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Abstract: Hydrogenation of flax shives in ethanol over bifunctional Ni/C catalysts at 225 ◦C has been
studied. It has been shown that the 10% Ni/C catalyst enhances the yield of monomeric products from
1.1 to 9.7 wt %, decreases the solid product content from 45 to 35 wt %, and increases the degree of
delignification to 91%. The main monomeric compounds obtained during hydrogenation are propyl
guaiacol and propenyl guaiacol. It has been established that an increase in the mass transfer intensity
via increasing the stirring rate or decreasing the catalyst grain size leads to an increase in the total
yield of monomeric compounds and the propanol guaiacol yield. Alkaline and acid pretreatment
increases the cellulose content in the solid product from 42 to 73 wt %. The proposed sequential
scheme of the transformation and formation of monomeric products over the bifunctional nickel
catalyst is lignin—coniferyl alcohol—4-propanol guaiacol—4-propenyl guaiacol—4-propyl guaiacol.

Keywords: flax shives; hydrogenation; mass transfer; ethanol; Sibunit; Ni/C catalyst; guaiacyl propans

1. Introduction

Global warming related to carbon dioxide emissions and the depletion of fossil re-
sources requires advanced methods for the use of renewable plant-based raw materials,
including a lot of cheap agricultural waste (1.5 billion tons per year) [1–5]. Flax shives,
a lignified part of the stem, are the main flax fiber production waste (up to 70 wt %). They
consist of lignin (~25%), cellulose (~50%), and hemicelluloses (~20%) [1,6].

To process all components of lignocellulosic biomass, it is subjected to catalytic fraction-
ation by methods based on selective oxidation (with hydrogen peroxide [7] or oxygen [8])
or reduction (with hydrogen and hydrogen donor agents [9–11]). The hydrogen donor
agents used are aliphatic alcohols (methanol, ethanol, or isopropanol) [11–13] and formic
acids [14,15]. The reductive catalytic fractionation of lignocellulosic biomass ensures de-
polymerization of lignin with the formation of monomer compounds whilst maintaining
the main part of cellulose [16,17].

The reductive catalytic fractionation occurs over heterogeneous bifunctional cata-
lysts [18–20]. The possibility of using bifunctional catalysts containing Ru and Ni nanopar-
ticles on a Sibunit mesoporous carbon support modified with oxygen-containing groups
for the catalytic hydrogenolysis of organosolv birch lignin in ethanol was shown in [21,22].
Such catalysts increase the yield of liquid product and decrease gaseous and coke yields.
Ru is the most efficient catalyst for the aqueous-phase hydrogenation of biosourced com-
pounds [23]. Moreover, nickel is one of the most popular metals due to its high efficiency in
the hydrogenolysis of the C–O bond and high selectivity towards aromatic compounds [24].

Catalysts 2022, 12, 1177. https://doi.org/10.3390/catal12101177 https://www.mdpi.com/journal/catalysts

https://doi.org/10.3390/catal12101177
https://doi.org/10.3390/catal12101177
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/catalysts
https://www.mdpi.com
https://orcid.org/0000-0002-3121-1666
https://orcid.org/0000-0002-0501-3818
https://orcid.org/0000-0001-7259-6569
https://orcid.org/0000-0003-1801-0947
https://doi.org/10.3390/catal12101177
https://www.mdpi.com/journal/catalysts
https://www.mdpi.com/article/10.3390/catal12101177?type=check_update&version=2


Catalysts 2022, 12, 1177 2 of 17

Moreover, it was shown [25] that Ru/C and Ni/C catalysts provide the same monomer
yields (~25 wt %) from corn stover lignin.

A study of the effect of a nickel catalyst loading on the yield of main birch wood frac-
tionation products [26] showed that the maximum monomer yields (~30 wt %) correspond
to a catalyst loading of 10% of the wood mass (11 wt % of Ni per carbon support).

As we showed previously [27], the acid pretreatment of birch wood affects the yield
and composition of the products of its catalytic hydrogenation more strongly than the
alkaline pretreatment; however, the maximum total content of methoxyphenols (24.46 wt %)
is observed in liquid products of catalytic hydrogenation of birch wood subjected to the
alkaline treatment.

In this work, we examine the effect of the content of nickel deposited onto an oxi-
dized graphite-like Sibunit carbon support and the impact of mass transfer intensity and
pretreatments of flax shives on the process of its fractionation.

2. Results and Discussion
2.1. Texture Characteristics of the Catalysts

The texture characteristics obtained using the low-temperature nitrogen adsorption
method showed that, in the series S450—5NiS450—10NiS450—20NiS450 (Table 1), the
precipitation of nickel leads, due to the partial blocking of the support pores, to a monotonic
decrease in the specific surface area from 380 to 276 m2/g; in the pore volume, from 0.53 to
0.42 cm3/g; and in the average pore size from 5.66 to 5.42 nm. Obtained isotherm profiles
correspond to type IV nitrogen adsorption-desorption isotherms for the BET surface area
analysis inherent to mesoporous materials (Figure 1).

Table 1. Characteristics of the carbon support and nickel catalysts based on it.

No. Support/
Catalyst Code

Ni Particle
Size, nm 7

Ni Particle Size, nm 8

pHPZC
1

Texture Characteristics 2

SBET,
m2/g

Vpore,
cm3/g

<dpore>,
nmdmin <dl> dmax

1 Sib-4-ox450 3 S450 - - - - 5.33 380 0.53 5.66

2 5%Ni/Sib-4-ox-450 3 5NiS450 20.17 45 127 324 8.15 350 0.52 5.64

3 10%Ni/Sib-4-ox-450 3 10NiS450 21.39 63 152 351 8.70 315 0.51 5.61

4 20%Ni/Sib-4-ox-450 3 20NiS450 28.25 77 172 400 9.86 276 0.42 5.42

5 10%Ni/Sib-4-ox-450g 4 10NiS450g - - - - 8.70 315 0.51 5.61

6 10%Ni/Sib-4-ox-450-100 5 10NiS450-100 - - - - 8.70 315 0.51 5.61

7 10%Ni/Sib-4-ox-450-250 6 10NiS450-250 - - - - 8.70 315 0.51 5.61

1 pHPZC is the pH of the point of zero charge; 2 The texture characteristics were obtained by processing the
low-temperature nitrogen adsorption data. SBET is the specific surface according to the BET model (m2/g),
Vpore is the total pore volume (cm3g), and <dpore> is the average pore size (nm); 3 The fraction of 56–94 µm;
4 The fraction of 1.0–1.6 mm; 5 The fraction of 100–250 µm; 6 The fraction of 250–500 µm; 7 The particle size is
determined using the Scherrer equation on the basis of the Ni(200) reflection; 8 Statistical processing of the SEM
images (magnification of up to ×20.0 k); dmin and dmax are the minimum and maximum particle diameters and
<dl> = Σdi/N is the average particle size.

pHPZC value increases (and, hence, the catalysts’ acidity decreases) with the increasing
Ni content in the catalysts’ series S450 support, 5NiS450, 10NiS450, and 20NiS450 from
pHPZC 5.33 up to 9.86 (Table 1). This dependence may be connected with bonding acid sites
by Ni ions.

The morphology of the catalysts was studied by scanning electron microscopy (magni-
fication of up to ×20.0 k). The images were subjected to statistical processing and the Ni
particle distribution over the surface at different Ni contents in the catalyst was tested. The
catalysts with a lower Ni content have a more uniform particle size distribution. As the
nickel content increases, the minimum (45–63–77 nm), average (127–152–172 nm), and max-
imum (324–351–400) particle sizes increase in the series 5NiS450, 10NiS450, and 20NiS450
(Table 1, Figure 2).
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Figure 2. Microphotographs of (a) the S450, (b) 5NiS450, (c) 10NiS450, and (d) 20NiS450 catalysts.

The 10NiS450 catalyst was examined by transmission electron microscopy and the
images obtained were statistically processed. Despite the presence of relatively large
(100–400 nm) nickel-containing agglomerates on the surface, the distribution of which
was studied by scanning electron microscopy, the main fraction of nickel on the surface is
formed by nickel particles smaller than 50 nm in size, so the average particle size is 26 nm
(Figure 3).
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Figure 4. X-ray diffraction patterns of the nickel catalysts based on the Sibunit carbon material with 
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10NiS450, and 20NiS450 catalysts are characterized by peaks at 852.9, 854.5, and 855.8 eV, 
which correspond to the Ni0, Ni2+, and Ni3+ states, respectively (Figures 5 and 6) [28]. In 
the range of 283‒293 eV, the peak characteristic of graphite is the most intense; in addition, 
the spectrum contains peaks of amorphous carbon, carbonyl, hydroxyl, and ether groups, 
as well as fragments of carboxyl groups (Figure 6) [29]. No signals characteristic of chlo-
rine were found in the spectra, which shows the effective removal of the Cl– counterion 
under the catalyst reduction conditions. 

  

Figure 3. TEM image of the 10NiS450 catalyst.

X-ray diffraction analysis of the catalysts allowed us to establish the electronic state
of nickel and size distribution of its particles, which are inaccessible by scanning electron
microscopy. The X-ray diffraction patterns contain the (111), (200), and (220) reflections
characteristic of metal nickel at 2θ angles of 44, 52, and 76, respectively (Figure 4). The
nickel particle size was calculated using the Scherrer equation on the basis of the (200)
reflection. The nickel particle size increases with the nickel content in the series 5NiS450–
10NiS450–20NiS450 and amounts to 20.2—21.4—28.3 nm, respectively (Table 2).
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Table 2. XPS elemental composition of the catalyst surface.

Catalyst
C O Ni

at % wt % at % wt % at % wt %

20NiS450 95.63 89.9 2.97 3.7 1.4 6.4
10NiS450 97.37 94.6 2.03 2.6 0.58 2.8
5NiS450 98.08 96.1 1.52 2.0 0.41 2.0
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The chemical state of the catalyst surface was thoroughly investigated by X-ray pho-
toelectron spectroscopy (XPS). The results obtained are given in Table 2. The 5NiS450,
10NiS450, and 20NiS450 catalysts are characterized by peaks at 852.9, 854.5, and 855.8 eV,
which correspond to the Ni0, Ni2+, and Ni3+ states, respectively (Figures 5 and 6) [28]. In
the range of 283–293 eV, the peak characteristic of graphite is the most intense; in addition,
the spectrum contains peaks of amorphous carbon, carbonyl, hydroxyl, and ether groups,
as well as fragments of carboxyl groups (Figure 6) [29]. No signals characteristic of chlorine
were found in the spectra, which shows the effective removal of the Cl– counterion under
the catalyst reduction conditions.
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Figure 6. C1s XPS spectrum of the 10% Ni catalyst based on an S450 oxidized carbon support.

2.2. Reductive Catalytic Fractionation of Flax Shives

Tables 3 and 4 show the results of the reductive catalytic fractionation of flax shives
over the Ni/C catalyst with different nickel contents and, for comparison, similar data on
a ruthenium catalyst [30]. Using the most active nickel catalyst (10NiS450) increases the
degree of delignification and monomeric product yield by a factor of 1.5 and 9, respectively.
This catalyst inferiors the ruthenium one in terms of monomer yield by 1.3 times, but
exceeds it on the degree of delignification. The cellulose yield drops under the action of the
catalysts from 55 to 42–52% of the cellulose content in the feedstock, except for the 5NiS450
catalyst, which provides the cellulose yield maximum (65%).
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Table 3. Effect of the metal content in a catalyst on the fractionation product yield of flax shives
(225 ◦C, 3 h).

Conditions
Yields, wt %

Liquid Solid Monomers

No catalyst 36.4 45.4 1.14
5NiS450 29.0 41.6 5.28

10NiS450 32.0 34.9 9.67
20NiS450 30.4 41.0 8.75

3Ru/S450 [30] 42.5 33.0 12.2

Table 4. Effect of the metal content in the catalyst on the composition of solid products from the
fractionation of flax shives (225 ◦C, 3 h).

Conditions
Content

Cellulose Yield, % * Delignification, %
Lignin Cellulose Hemicelluloses

No catalyst 27.3 68.5 4.2 55.4 63.3
5NiS450 16.7 79.3 4,0 64.7 85.1

10NiS450 11.5 86.4 2.1 42.2 90.6
20NiS450 12.7 83,6 3.7 51.4 87.0

3Ru S450 [30] 15.5 79.5 5.8 51.8 83.2

* Weight ratio between cellulose in the solid product and the initial shives sample.

The data on the effect of the nickel catalysts on the liquid product yields look un-
expected: the latter reproducibly decrease from 36 to 29–32%. This dependence can be
explained by the next assumption: some of the primary products of catalytic delignification
are condensed into insoluble in ethanol substances, which are not identified as lignin or
cellulose, i.e., dissolved in the sulfuric acid solution. As for the more active ruthenium
catalysts, such condensation is not observed.

The efficiency of the ruthenium catalysts is higher than that of the nickel ones by
a third in the liquid product yield and by a quarter in the yields of monomeric products and
cellulose. This is probably due to the fact that two parallel destruction and condensation
reactions occur in this process, and on a nickel catalyst it is not possible to accelerate the
destruction as effectively to suppress the condensation reaction as on a ruthenium catalyst
(Table 5).

Table 5. Effect of the metal loading on the yields of main monomers (225 ◦C, 3 h).

RT * Substance Structure
Sample

No Catalyst 5NiS450 10NiS450 20 NiS450 3RuS450 [30]

17.71 Guaiacol
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Table 5. Cont.

RT * Substance Structure
Sample

No Catalyst 5NiS450 10NiS450 20 NiS450 3RuS450 [30]

28.58 Ethyl syringol
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defining the catalysts’ activity. However, the ratio Ni0/NiOx is the amount of surface
metallic nickel in relation to its oxides (Table 6) and sheds a light on catalyst performance
related to the amount of specific phase of Ni present. A higher Ni0/NiOx ratio provides
a higher total product yield and shifts the selectivity in monomer formation toward propyl
substituted monophenols (the products of deeper hydrogenation) (Tables 5 and 6; Figure 7).

Table 6. Influence of catalyst surface nickel electronic state on the product yield.

Catalyst
Fraction of a Metal in the Oxidation Degree, % *

Ni0/NiOx
4-propylguaiacol

Yield. wt %
4-propylsyringol

Yield. wt %
Total Products

Yield, wt %Ni3+ Ni2+ Ni0

5NiS450 69.8 18.4 11.8 0.134 0.34 0.47 5.28

10NiS450 51.5 18.2 30.3 0.434 2.73 0.88 9.67

20NiS450 49.2 33.4 17.4 0.210 1.33 0.47 8.75

* The data were obtained by deconvolution of the XPS spectra of Ni 2p3/2 into individual states.

2.3. Effect of Pretreatment of Flax Shives on Their Subsequent Hydrogenation

The flax shives were subjected to acid and alkaline pretreatment in order to remove
xylan and activate lignin [33]. Xylan is used in many areas of industry [34]. The most com-
mon type of hemicelluloses in hardwoods and herbaceous plants is xylan [35]. Preliminary
removal of xylan followed by hydrogenation of biomass is a new approach to the complex
processing of plant materials.
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Lignin creates the phenyl glycosidic bonds with biomass polysaccharides forming the
so-called lignocarbohydrate complex [36]. The chemical bonds between lignin and hemicel-
luloses significantly affect the reactivity of biomass [37]. Acid and alkaline pretreatments
may disrupt the native structure of the lignocarbohydrate complex and change its reac-
tivity [33]. The acid pretreatment selectively hydrolyzes hemicelluloses in lignocellulosic
biomass [38] and can significantly change the lignin structure [39]. The alkaline treatment
of biomass ensures its efficient delignification under milder conditions [40].

The obtained results show that both acid and alkaline prehydrolysis of flax shives
before their hydrogenation slightly (within 91–93%) changes the degree of delignification.
Both types of prehydrolysis increase the yield of cellulose (from 42 to 60–73%) and solids in
general (from 35 to 44–51%) (see Tables 7 and 8), and decrease the content of lignin (from
12 to 7–9%) and hemicellulose (from 2 to 1–2%).

Table 7. Effect of pretreatments of flax shives on the yield of the main products in the followed
fractionation process (225◦C, 10NiS450).

Treatment Conditions
Yields, wt %

Cellulose Yield, wt % of Initial Delignification, %
Liquid Solid Monomers

Initial 31.99 34.92 9.67 42.2 90.6
HCl 29.25 43.73 6.49 60.2 92.6

NaOH 22.88 50.97 9.50 72.8 89.9

The alkaline and acid pretreatment of the shives reduces the yields of the main
monomeric products, propyl-, propenyl-, and propanol guaiacols (Table 8). The alka-
line pretreatment of raw materials is of the greatest interest for increasing the efficiency of
the catalytic fractionation of flax shives, since it enables the cellulose yield to increase by
a factor of 1.7 for the invariable yields of monomeric products (Tables 7 and 8). The xylan
yield was 12.8% of the air-dry initial flax shives.

2.4. Effect of the Stirring Rate and Catalyst Grain Size on the Hydrogenation Process

Mass transfer intensity is one of the important factors affecting the hydrogenation
process, but its influence on the processing of lignins has not been studied yet. Table 9
gives the data on the effect of the stirring rate and catalyst grain size on the composition of
the solid products of the hydrogenation of flax shives. The effect of these parameters on the
behavior of lignin looks quite predictable: an increase in the stirring rate and a decrease in
the catalyst grain size enhance the degree of delignification and, consequently, reduce the
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lignin content in the solid residue. Similarly, an increase in the intensity of mass transfer
reduces the content of hemicelluloses in the solid residue.

Table 8. Effect of pretreatments of flax shives on the yield of monomeric compounds in the followed
fractionation process (225 ◦C, 3 h, 10NiS450).

RT * Substance Structure
Sample Pretreatment

Initial Acidic Alkaline

17.71 Guaiacol
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Total alkyphenol yield, wt % 7.82 3.87 7.41
Other monomers 1.85 2.72 2.09

Total monomer yield, wt % 9.67 6.59 9.50

* RT is the retention time.

Table 9. Effect of the stirring rate and catalyst grain size on the solid product yield from the fractiona-
tion of flax shives (10NiS450, 225 ◦C).

Fraction, µm Stirring, rpm
Content, wt %

Cellulose Yield, wt % Delignification, %
Lignin Cellulose Hemicelluloses

54–96

1000

11.5 86.4 2.1 42.2 90.6
100–250 13.7 84.2 2,1 64.9 85.5
250–500 15.2 82.6 2.2 65.8 82.3
1–2 mm 17.3 80.4 2.3 66.7 79.0

54–96
125 25.2 70.9 3.9 91.6 70.1
250 19.0 77.6 3.4 90.9 77.4
500 12.1 85.1 2.8 84.6 86.1

no catalyst 1000 27.3 68.5 4.2 55.4 63.3

An increase in the stirring rate, as well as a decrease in the catalyst grain size during
the process, leads to the monotonic growth of the monomeric compound yield from 1.5 to
9.7 wt % (Table 10). The comparison of the effect of the catalyst grain size and the stirring
rate on the process shows that, qualitatively, both factors similarly affect the conversion of
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lignin and hemicelluloses, as well as the yield of liquid products. This analogy indicates
that both the catalyst grain size and stirring rate influence the rate of the process occurring
on the outer surface of a catalyst grain under the conditions of external diffusion limitation.
A decrease in the catalyst grain size leads to an increase in the outer surface area and an
increase in the intensity of mass transfer enhances the concentration of reagents on the
surface. Both effects increase the process rate.

Table 10. Effect of the stirring rate and catalyst grain size on the composition of the products from
the fractionation of flax shives (10NiS450, 225 ◦C).

Fraction, µm Stirring, rpm
Yields, wt %

Liquid Solid Monomers

54–96

1000

31.99 34.92 9.67
100–250 27.83 36.55 7.26
250–500 30.96 38.89 6.84
1–2 mm; 29.46 42.96 4.07

54–96
125 14.62 74.36 1.46
250 17.24 59.26 3.91
500 24.63 50.46 8.08

No catalyst 1000 38.5 41.0 1.14

The dependence of the cellulose yield on the mass transfer conditions is more complex.
Judging by the effect of the catalyst grain size at the maximum stirring rate, the catalyst
drives two processes of cellulose conversion; it stabilizes cellulose at large grain sizes
(0.1–2 mm) and destructs it at the minimum grain size, i.e., at the maximum catalyst
activity. A decrease in the stirring rate by a factor of 2–8 on the most active catalyst form
causes an increase in the cellulose yield by a factor of two or more, up to 92%, i.e., almost
to the initial content in the shives. Thus, the best compromise on the cellulose yield and
degree of delignification (85 and 86%, respectively) is observed at the minimum grain size
(54–96 µm) and mild stirring rate (500 min–1). This compromise may be associated with
different rates of lignin and cellulose destruction under the hydrogenation conditions.

The unexpected inhibition of the liquid product formation by the catalyst was dis-
cussed above (see Table 3 and the discussion). A similar effect was observed for the mass
transfer influence on the liquid product yield. At any stirring intensity, the yields of liquid
products in the catalytic process increase with the mass transfer rate (from 15 to 25 wt %),
but do not attain the yield value in the non-catalytic process (39 wt %). This means that the
primary liquid delignification products formed without a catalyst are partially condensed
into insoluble ones under the action of the catalyst and this process slows down with
an increase in the mass transfer intensity. The simplest explanation for this fact is that the
process efficiency is limited by the rate of removal of final and intermediate products from
catalyst pores, which is comparable to the rate of catalytic condensation of soluble products
into the products determined as solids. A similar situation is observed for the yield of
the solid product of catalytic fractionation: only at the highest stirring rate, the yield of
an insoluble solid substrate appears lower than in the non-catalytic process. In this case,
a change in the catalyst grain size does not significantly affect the yields of liquid and solid
products (Table 10).

Correspondingly, the stirring rate greatly affects the composition of monomeric prod-
ucts. Trace amounts of coniferyl alcohol were found only at low (125–500 min−1) stirring
rates. The yield of the final product, 4-propyl guaiacol, increases monotonically with
an increase in the stirring rate; a similar increase in its yield with a decrease in the catalyst
grain size is observed, but less pronounced. The dependences of the 4-propenyl guaiacol
yield on the mass transfer intensity are similar, except for the maximum point (1000 min–1,
56–94 µm). 4-propanolguaiacol was only detected in this experiment at the maximum
mass transfer intensity (Figure 8). A similar change in the main products from propanol-
substituted methoxyphenols to 4-propylguaiacol and 4-propylsyringol is observed while



Catalysts 2022, 12, 1177 11 of 17

adding molecular hydrogen to a process of fractionation of birch wood over a Ni-based
catalyst in methanol [24,41].
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The process begins with the formation of the detected coniferyl alcohol (II) found
previously in the lignin hydrogenation processes [24,41]. The formation of coniferous
lignins by the oxidative condensation of coniferyl alcohol is generally recognized and
its formation in the hydrogenation processes is quite understandable; it is highly active
as compared with the other propyl guaiacol derivatives (III)–(V) and therefore detected
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in minor concentrations. Coniferyl alcohol is formed on the catalyst surface; this stage
determines the growth of the yield of products (III)–(V) under the action of a catalyst.

4-propanolguaiacol is detected at high mass transfer intensity only. This testifies to the
high rates of its transformation on the catalyst surface, and only its intense mass transfer
into the bulk of the liquid phase makes it possible to detect 4-propanolguaiacol in the
process under study. 4-propenyl guaiacol is one of the main products detected under any
mass transfer conditions. The comparison of these two results (Figure 9) points to the
acid-catalytic dehydration of 4-propanolguaiacol (III) to 4-propenylguaiacol (IV) at the
acid sites of the catalyst surface as the main route of transformation (III). The resulting
4-propenyl guaiacol (IV) is further hydrogenated to 4-propyl guaiacol (V) or resinified.

In the framework of the scheme shown in Figure 9, the stages of hydrogenolysis of
C–O bonds of coniferyl alcohol (II) and 4-propanolguaiacol (III) are not required to describe
the obtained experimental results.

3. Materials and Methods
3.1. Preparing Flax Shive Samples

Flax shives were provided by the Tver State Technical University. Air-dried flax shives
were ground in a VR-2 disintegrator (Moskow, Russia) and then the dry fractionation on
sieves was performed. In this study, the flax shives fraction size was 0.5–2 mm. The flax
shives components (% of the absolutely dry substrate weight) were cellulose (50.6), lignin
(30.4), hemicelluloses (17.1), and ash (1.9). Flax shives were dried at 80 ◦C to a moisture
content of lower than 1 wt %.

3.2. Preparing Nickel Catalysts for Hydrogenation of Shives

Carbon samples were prepared from a commercial mesoporous Sibunit-4 (S4) carbon
support (Center of New Chemical Technologies, Boreskov Institute of Catalysis, Siberian
Branch, Russian Academy of Sciences, Omsk, Russia). The carbon material was prewashed
using boiling deionized water to remove possible metal impurities and dried in an argon
flow at 150 ◦C. To obtain a fraction with a carbon particle size of 56–94 µm, the carbon
material was crushed in a porcelain mortar and sieved. The oxidized samples were obtained
by oxidation of the Sibunit-4 support with moist air. The oxidation was performed in
a quartz cell placed in a furnace. The cell filled with the carbon material was preliminarily
purged with argon (200 mL/min, 0.5 h); after that, a mixture of 20 vol % O2 in N2 was
supplied to the cell in the presence of water vapors at a temperature of 450 ◦C (the saturation
at 90 ◦C, a vapor pressure of 70.1 kPa, a flow of 200 mL/min, 2 h) [43].

The nickel catalysts based on the oxidized Sibunit-4 carbon support were obtained by
wetness impregnation with an aqueous solution of nickel (II) chloride hexahydrate (NiCl2
6H2O) followed by drying at room temperature for 3 h and 60 ◦C for 12 h.

The active component was reduced in a quartz reactor in a hydrogen flow (30 mL/min,
450 ◦C, 2 h); the temperature was increased at a rate of 8 ◦C/min; after cooling to room
temperature in the hydrogen atmosphere, the catalyst was passivated with the gas mixture
containing 1% of O2 in N2 (a flow of 200 mL/min, 0.5 h) [43,44].

3.3. Physicochemical Study of the Catalysts

The texture characteristics of the samples were determined from the N2 adsorption
isotherms at 77 K with a Micromeritics ASAP-2020 Plus instrument (Norcross, GA, USA).

X-ray powder diffraction data were obtained on an X’Pert PRO diffractometer with
a PIXcel (PANalytical, Almelo, Netherlands) detector (CuKα radiation) equipped with
a graphite monochromator. The sample was ground in an agate mortar and prepared by
powdering. The analysis was carried out at room temperature in the 2θ small-angle range
from 5 to 80◦ with a step of 0.026◦ (∆t = 50 s).

Photoelectron spectra were recorded on a SPECS spectrometer with a PHOIBOS MCD9
hemispherical energy analyzer under excitation by the monochromatic AlKα radiation at
an electron collection angle of 90◦. The element contents were determined from the survey
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spectra. During the CasaXPS software processing, the Shirley nonlinear background was
subtracted and a Gaussian/Lorentzian peak shape was used.

The acidity of the catalysts was estimated from the point of zero charge (PZC) using
the Sorenson–de Bruijn method [45]. An amount of 10 mL of distilled water was placed in
a potentiometric cell. Then, the investigated sample was added successively in small
(0.01 g) portions under continuous stirring with a magnetic stirrer in time intervals of
5–10 min until the constant potential of a glass electrode [45].

The surface morphology was studied on a Hitachi TM4000 Plus scanning electron
microscope (Hitachi, Tokyo, Japan) with an attachment for the energy dispersive microanal-
ysis for measuring linear sizes of microrelief elements and the qualitative and quantitative
electron probe X-ray microanalysis of the sample composition. Information about the
surface was obtained by irradiating the sample with a narrowly focused electron beam.
The fine structure of the sample surface was observed by magnifying and displaying the
back-scattered and secondary electron data.

High-resolution electron microphotographs of the Ni/C catalysts were obtained on
a Hitachi HT7700 transmission electron microscope (Japan, 2014) at an accelerating voltage
of 110 kV and a resolution of 2 Å. The microphotographs were statistically processed
(500–800 particles) and particle size distribution histograms were built. The elemental
analysis of the synthesized composites was carried out on a PANalytical AxiosAdvanced
X-ray fluorescence spectrometer. For the analysis, the test material was pressed with boric
acid H3BO3 as a binder into a tablet 32 mm in diameter.

3.4. Prehydrolysis of Flax Shives

Acid hydrolysis of hemicelluloses was carried out via the treatment of 23% of the
shives with hydrochloric acid at room temperature for 1 h [46].

3.4.1. Fat and Wax Removal

An amount of 40 g of air-dried flax shives was treated with 1200 mL of aqueous
ethanol (1:1, v:v) for 1 h under the reflux conditions. The sawdust was washed with water
and dried to an air-dry state at 55 ◦C; for one day. The air-dried residue of the shives after
the water-alcohol treatment was 35.8 g.

3.4.2. Isolation of Xylan

The flax shives residue (35.8 g) after the water-alcohol extraction was treated with 4%
chemically pure sodium hydroxide solution under continuous stirring (a liquor ratio of
1:40 g/mL) at room temperature for 6 h. Then, the solution was filtered on a Buechner fun-
nel and the shives were washed several times on a cotton filter. The obtained solution was
neutralized with chemically pure acetic acid until the formation of a flocculent precipitate.
After that, the neutralized solution was added with 96% ethyl alcohol in a volume ratio
of 1:1. The solution with the precipitate was kept under cooling (+5 ◦C) for 16–20 h; then,
the water-alcohol extract was decanted and the xylan precipitate was added with ethanol
again and kept under cooling. Next, the solution was decanted and xylan was centrifuged
in an OHAUS Frontier 5816 centrifuge (Parsippany, NJ, USA,) at 8000 rpm for 8 min and
subjected to freezing and freeze-drying in an Inei-4 dryer.

The flax shives prehydrolyzed with alkali contained 59.7% of cellulose, 34.7% of lignin,
4.1% of hemicellulose, and 1.5% of ash. The flax shives prehydrolyzed with hydrochloric
acid (the weight loss after prehydrolysis was 10%) contained 57.3% of cellulose, 37.4% of
lignin, 3.6% of hemicellulose, and 1.7 of ash.

3.5. Hydrogenation of Flax Shives

Flax shives were hydrogenated in a ChemRe SYStem R-201 autoclave (Anyang, Korea)
with a volume of 300 mL. The reactor was loaded with 60 mL (1.05 mol) of ethanol, 3.0 g of
the substrate, and 0.3 g of the catalyst. The autoclave was sealed and purged with argon to
remove air. Then, hydrogen was supplied to an initial pressure of 4 MPa on a manometer.
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The reaction occurred at a temperature of 225 ◦C for 3 h under constant stirring at a rate of
1000 rpm. The working pressure in the reactor ranged from 9.1 to 11.5 MPa, depending on
the process conditions.

After completion of the process and cooling the reaction mixture to room tempera-
ture, the gaseous products of the reaction were quantitatively discharged from the auto-
clave by washing off with ethanol and the obtained mixture of liquid and solid products
was separated by filtration. The solid residue was washed with ethanol until the filtrate
became colorless.

Ethanol was removed from the product solution on a rotary evaporator and the residue
was brought to constant weight under vacuum (1 mm Hg) at room temperature. The liquid
product yield (wt %) was calculated as

a1 =
ml
m fs

× 100%, (1)

where m1 is the liquid product weight (g) and mfs is the weight of flax shives (g).
The solid residue yield was calculated

asa2 =
msr − mcat

mfs
× 100% (2)

where msr is the solid residue weight (g) after the extraction and mcat is the catalyst weight (g).
The flax shives conversion was determined using the formula

Xfs =
mfs − msr− mcat

mfs
× 100% (3)

The degree of delignification was calculated as

Xl =
mfs − mlsr

mlfs
× 100% (4)

where mlfs and mlsr is the weight of lignin in flax shives and in the solid residue (g),
respectively.

The cellulose yield (wt %) was determined as

Xc =
mcsr

mcfs
× 100% (5)

where mcfs and mcsr are the cellulose weights in flax shives and in the solid residue,
respectively.

3.6. Analysis of the Hydrogenation Products of Flax Shives

The solid product of the thermal transformation of flax shives was analyzed for
the contents of hemicelluloses, cellulose, and lignin. The residual lignin content in the
solid product was determined by hydrolysis in 72% sulfuric acid using the Komarov
method [47] and the hemicellulose content, by gas chromatography (GC) of the obtained
hydrolysates. The content and composition of monosaccharides in the hydrolysates were
found by GC using a VARIAN-450 GC gas chromatograph (Palo Alto, CA, USA) with
a flame ionization detector and a VF-624ms capillary column with a length of 30 m and
an inner diameter of 0.32 mm. The chromatography conditions were helium as a carrier
gas, an injector temperature of 250 ◦C, an initial column temperature of 50 ◦C (5 min),
a temperature increase to 180 ◦C at a rate of 10 ◦C/min, and holding at 180 ◦C for 37 min.
Before the analysis, the hydrolyzate was derivatized using the technique from [48] to
obtain trimethylsilyl derivatives. Sorbitol was used as an internal standard. Peaks were
identified by times of retention of the tautomeric forms of monosaccharides. Cellulose was
determined in the solid products of hydrogenation of flax shives using the nitrogen-alcohol
(Kürschner–Hoffer) method [49,50].



Catalysts 2022, 12, 1177 15 of 17

The liquid ethanol-soluble products of hydrogenation of flax shives were subjected to
GC-mass spectrometry (MS) analysis on an Agilent 7890A chromatograph with an HP-5MS
capillary column (30 m) at temperature programming in the range of 40–250 ◦C and an
Agilent 7000A Triple Quad selective mass spectrometer. The compounds were identified
using the NIST MS Search 2.0 instrument database.

4. Conclusions

The reductive fractionation of flax shives over a nickel catalyst deposited on a Sibunit
carbon support was studied. A comparison of the electronic states of nickel in the catalysts
and product yields showed that the metal nickel of the catalyst determines, to a great extent,
the formation of both 4-propyl guaiacol and monomers in general. It was shown that the
catalyst studied increases the yield of monomeric products of lignin hydrogenation from
1.1 to 9.6% of lignin. The latter is less than the yield from the ruthenium catalyst by 30%,
and this is probably due to the fact that two parallel destruction and condensation reactions
occur in this process, and on a nickel catalyst it is impossible to accelerate the destruction
as effectively to suppress the condensation reaction as on a ruthenium catalyst.

The effect of acid and alkaline pretreatment of shives on the product yields of their
subsequent reductive catalytic fractionation was examined. It was shown that alkaline
treatment enhances the cellulose yield in the process under study.

An increase in the stirring rate and a decrease in the catalyst grain size leads to several
changes in the process: (a) they increase the degree of delignification and, consequently,
reduce the lignin content in the solid residue; (b) they reduce the content of hemicelluloses
in the solid residue; (c) they also cause a monotonic increase in the yield of monomeric
compounds from 1.5 to 9.7 wt %. It was demonstrated that the process occurs mainly on
the catalyst grain’s outer surface, i.e., under the condition of external diffusion limitation.

The dependence of the cellulose yield on the mass transfer conditions are more com-
plex; the catalyst drives two cellulose conversion processes, it stabilizes cellulose at large
(0.1–2 mm) grain sizes and degrades it at the minimum grain size, i.e., at the maximum
activity of the catalyst. A decrease in the stirring rate by a factor of 2–8 on the most active
catalyst increases the cellulose yield by a factor of two or more, up to 92%, i.e., almost to its
initial content in the shives. As a result, the best compromise on the cellulose yield and
degree of delignification (85 and 86%, respectively) is obtained at the minimum grain size
(54–96 µm) and average stirring rate (500 min–1).

It was shown that the yield of liquid products in the catalytic process is increased by
intensifying the mass transfer rate (from 14.6 to 24.6 wt %), but this yield is not attained in
the non-catalytic process (38.5 wt %). The simplest explanation for this fact is that, on the
catalyst surface, the processes of removal of the final and intermediate products into the
bulk of the liquid phase compete with the catalytic condensation of soluble substances into
the products determined as solids.

The influence of the mass transfer intensity on the composition of monomeric products
supports the earlier suggested scheme for the formation of the products over bifunctional
nickel catalysts. The obtained results demonstrate the possibility to change the content of
the monomeric products by varying the mass transfer intensity.
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