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Abstract: N-heterocycles are ubiquitous in natural products, pharmaceuticals, organic materials, and
numerous functional molecules. Among the current synthetic approaches, transition metal-catalyzed
C–H functionalization has gained considerable attention in recent years due to its advantages of
simplicity, high atomic economy, and the ready availability of starting materials. In the field of
N-heterocycle synthesis via C–H functionalization, nickel has been recognized as one of the most im-
portant catalysts. In this review, we will introduce nickel-catalyzed intramolecular and intermolecular
pathways for N-heterocycle synthesis from 2008 to 2021.

Keywords: nickel-catalyzed; N-heterocycle; C–H functionalization

1. Introduction

N-heterocycles are the most abundant type of heterocyclic organic compounds. Based on
their electronic properties, N-heterocycles could be subdivided into aliphatic N-heterocycles
and aromatic N-heterocycles. Furthermore, they are mainly classified based on their ring
size into three-, four-, five-, six-, and seven-membered N-heterocycles [1–6]. Nitrogen-
containing heterocyclic compounds have unique biological activity, low toxicity, and high
internal absorption, making them potent medicines and bioactive compounds [7–13]. For
example, the 2-pyridone ring in camptothecin has been linked to significant antitumor ac-
tivity [12] and a 4-pyridinone ring comprises the skeleton of the fluoroquinolone antibiotic,
levofloxacin [13]. So far, pursuing the means to efficiently synthesize N-heterocycles has
been a key target for organic and pharmaceutical chemists.

In recent years, C–H functionalization has become one of the most effective approaches
to constructing C–C bonds and C–heteroatomic bonds [14–19]. This process can convert
C–H bonds into the corresponding C–X bonds (X = C, O, N, S, F, Cl, Br, Si, etc.) in a single
step. Compared with the traditional organic synthetic strategies, this method can effectively
avoid the pre-functionalization of starting materials, reduce the use of chemical reagents,
and shorten the count of reaction steps, thus greatly improving the efficiency of the reaction.
Within this field, transition metal-catalyzed C–H bond functionalization is an important
approach due to its advantages of simplicity, efficiency, and environmental benignity [20,21].
The uses of Pd, Rh, Ir, and other common noble-metal catalysts have been widely reported
with regard to the construction of N-heterocycles through C–H bond functionalization
reactions [22–24]. In addition, some cheap first-row metal catalysts, including Ni, Cu, Co,
Mn, etc., have also been used to realize these processes with success [25–28]. Nickel is
located at the top of group VIII in the fourth period of the periodic table. Compared with
other transition metal catalysts, nickel catalysts have attracted much attention because of
their low cost, widespread availability, and high conversion rates [29,30]. Furthermore,
nickel exists in various oxidation states, giving rise to different redox pathways in different
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catalytic processes. Due to this unique property, nickel can be used to catalyze cross-
coupling, insertion, and cyclization reactions alike [31–33]. Hence, nickel is one of the most
important transition metal catalysts for the synthesis of N-heterocycles.

Recently, some related reviews on transition metal-catalyzed C–H functionalization for
the construction of diverse nitrogen-containing heterocycles have been reported [34–41].
However, most of them focused mainly on Pd, Rh, Co, and Cu catalysts [34–40]; only
one report from the Cramer group briefly illustrated their Ni-catalyzed asymmetric C–
H bond functionalization for chiral N-heterocycles [41]. In this review, we will briefly
introduce the recent progress in the field of nickel-catalyzed N-heterocycle synthesis by C–
H functionalization via intramolecular and intermolecular pathways, respectively (Figure 1).
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2. Nickel-Catalyzed Intramolecular C–H Bond Functionalization

In the past two decades, transition metal-catalyzed C–H bond functionalization has de-
veloped into a direct and effective approach for the construction of different N-heterocyclic
compounds. In 2008, the Cavell group reported a Ni-catalyzed intramolecular C(sp2)–H
alkylation reaction employing different alkenyl-substituted imidazolium salts as substrates,
Ni(cod)2 as a catalyst, and N-heterocyclic carbene IMes as a ligand [42]. Using this strategy,
various kinds of five- and six-membered fused-ring imidazolium and thiazolium salts were
constructed in moderate to quantitative yields (Scheme 1a). Mechanistic studies hinted
that the carbene-Ni-alkyl intermediate 1B is formed through a Ni(0)-oxidative addition
of substrate 1 and a subsequent intramolecular Ni–H insertion process. Subsequently,
this carbene-Ni-alkyl intermediate 1B affords the desired product 2 through a reductive
elimination process (Scheme 1b). It should be noted that these fused-ring imidazolium and
thiazolium salts are potential components of synthetic drugs and ionic liquids [43,44].
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Pyridone skeletons are widely present in a variety of important biologically active
heterocyclic compounds [12,13,45]. Therefore, the development of novel, effective, and
rapid methods for obtaining these heterocyclic compounds is of interest to synthetic and
medicinal chemists. In 2009, the Nakao and Hiyama group developed a Ni(cod)2/AlMe3 co-
catalyzed intramolecular C–H alkylation of alkenyl-substituted pyridones 3 in the presence
of P(i-Pr)3 as a ligand [46]. In this reaction, AlMe3 acts as an important Lewis acid to assist
the reaction by activating the carbonyl group of the substrate. The intramolecular insertion
of the unsaturated bond was achieved, leading to the synthesis of the five-membered fused-
ring pyridone derivatives 4a-b in good yields (Scheme 2a). Notably, this intramolecular
alkylation process mainly gave rise to exo-cyclization products, although theoretically the
reaction could occur at both ends of the double bond, leading to the formation of both
exo and endo products. Thereafter, control over the cyclization mode of this reaction has
become the focus of the subsequent related research.
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In 2015, Cramer developed a Ni-catalyzed ligand-controlled intramolecular C–H
alkylation of alkenyl-substituted pyridone 3b [47]. Investigative experiments indicated that
the regioselectivity of the cyclization reaction is controlled by the ligand and is completely
independent of the ring size and the olefin substitution pattern. On the one hand, when
the Ni(cod)2 catalyst is used alone, this reaction gives the exo-selective cyclization product
4b. On the other hand, when an additional bulky N-heterocyclic carbene IPr is added
as a ligand to the catalytic system, the reaction leads to the endo-cyclization product 5
(Scheme 2b).

In addition, Lei and co-workers reported Ni(PPh3)4-catalyzed intramolecular C(sp2)–
H alkylation exploiting the alkyl–Br bonds [48]. Substrates with different functional groups
were well tolerated in this reaction, and the desired indolones were obtained in moderate
to good yields (Scheme 3a). Both visible photocatalysis and radical trapping experiments
indicated that a radical process might be involved in this process (Scheme 3b). Furthermore,
a mechanism involving a Ni(I)/Ni(II) catalytic cycle was proposed (Scheme 4). It is believed
that the Ni(I) species is formed through a SET process between Ni(PPh3)4 and the alkyl
bromide substrate 6. Afterwards, a second SET between the Ni(I)species and substrate 6
generates the radical species 2A and the Ni(II) species. Next, the intramolecular radical
addition provides the intermediate 2B. Finally, the further oxidation of this intermediate
with the Ni(II) species yields the desired product 7 and the Ni(I) species. Meanwhile,
the Kalyani group also demonstrated an effective method for the synthesis of carbazoles
9 through Ni(cod)2-catalyzed intramolecular C–H arylation employing aryl pivalates 8
as starting materials [49]. In the substrate scope study, two carbazoles were isolated in
moderate yields (Scheme 5). Mechanistic studies indicate that a CMD-type C–H activation
step might be involved in this process.
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In recent years, chiral N-heterocycle synthesis has become an unmistakably critical
target [50,51]. Encouraged by previous reports, the Cramer group reported a Ni(cod)2-
catalyzed chiral ligand-enabled enantioselective intramolecular C–H alkylation reaction [52].
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Various kinds of chiral bicyclic heterocycle products were isolated in good yields and excel-
lent enantioselectivities (Scheme 6a). It is worth noting that a bulky chiral N-heterocyclic
carbene ligand L1 was demonstrated as the most effective chiral ligand for this asymmetric
process. MAD was proved as the optimal Lewis acid. Under mild reaction conditions,
alkenyl-substituted 2-pyridone substrates 10 were converted to the corresponding six-
membered fused-ring 2-pyridone derivatives 11 in good yields (up to 91% isolated yields)
and excellent enantioselectivities (up to 98% ee). In addition, 4-pyridone and uracil com-
pounds could also be used as reaction substrates to obtain chiral bicyclic heterocycles
with good yields (up to 93% isolated yields) and excellent enantioselectivities (up to 98%
ee). The experimental results show that the substituents of the substrates have little effect
on the reaction, and the chirality of the target product is exclusively controlled by the
chiral ligand.
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Meanwhile, the Shi and Xu group also demonstrated Ni(cod)2-catalyzed enantiose-
lective intramolecular endo-selective C–H alkylation of N-alkenyl-substituted 2-pyridones,
isoquinolines, quinolinones, and 4-pyrimidones [53]. With this novel method, the desired
chiral bicyclic heterocycle products 15 and 17 could be obtained in up to 99% ee and 99%
isolated yields in the presence of the chiral bulky N-heterocyclic carbene hydrochloride
L2•HCl (Scheme 6b). It is believed that the electron-rich nature of the ligand L2•HCl is
favorable for the nickel-catalyzed C–H oxidative addition process, while the bulky nature
of L2•HCl favors the alkene insertion and reductive elimination processes. Moreover, the
use of commercially available AlEt3 as a co-catalyst promotes this process.

A plausible catalytic cycle is depicted in Scheme 7. It was proposed that this process is
initiated by the generation of the L2-Ni(0) catalyst, followed by the Ni/Al dual coordination
of substrate 14 to produce the Ni-complex 3A. Next, the C–H bond oxidative addition of
the Ni(0) center generates the Ni–H complex 3B. Subsequently, a seven-membered ring
intermediate 3C is formed through an anti-Markovnikov alkene insertion. Finally, the
reductive elimination of intermediate 3C affords the desired product 15 and regenerates
the catalyst for the following cycle.
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Meanwhile, the Carmer group also reported the Ni(cod)-catalyzed enantioselective
C–H functionalization of N-alkenyl-substituted indoles 18 and pyrroles 19 to construct
various chiral tetrahydropyridoindoles 20 and tetrahydroindolizines 21 under mild re-
action conditions [54]. It was pointed out that the development of a novel bulky chiral
N-heterocyclic carbene hydrochloride L3•HCl is key to the success of this process. Without
the essential Lewis acids, including AlMe3, AlEt3, and MAD, both chiral tetrahydropyri-
doindoles 20 and tetrahydroindolizines 21 were obtained in excellent yields (up to 92%
isolated yields) and enantioselectivities (up to 95% ee) (Scheme 8).

In 2018, the Ye group reported the novel enantioselective Ni/Al co-catalyzed in-
tramolecular exo-selective C–H cyclization of N-alkenyl-substituted imidazoles 22 [55]. By
employing a chiral bis(t-butyl)phenyl-containing SPO ligand L4, different kinds of chiral
five-membered fused-ring imidazole derivatives 23 were isolated in up to 98% yield and
99% ee (Scheme 9a). In the following year, Ackermann and co-workers also reported a
complementary method for the synthesis of chiral six-membered fused-ring imidazole
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derivatives 25 through an enantioselective Ni(0)-catalyzed C–H functionalization reac-
tion [56]. In this strategy, the endo-selective C–H cyclization of N-alkenyl-substituted
imidazoles 24 was catalyzed by a Ni(cod)2 catalyst and chiral JoSPOphos ligand L5 without
additional aluminum reagents, providing the desired products 25 in up to 96% yield and
98% ee (Scheme 9b).

Catalysts 2022, 12, x FOR PEER REVIEW 8 of 21 
 

 

 
Scheme 8. Ni(cod)2-catalyzed enantioselective C−H functionalization of N-alkenyl-substituted in-
doles and pyrroles.  

In 2018, the Ye group reported the novel enantioselective Ni/Al co-catalyzed intra-
molecular exo-selective C−H cyclization of N-alkenyl-substituted imidazoles 22 [55]. By 
employing a chiral bis(t-butyl)phenyl-containing SPO ligand L4, different kinds of chiral 
five-membered fused-ring imidazole derivatives 23 were isolated in up to 98% yield and 
99% ee (Scheme 9a). In the following year, Ackermann and co-workers also reported a 
complementary method for the synthesis of chiral six-membered fused-ring imidazole de-
rivatives 25 through an enantioselective Ni(0)-catalyzed C−H functionalization reaction 
[56]. In this strategy, the endo-selective C−H cyclization of N-alkenyl-substituted imidaz-
oles 24 was catalyzed by a Ni(cod)2 catalyst and chiral JoSPOphos ligand L5 without ad-
ditional aluminum reagents, providing the desired products 25 in up to 96% yield and 
98% ee (Scheme 9b).  

 
Scheme 9. (a) Ni/Al co-catalyzed intramolecular exo-selective C−H cyclization of N-alkenyl-substi-
tuted imidazoles employing a chiral bis(t-butyl)phenyl-containing SPO ligand L4; (b) Ni(cod)2-cat-
alyzed enantioselective C−H functionalization of N-alkenyl-substituted imidazoles employing a chi-
ral JoSPOphos ligand L5. 

Recently, directing the group-assisted transition metal-catalyzed C−H bond function-
alization has become an important approach for constructing C−C and C−heteroatom 
bonds [57–59]. In 2014, Ge and co-workers reported an 8-aminoquinoline (8-AQ)-assisted 
nickel(II)-catalyzed intramolecular C−H bond dehydrogenative cyclization of aliphatic 
amides [60]. The unactivated C(sp3)−H bonds of 2,2-disubstituted propionamides 26 were 
activated and various kinds of β-lactam derivatives 27 were prepared in good yields 
(Scheme 10a). As for the substrate scope, a tertiary α-carbon atom was found to be re-
quired for this reaction, and a predominant preference for the β-methyl C(sp3)−H bonds 

Scheme 8. Ni(cod)2-catalyzed enantioselective C–H functionalization of N-alkenyl-substituted in-
doles and pyrroles.

Catalysts 2022, 12, x FOR PEER REVIEW 8 of 21 
 

 

 
Scheme 8. Ni(cod)2-catalyzed enantioselective C−H functionalization of N-alkenyl-substituted in-
doles and pyrroles.  

In 2018, the Ye group reported the novel enantioselective Ni/Al co-catalyzed intra-
molecular exo-selective C−H cyclization of N-alkenyl-substituted imidazoles 22 [55]. By 
employing a chiral bis(t-butyl)phenyl-containing SPO ligand L4, different kinds of chiral 
five-membered fused-ring imidazole derivatives 23 were isolated in up to 98% yield and 
99% ee (Scheme 9a). In the following year, Ackermann and co-workers also reported a 
complementary method for the synthesis of chiral six-membered fused-ring imidazole de-
rivatives 25 through an enantioselective Ni(0)-catalyzed C−H functionalization reaction 
[56]. In this strategy, the endo-selective C−H cyclization of N-alkenyl-substituted imidaz-
oles 24 was catalyzed by a Ni(cod)2 catalyst and chiral JoSPOphos ligand L5 without ad-
ditional aluminum reagents, providing the desired products 25 in up to 96% yield and 
98% ee (Scheme 9b).  

 
Scheme 9. (a) Ni/Al co-catalyzed intramolecular exo-selective C−H cyclization of N-alkenyl-substi-
tuted imidazoles employing a chiral bis(t-butyl)phenyl-containing SPO ligand L4; (b) Ni(cod)2-cat-
alyzed enantioselective C−H functionalization of N-alkenyl-substituted imidazoles employing a chi-
ral JoSPOphos ligand L5. 

Recently, directing the group-assisted transition metal-catalyzed C−H bond function-
alization has become an important approach for constructing C−C and C−heteroatom 
bonds [57–59]. In 2014, Ge and co-workers reported an 8-aminoquinoline (8-AQ)-assisted 
nickel(II)-catalyzed intramolecular C−H bond dehydrogenative cyclization of aliphatic 
amides [60]. The unactivated C(sp3)−H bonds of 2,2-disubstituted propionamides 26 were 
activated and various kinds of β-lactam derivatives 27 were prepared in good yields 
(Scheme 10a). As for the substrate scope, a tertiary α-carbon atom was found to be re-
quired for this reaction, and a predominant preference for the β-methyl C(sp3)−H bonds 
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substituted imidazoles employing a chiral bis(t-butyl)phenyl-containing SPO ligand L4; (b) Ni(cod)2-
catalyzed enantioselective C–H functionalization of N-alkenyl-substituted imidazoles employing a
chiral JoSPOphos ligand L5.

Recently, directing the group-assisted transition metal-catalyzed C–H bond function-
alization has become an important approach for constructing C–C and C–heteroatom
bonds [57–59]. In 2014, Ge and co-workers reported an 8-aminoquinoline (8-AQ)-assisted
nickel(II)-catalyzed intramolecular C–H bond dehydrogenative cyclization of aliphatic
amides [60]. The unactivated C(sp3)–H bonds of 2,2-disubstituted propionamides 26 were
activated and various kinds of β-lactam derivatives 27 were prepared in good yields
(Scheme 10a). As for the substrate scope, a tertiary α-carbon atom was found to be required
for this reaction, and a predominant preference for the β-methyl C(sp3)–H bonds over the
γ-methyl C(sp3)–H bonds, β-methylene C(sp3)–H bonds, and aromatic C(sp2)–H bonds
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was observed. Furthermore, benzylic secondary C(sp3)–H bond functionalization has
also been achieved via this protocol. In addition, product 27a was easily converted to the
desired 3-methyl-3-phenylazetidin-2-one 28 in 66% isolated yield in the presence of CAN
and the MeCN-H2O co-solvent.
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Scheme 10. (a) 8-Aminoquinoline (8-AQ)-assisted nickel(II)-catalyzed intramolecular C–H bond
dehydrogenative cyclization of aliphatic amide; (b) Proposed mechanism.

A plausible catalytic pathway for the above transformation is proposed in Scheme 10b.
It is envisioned that this process is initiated by the coordination of the amide to Ni(II),
followed by a base-promoted ligand exchange, providing the nickel intermediate 4A. Next,
the cyclonickelation of intermediate 4A produces the Ni(II) complex 4B, which can be
further oxidized by TEMPO into the Ni(III) species 4C through a single-electron transfer
process. Finally, the reductive elimination of the intermediate 4C releases the desired
product and the Ni(I) species. Meanwhile, Ni(I) is re-oxidized to Ni(II) by TEMPO.

Very recently, the Betley group reported an intramolecular C–H bond amination
of aliphatic azides to afford pyrrolidine derivatives, catalyzed by a dipyrrin-supported
nickel catalyst [(AdFL)Ni(py)] under mild conditions [61]. Aliphatic azides 29 containing
different sites, including benzylic, tertiary, secondary, and primary C–H bonds, gave rise
to the desired pyrrolidines 30 in good yields (Scheme 11a). Furthermore, this reaction
also exhibited high chemoselectivity and broad functional group compatibility. It is worth
noting that this strategy was used to prepare the indolizidine skeletons—commonly found
in many alkaloids—through the sequential cyclization of azide substrates containing ester
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groups. Furthermore, a possible catalytic cycle is also proposed (Scheme 11b). The initial
ligand exchange and subsequent oxidative addition between the substrate 29 and the nickel
catalyst [(AdFL)Ni(py)] provides the corresponding nickel iminyl species 5A, pyridine,
and nitrogen gas. Next, hydrogen atom abstraction within this intermediate, followed by
a radical recombination process, affords the pyrrolidine product 30. Finally, the ligand
exchange between pyridine or substrate 29 with the nickel iminyl species 5A facilitates the
release of the pyrrolidine product 30.
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bond amination of aliphatic azides; (b) Proposed mechanism.

The same group later developed a novel chiral nickel catalyst [(TrFBOX)Ni(py)] to
achieve the intramolecular enantioselective C–H amination of aliphatic azides [62]. Dif-
ferent chiral pyrrolidines 32 were prepared in good yields (up to 87% isolated yields) and
moderate enantioselectivities (up to 79% ee) (Scheme 12a). A proposed mechanism is
depicted in Scheme 12b. Chiral nickel catalyst [(TrFBOX)Ni(py)] first undergoes ligand
exchange with substrate 30 to form the azide intermediate 6A. Nitrogen gas is then released
from the azide intermediate 6A to yield the nickel iminyl species 6B. The intramolecular
hydrogen atom abstraction of 6B generates the radical intermediate 6C. Finally, the pyrroli-
dine product 31 is formed through a radical recombination process, aided by the ligand
substitution with substrate 30.
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3. Nickel-Catalyzed Intermolecular C–H Bond Functionalization

Compared to intramolecular C–H bond functionalization, intermolecular C–H bond
functionalization is more challenging. In 2011, Chatani and co-workers reported the first
example of a Ni(cod)2-catalyzed directing-group-assisted ortho-C–H functionalization of
aromatic amides with alkynes for the construction of isoquinolone derivatives [63]. Ph3P
was used as an essential ligand for stabilizing the nickel catalyst. Initial investigations
showed that 2-pyridinylmethylamine was the optimal directing group. In the substrate
scope, an array of isoquinolone derivatives were generated in moderate to good yields.
Aromatic amides 32c-d bearing the electron-donating groups (Me and OCF3) at the meta-
position on the aromatic ring afforded the less-hindered isoquinolone products 34c-d in
excellent yields, while aromatic amide 32e with a meta-methoxy group gave the hindered
product 34e, which might have been caused by the coordination of an oxygen atom to
the nickel catalyst. Furthermore, the unsymmetrical n-butylphenylacetylene could also
be converted to the product 34f in good yield (Scheme 13a). A proposed mechanism
is depicted in Scheme 13b. First, the coordination of the amide substrate 32a, with the
nickel catalyst followed by N–H bond activation, provides the nickel hydride species 7A.
The subsequent alkyne insertion of the nickel hydride species 7A produces vinylnickel
complex 7B. Next, the ortho-C–H bond cleavage of complex 7B provides the ortho-metalated
complex 7C and the corresponding alkynes 35. Finally, the second alkyne insertion and the
sequential reductive elimination processes afford the desired isoquinolone product 34a and
regenerate the nickel catalyst.
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Scheme 13. (a) Ni(cod)2-catalyzed directing-group-assisted ortho-C–H functionalization of aromatic
amides with alkynes; (b) Proposed mechanism.

The same group later reported on the development of a new catalytic system for the
nickel-catalyzed oxidative C–H/N–H annulation of 2-aryl-pyrrole, benzimidazole, imida-
zole, indole, and pyrazole derivatives with symmetrical alkynes [64]. Various kinds of iso-
quinoline derivatives, including indolo-isoquinolines, pyrrolo-isoquinolines, benzimidazo-
isoquinolines, imidazo-isoquinolines, and pyrazolo-isoquinolines, were isolated in good
yields (Scheme 14). Furthermore, this strategy exhibits a very board substrate scope and
high functional group compatibility. The Ni(0) species is proposed as the key catalytic
species in this reaction. It is noteworthy that, theoretically, both the Ni(0) and the Ni(II)
catalysts can promote this process. Notably, a strong base is required in the case of the Ni(II)
system, whereas no base is needed in the Ni(0) system. In 2013, the Ackermann group
presented a Ni(cod)2-catalyzed C–H oxidative annulation of N-arylpyrimidin-2-amines
with alkynes [65]. This novel C–H/N–H bond functionalization strategy afforded a wide
array of substituted indoles 40 in good yields (Scheme 15a). In addition, the 2-pyrimidyl
group could be easily removed from the substituted indoles 40a to produce the NH-free
indoles 41 in 92% isolated yield (Scheme 15b).
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symmetrical alkynes; (b) Removal experiment of 2-pyrimidyl group.

In 2015, the Ge group developed Ni/Cu co-catalyzed 8-aminoquinoline (8-AQ)-
assisted direct C–H carbonylation of amides by using DMF as the CO source under an O2
atmosphere [66]. In this strategy, a variety of aromatic or aliphatic amides were used to con-
struct various isoindoline-1,3-diones and pyrrole-2,5-diones in good yields (Scheme 16a).
Furthermore, both the C(sp2)–H and the C(sp3)–H bond functionalization processes have
shown broad functional group compatibility and good selectivity. Notably, the quinolin-
8-yl moiety could be readily removed by treatment with ammonia to give the NH-free
product. Mechanistic studies indicate that the nucleophile is generated by the Ni-catalyzed
C–H activation of the amides and that the electrophile results from DMF with the copper
species under the O2 atmosphere. A plausible catalytic cycle is proposed in Scheme 16b.
The nickel complex 8A is initially formed through the coordination of the amide substrate
to the Ni(II) catalyst, followed by a ligand exchange step. The subsequent cyclometallation
of the nickel complex 8A generates the intermediate 8B through a C–H bond activation step.
Meanwhile, under copper catalysis and the O2 atmosphere, DMF provides the electrophilic
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species 8C. Then, the intermediate 8D is formed by a nucleophilic addition process, and
it is further oxidated to the intermediate 8E at a subsequent step. Finally, the sequential
intramolecular nucleophilic addition, oxidation, and hydrolysis of this intermediate afford
the desired product 44.
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amides by using DMF as the CO source under O2 atmosphere; (b) Proposed mechanism.

In 2020, a Ni(II)-catalyzed oxidative isocyanide insertion/C–H amination reaction was
reported by the Maes group. The process proceeded in anisole as a solvent under an air
atmosphere at a moderate temperature [67]. Various N-uracil-amidines and isocyanides
were used to construct poly-substituted pyrimidouracils in moderate to excellent yields
(Scheme 17a). The N-uracil-amidines bearing different functional groups were well-suited
for this reaction. Moreover, a broad range of isocyanides, including primary, secondary,
and tertiary aliphatic, benzyl, and aromatic isocyanides were also compatible in this C–H
functionalization strategy. As shown in Scheme 17b, a plausible catalytic cycle is proposed.
It starts with the formation of the amidine nickel intermediate 9A. The subsequent insertion
of the isocyanide 45 yields the amidine nickel intermediate 9B, which is converted to a
nickel ring intermediate 9C via C–H bond functionalization. Subsequently, the cyclic Ni(III)
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intermediate 9D is formed through an oxidative SET process. The sequential reductive
elimination gives the product 46 and the Ni(I) species, which eventually undergoes a second
SET oxidation to regenerate the active Ni(II) catalyst. Alternatively, the elimination of the
β-hydride of intermediate 9B yields the carbodiimide 9E, which is further transformed to
the product 46.
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Meanwhile, the Parthasarathy group also presented the nickel-catalyzed C–H annula-
tion of 1-(2-iodophenyl)-1H-pyrrole or 1-(2-bromoaryl)-1H-indole with alkynes [68]. The
Ni/Zn combination of C–H annulations is reported to have constructed different pyrrolo-
quinoline and indoloquinoline derivatives for the first time in good yields (Scheme 18a).
In addition, a possible reaction pathway is proposed (Scheme 18b). First of all, the Ni(II)
catalyst is reduced by zinc to the active Ni(0) complex. The oxidative addition reaction
of substrate 47 to the Ni(0) complex yields the Ni(II) intermediate 10A, which is further
transformed to the five-membered nickel intermediate 10B. Then, the alkyne insertion pro-
cess of this intermediate generates either seven-membered nickel intermediate 10C or 10D.
Finally, the reductive elimination of 10C or 10D provides the product 48 and regenerates
the active Ni(0) complex.
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In 2021, the Hirano and Miura group reported a Ni-catalyzed and 8-aminoquinoline (8-
AQ)-assisted C–H alkylation of benzamides with alkyl- and aryl-substituted aziridines [69].
This strategy provides an important complementary approach to preparing benzolactams
in moderate to good yields (Scheme 19a). Moreover, 8-aminoquinolinyl, as the directing
group, could be spontaneously removed via an intramolecular amidation process. The
regioselectivities of the products are determined by the nature of their own substituents.
The controlled experiments indicated that an SN2-type nucleophilic ring-opening pathway
may be involved in the C–C formation step. The plausible reaction mechanism is depicted
in Scheme 19b. The reversible chelation of benzamide 42a with the Ni(II) catalyst generates
the nickel complex 11A. Next, the reversible C–H cleavage of the nickel complex 11A
provides the intermediate 11B. Subsequently, the coordination of aziridine 49 with the
intermediate 11B, followed by an SN2-type nucleophilic ring-opening process, gives the
intermediate 11D. The final protonolysis and intramolecular amidation provide the desired
product 52a, 8-aminoquinoline (AQ-H), and the Ni(II) catalyst.
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4. Conclusions

Transition metal-catalyzed C–H functionalization has become an important approach
for the synthesis of nitrogen-containing heterocycles. Previous reports often use Pd, Rh,
Co, and Cu catalysts. In this review, we provide a robust discussion of the recent advances
of nickel-catalyzed C–H functionalization in heterocycle synthesis. The first part mainly
introduces the nickel-catalyzed intramolecular C–H alkylation and arylation reactions and
their role in constructing different heterocycle compounds, including imidazolium and thia-
zolium salts, pyridones, indolones, dibenzofurans, and others. Furthermore, various chiral
derivatives of simple heterocyclic compounds, such as pyridine, 2-pyridone, isoquinoline,
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quinolinone, 4-pyrimidone, and imidazoles, have been obtained through Ni-catalyzed
asymmetric C–H functionalization with a chiral ligand. Additionally, intramolecular C–H
amination catalyzed by the nickel catalysts provides an important approach to preparing
azetidin-2-one and cyclopentylamine derivatives. The second part mainly describes the
nickel-catalyzed intermolecular C–H/N–H annulation reactions, leading to the synthesis
of isoquinolones, isoquinoline, indoles, isoindoline-1,3-diones, and pyrrole-2,5-diones by
using different directing groups, including pyridinylmethylamine, pyrimidin-2-amine,
8-aminoquinoline, and others. While some significant work has been accomplished using
these directing groups, there are still many avenues for improvement and utilization in this
field. In general, these directing groups often need to be pre-installed on the substrates
to promote the C–H functionalization reactions, which limits the efficiency of the process.
Therefore, transient ligand-enabled nickel-catalyzed C–H functionalization would be an
ideal strategy for heterocycle synthesis. We hope this review will provide some insights
for readers and inspire them to explore more novel approaches in nickel-catalyzed C–H
functionalization and their utility in heterocycle synthesis.
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IMes 1,3-Bis(2,4,6-trimethylphenyl)-1,3-dihydro-2H-imidazol-2-ylidene
cod 1,5-Cyclooctadiene
IPr 1,3-Bis(2,6-diisopropylphenyl)imidazole-2-ylidene
dppe 1,2-Bis(diphenylphosphino)ethane
dppp 1,3-Bis(diphenylphosphino)propane
CMD Concerted metalation deprotonation
MAD Methylaluminum bis(2,6-di-tert-butyl 4-methylphenoxide)
SPO Secondary phosphine oxide
JoSPOphos (R)-1-[(R)-Tert-butylphosphinoyl]-2-[(R)-1-(diphenylphosphino)ethyl]ferrocene
CAN Ceric ammonium nitrate
TEMPO 2,2,6,6-Tetramethyl-1-piperidinyloxy
SET Single electron transfer
acac Acetylacetone
DMF N,N-Dimethyl Formamide
SET Single electron transfer
AdFL 1,9-Di(1-adamantyl)-5-perfluorophenyldipyrrin
py Pyridine
TrFBOX Trityl-5-perfluorophenylbisoxazoline
dtbbpy 4,4′-Di-tert-butyl-2,2′-bipyridine
ppy (2-Pyridinyl)phenyl
THAB Tetra-n-hexylammonium benzoate
TBAPF6 Tetrabutylammonium hexafluorophosphate
dppf 1,1′-Bis(diphenylphosphino)ferrocene
dme Dimethyl ether
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