 2p XPS spectra (Figure 10) show that the nickel element on the surface of the
OC is kept in form of Ni0 in the course of CO2 oxidation due to metallic Ni cannot be
oxidized in thermodynamics. The peak of two kinds of Ni0 was observed, namely metallic
Ni (Ni-Ni) and other kinds of Ni0 that the presence of Fe creates an effect on the electronic
structure of metallic Ni. The relative content of the two kinds of Ni0 fluctuates due to
elemental Fe gradually restoring lattice oxygen. During the air oxidation stages, the peak
of Ni2+ was observed. The result is very consistent with the analysis of oxygen species.
In addition, the signal of the Ni element on the surface disappears at 60 min due to the
Fe0 quickly recovering the lattice oxygen to form FexO and the generated oxide (FexO)
can form an oxide film on the surface. The surface Ni atoms are covered by the Fe atoms.
As well, the signal of the Ni element is related to the thickness of the surface oxide (FexO).
Two peaks of Ni2+ were observed for fully oxidized oxygen carriers, which is probably due
to the presence of different spatial structures of Fe2O3 and NiFe2O4.
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As shown in Figures 7 and 11, the Fe element in the completely reduced OC is mainly
in form of Fe2+, Fe3+, and a minor amount of Fe0. As the reduced OC is oxidized, the Fe0

and Fe2+ are continuously oxidized into Fe3+. When the OC is oxidized by CO2 for above
20 min, the XPS peak of Fe0 disappears. After CO2-oxidation for 240 min, the Fe element
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in the reduced NiFe2O4 OC can be reoxidized into Fe3O4 by such a weak oxidant, CO2.
In the completely oxidized OC, the surface Fe element of OC has two Fe3+ peaks due to the
complex spatial structure of the NiFe2O4 and Fe2O3 particles.
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2.3. In Situ Raman Analysis

The vibrations changes of the chemical bonding in the course of redox reactions on
the surface of the OC were studied via in-situ Raman. Compared to non-in situ character-
ization, in-situ characterization makes it easier to obtain the real results of the materials.
As shown in Figure 12, Raman characterizations show five peaks attributed to NiFe2O4 [46].
The strongest peak at ~695cm−1 is attributed to the symmetric stretching vibration of the O
atom along the Fe-O bond direction. The peak at 481 cm−1 is attributed to the vibration of
the Ni-O bond [47]. The peak at 330 cm−1 is attributed to the symmetric bending vibration
of the Fe-O bond [48,49].
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Figure 12. Raman spectra of the redox process of OC.

At the initial stage of the CO-reduction reaction, the peak of Ni-O (481 cm−1) and
Fe-O (695 cm−1) display a red shift and gradually becomes weaker, which is due to the
formation of oxygen vacancy during lattice oxygen release. Then a very important process
is found that the peak of Fe-O (695 cm−1) changes from weak to strong. Meanwhile, the
peak of Ni-O (481 cm−1) disappeared. It indicates that the element Ni underwent Ni2+

to Ni0 transition on the surface and Fe atoms combined with remaining lattice oxygen to
form a new structure. With the reaction proceeding, the peak of Fe-O gradually becomes
weaker from the new structure. However, no matter how long the reduction reaction time
lasts, even if the XRD analysis show OC completely reduced to the metal phase, there will
always be a peak of Fe-O. The in-situ Raman analysis and the XPS analysis are consistent.

For the OC oxidized by CO2, the peak of Fe-O changes from weak to strong. As well,
no Ni-O vibration peaks were found. The Raman spectra of the oxygen carrier after air
oxidation are different from the fresh samples. But it is very similar to the Raman bands of
the pure Fe2O3 [49]. It is due to the formation of Fe2O3 on the surface of oxygen carriers [50].

2.4. TEM Analysis

The morphology of the fresh NiFe2O4 OC, completely reduced OC, reoxidized OC
by CO2, and completely reoxidized OC by air was investigated by HRTEM, as shown in
Figure 13. It is observed that the Ni, Fe, and O elements distribute uniformly throughout the
particle in the fresh oxygen carrier. The lattice spacing of the TEM under high magnification
was also performed. The crystal forms of the fresh oxygen carrier, ~2.49 Å of the lattice
fringe spacing ascribed to (311) plane of NiFe2O4, can be observed, which are located in
the exogenous parts of the oxygen carrier particle. The ratio of surface Fe/Ni~1.83 is very
consistent with the theoretical value (Table 1).
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Table 1. The relative content of Fe and Ni from EDS mapping.

Element
(Atom %) Fresh OC Completely Reduced OC Completely Oxidized OC

by CO2

Completely Oxidized OC
by Air

Fe 47.71% 59.90% 38.19% 37.49%
Ni 25.98% 9.53% 3.67% 3.43%

From Figure 13b, it can be found that the particle size of samples shows an increase due
to the collapse of the spinel structure and the enrichment of metallic phases. Small circular
particles were observed in distribution inside of the oxygen carrier, which is presumed to
be enriched Ni0. Under high magnification, a fuzzy boundary located in the exogenous
parts of the oxygen carrier particle, and ~2.02 Å of the lattice fringe spacing ascribed to
(111) plane of metallic Fe0, can be observed. A fuzzy boundary probably has a relationship
with the highly reactive chemical reaction interface, which consists of lattice oxygen and
the corresponding metallic ions. The EDS mapping shows the ratio of surface Fe/Ni~6.28,
which indicates that the surface Ni atoms are covered by the Fe atoms.
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(c) (Completely oxidized OC by CO2); (d) (Completely oxidized OC by Air).

As shown in Figure 13c, many small circular particles were still observed distributed
inside of the oxygen carrier. It is probably due to Ni0 cannot be oxidized by CO2. The lattice
spacing of Fe3O4(311) and a boundary are observed. From Figure 13d, in the middle of the
Fe2O3(311), there is a layer with the lattice fringe spacing of ~1.47 Å related to the (440)
plane of NiFe2O4. The EDS mapping shows that the ratio of surface Fe/Ni did not return
to the original state. It indicates that Fe2O3 exists on the surface of the completely oxidized
oxygen carrier [50].

According to the above analysis, the potential reaction paths and mechanism of
NiFe2O4 in the CLDR process can be proposed as shown in Figure 14. It can observe
that the process of CLDR of methane consists of a successive three-step chemical looping
scheme, where NiFe2O4 OC is supposed to: (i) convert various fuels (e.g., CH4, biomass) to
value-added products (e.g., heat, syngas), (ii) reduce CO2 to produce CO, and (iii) consume
oxygen from the air to replenish full lattice oxygen meanwhile sustaining the thermal
balance of the system. The chemical reaction interface is fixed on the surface of OC particles
(Figure 14). During the oxygen carrier reduction process, the bulk lattice oxygen migrated
to the particle surface and converted to adsorbed oxygen, which is consumed by fuel.
During the oxygen carrier oxidation process, CO2 is adsorbed on the particle surface and
dissociates into O ions, which are converted from adsorbed oxygen to lattice oxygen and
migrate to the bulk. The diffusion of oxygen anions maintains the overall charge neutrality
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due to the oxygen chemical potential gradient. It is worth noting that the phase segregation
caused by the outward diffusion of metal cations is not conducive to the cyclic stability of
oxygen carriers. Adding an inert component to control the movement of active metal atoms
is one of the directions worthy of our efforts in the future to achieve better performance.
Through the above analysis, we infer that utilizing or controlling the reversible dynamic
changes behavior of particles will be an effective means to enhance the reactivity and
stability of oxygen carriers in future chemical looping applications.
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3. Materials and Methods
3.1. Preparation of Oxygen Carrier

The sol−gel methods were applied to prepare NiFe2O4 nanoparticles. Nickel ni-
trate hexahydrate [Ni(NO3)2·6H2O] (Aladdin, ≥99.99%) and iron nitrate nonahydrate
[Fe(NO3)3·9H2O] (Aladdin, ≥99.99%) were used as raw materials and dissolved in deion-
ized water, forming 1 M of Ni(NO3)2 solution and 2 M of Fe(NO3)3 solution, respectively.
The citric acid (Macklin, ≥99.5%) with the equivalent molar Ni(NO3)2 was added to the
original mixed solution. Subsequently, obtain a pH of 7.5. Finally, the solution was heated
at 65–75 ◦C to evaporate 2/3 of the water, and the gel formed when the solution was cooled
to room temperature. The precursors were dried in a vacuum evaporator at 120 ◦C and
calcined for the formation of the ferrite phase in a muffle furnace under an air atmosphere
according to the same temperature program. The dried materials were calcined by increas-
ing the temperature from 25 ◦C to 400 ◦C with a ramp of 8 ◦C/min and keeping at 400 ◦C
for 2 h. Then the sample was increased to 1200 ◦C at a heating rate of 4 ◦C/min, and kept
at 1200 ◦C for 2 h [46].

3.2. Thermo-Gravimetric (TG) Analysis

The three stages of the CLDR experiment are carried out by the STA-409/PC ther-
mogravimetric analyzer, which is produced by NETZSCH, Selb, Germany. The three
different gases (CO, CO2, and air) flow rates are all set to 100 mL/min. The experimental
procedure is as follows: NiFe2O4 OC (m = 150 mg ± 0.1 mg) was added to the thermo-
gravimetric reactor. the reaction temperature is heated up to 950 ◦C at a heating rate of
10 ◦C/min in an inert atmosphere. Then, CO is introduced for the reduction reaction.
After the reduction experiment, CO2 and air is introduced for oxidation reaction, respec-
tively. Obtain 19 samples with different reaction times for subsequent analysis, which are
recorded as OCfresh, reduction-5 min, reduction-10 min, reduction-15 min, reduction-20 min,
reduction-30 min, reduction-40 min, reduction-50 min, reduction-75 min, reduction-100 min,
reduction-125 min, reduction-150 min, CO2-oxidation-20 min, CO2-oxidation-40 min, CO2-
oxidation-60 min, CO2-oxidation-120 min, CO2-oxidation-240 min, air-oxidation-7 min,
air-oxidation-14 min, respectively.
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3.3. Characterization
3.3.1. X-ray Photoelectron Spectroscopy (XPS)

An X-ray photoelectron spectroscopy technology (XPS, Thermo Fisher Scientific ES-
CALAB 250Xi, Waltham, MA, USA) was carried out to investigate the valence state of
variable metal ions and oxygen species of OCs, with an Al Ka X-ray source (1486.6 eV
photons) at an operating voltage of 20 kV and a current of 10 mA, respectively.

3.3.2. X-ray Diffraction (XRD)

An X-ray diffractometer (XRD) using 40 kV, 40 mA Cu Kα radiation was used to
analyze the crystal structure of fresh and reacted samples. XRD measurement scanning
rate is 2 ◦/min from 2θ = 5–80◦ with a step size of 0.02◦.

3.3.3. In Situ Raman

A Laser Confocal Micro-Raman Spectral System (LabRAM HR800, HORIBA Scientific,
Piscataway, NJ, USA) was used to analyze the surface structure of the oxygen carrier.
Laser full range of 50 mw, selected a laser probe with a wavelength of 432.521 cm−1.
Added NiFe2O4 oxygen carrier mass of 100 mg in the in-situ stage, under 20 mL/min
inert atmosphere, warmed up at a rate of 50 K/min to 950 ◦C. When the temperature
rises to 950 ◦C, a gas (the CO reduction and CO2-air oxidation) is continuously introduced
into the reactor, respectively. A total of 20 mL/min CO gas (10 vol%CO, N2 equilibrium)
for reduction. Then switch to CO2 (10 vol%CO2, N2 equilibrium) with a flow rate of
20 mL/min for oxidation reaction after the end of reduction. Finally, pass air (20 mL/min)
for strong oxidation.

3.3.4. Transmission Electron Microscopy (TEM)

The microstructure of the sample was analyzed using a high-resolution field emis-
sion transmission electron microscope (JEOL 125 JEM-2100F, Tokyo, Japan). EDS energy
spectrometer manufactured by American Thermoelectric Noran (Waltham, MA, USA).

4. Conclusions

In this study, we elaborated on the reversible phase transition law of NiFe2O4 using
the sol-gel method for the preparation of the chemical looping CO2 splitting process. Then
valence evolution of active components of the oxygen carriers was analyzed in detail by
XPS. As well, we explained the chemical mechanism of the change in the relative content of
different oxygen species. A large number of evidence about bulk lattice oxygen migration
was obtained by different characterizations.

A fact was confirmed by an in-situ Raman and XPS that a highly reactive chemical
reaction interface consisting of lattice oxygen and the corresponding metal atoms is always
present on the surface of the oxygen carrier during the CLDR. In summary, the diffusion of
oxygen anions maintains the overall charge neutrality due to the oxygen chemical potential
gradient. Oxygen anions move from a high concentration area to a low concentration
area, namely the surface lattice oxygen is converted to chemisorbed oxygen and forms
oxygen vacancies. The bulk lattice oxygen to the surface and healed the surface vacancy via
outward diffusion. The diffusion of metallic Fe and metallic Ni changes the morphology
and crystalline structure of OC. The extraordinary performance of NiFe2O4 for CLDR is
due to the movement of Ni particles into and out of spinel bulk, which promote oxygen
migration and diffusion. In the reduction period under CO, a part of the Ni element
in OC is first separated from the spinel structure to become the free metallic Ni. It was
confirmed that exsolved Ni nanoparticles were not redissolved into the spinel in the
oxidation under CO2, and the active phase (Ni) was dissolved into the matched spinel under
an air atmosphere. This understanding of the migration of active metals and lattice oxygen
is of great significance for material design for the applications of CLDR, especially through
structure design and utilizing the dynamic phase change to stabilize the metal particles.
As well, establishing the relationship between the dynamic behavior and performance
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of the metal is one of the directions worthy of our efforts in the future to achieve better
performance of OC in CLDR; it also can promote the process of CO2 resource utilization
and carbon neutrality goals.
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