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Abstract: As a well-known greenhouse gas, carbon dioxide (CO2) has attracted increasing levels of
attention in areas of energy, environment, climate, etc. Notably, CO2 is an abundant, nonflammable,
and renewable C1 feedstock in view of chemistry. Therefore, the transformation of CO2 into organic
compounds is an extremely attractive research topic in modern green and sustainable chemistry.
Among the numerous CO2 utilization methods, carboxylative cycloaddition of CO2 into propargylic
alcohols is an ideal route due to the corresponding products, α-alkylidene cyclic carbonates, which
are a series of highly functionalized compounds that supply numerous potential methods for the
construction of various synthetically and biologically valuable agents. This cyclization reaction has
been intensively studied and systematically summarized, in the past years. Therefore, attention has
been gradually transferred to produce more derivative compounds. Herein, the tandem reactions of
this cyclization with hydration, amination, alcoholysis, and isomerization to synthesize α-hydroxyl
ketones, oxazolidinones, carbamates, unsymmetrical carbonates, tetronic acids, ethylene carbonates,
etc. were systematically reviewed.

Keywords: carbon dioxide transformation; tandem reactions; propargylic alcohols; α-alkylidene
carbonates; green synthesis

1. Introduction

Since the industrial revolution, fossil fuels have become the primary energy source
for human beings. Simultaneously, continuous consumption of fossil fuels has produced
excessive carbon dioxide (CO2), which leads to global warming and causes severe environ-
mental impact such as rising sea levels, frequent extreme weather events, and imbalances
of the ecosystem [1–4]. The threat of global warming to the environment and climate
has been a significant challenge for human beings in the 21st century. Accordingly, the
capture and treatment of CO2 has become a strategic priority and has been intensively
investigated [5]. In this aspect, the carbon capture and utilization (CCU) strategy has been
regarded as a promising option for controlling the accumulation of CO2 [6–13]. Compared
with the traditional carbon capture and storage (CCS) strategy, CCU eliminates the ex-
tra energy-consuming process of CO2 desorption and compression whereby CO2 can be
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captured and transformed directly into valuable compounds [14–16], fuels [17,18], and
materials [19–23]. In other words, the CCU strategy can not only reduce the level of CO2
amount but bring a series of economic and environmental benefits [24]. Consequently, CCU
is an essential way to successfully achieve carbon neutrality, which meets the requirements
of sustainable development.

From the standpoint of green chemistry, CO2 is an abundant, nonflammable, and inexpen-
sive carbon resource [5,25], which makes it a feasible substitute for some non-renewable
and toxic chemicals such as phosgene, cyanic acid, and carbon monoxide in various syn-
thetic processes [26,27]. Hence, the catalytic conversion of CO2 has become an extremely
attractive field in modern green chemistry [28–30]. However, the inherent thermodynamic
stability and kinetic inertness of CO2 remain the main obstacles to its effective conver-
sion [31]. Generally, strong nucleophiles or harsh reaction conditions (high temperature or
high CO2 pressure) were required when CO2 was utilized in CCU processes [32]. There-
fore, developing new synthetic routes and high-efficiency catalysts are urgently needed in
this area.

Hitherto, many strategies have been developed to capitally transform CO2 into high
value-added chemicals such as carbonates, aldehydes, ketones, carboxylic acids, esters,
amides, alkanes, quinazolines, and so forth [33,34]. Among them, α-alkylidene cyclic car-
bonates, fabricated by the cyclic carboxylation of CO2 with propargylic alcohols, are a class
of representative and meritorious compounds with a wide range of applications, such as po-
lar aprotic solvents, electrolytes in batteries, monomers in the synthesis of polycarbonates,
and more importantly as reaction intermediates in the manufacture of fine chemicals [27,35].
Therefore, scientists have gradually focused on the derivative tandem reactions based on
these α-alkylidene cyclic carbonates, such as their combinations with amination, hydration,
alcoholysis, isomerization, etc. Specifically, multicomponent reactions are one-pot reactions
adopting more than two different kinds of raw materials, which offers numerous remark-
able advantages such as easy operation, facile automation, high atom economy, simple
separation and purification process, and reduced generation of by-products [36]. Based
on this, the synthesis of carbamates, oxazolidinones, α-hydroxyl ketones, non-symmetric
carbonates, cyclic carbonates, and even some polymers like polyurethanes and polycarbon-
ates via three-component tandem reaction of CO2 and propargylic alcohols with respective
amines [37–39], H2O [40–43], alcohols [33,38,44–52], and 2-aminoethanols [53–58] in the
presence of high-efficiency catalysts such as transition metals, organic bases, ionic liquids
(ILs), and heterogeneous catalysts has been recently developed with explosive growth
(Figure 1). Apart from the multicomponent tandem reactions, an in situ transformation
of these α-alkylidene cyclic carbonates was also developed. The tetronic acids could be
smoothly derived from the isomerization of the corresponding cyclic carbonates [59]. In this
review, multicomponent tandem reactions of CO2, propargylic alcohols with nucleophiles
by the one-pot method and their mechanisms were expounded through the systematic
investigations on the reports in the past few years. In addition, the rarely reported isomer-
ization reactions of cyclic carbonates were also briefly introduced.
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Figure 1. Schematic diagram of several routes for CO2 transformation.

2. Three-Component Reactions of Propargylic Alcohols, CO2 and Amines

As a series of typical nucleophilic reagents, amines can be employed in the three-
component tandem reactions with CO2 and propargylic alcohols to effectively prepare
oxazolidinones or carbamates, both of which are vital skeletons in biology, pharmaceutical
chemistry and organic synthesis [60–64]. These three-component reactions undertake a
two-step procedure. In the first step, the cyclic carbonate intermediates M1 are formed by
the carboxylative cyclization of CO2 with the propargylic alcohols. The next step is the
nucleophilic attack of the nitrogen atoms in amines to the carbonyl groups in M1. After this
ring-opening process, the intramolecular cyclization or the keto-enol tautomerism occurs
and the desired oxazolidinones 1, oxazolones 2 or carbamates 3 are generated. Generally,
the three-component reaction of tertiary propargylic alcohols, CO2 and primary amines
affords the 4-methyleneoxazolidin-2-ones (1); the three-component reaction of primary or
secondary propargylic alcohols, CO2 and primary amines affords 4-methyloxazol-2-ones
(2); and the three-component reaction of propargylic alcohols, CO2 and secondary amines
affords β-oxopropylcarbamates (3), as illustrated in Scheme 1.
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Scheme 1. The process of the three-component reactions of propargylic alcohols, CO2 and amines.

2.1. Oxazolidinones as Products

In 1987, Sasaki and Dixneuf [65] pioneered the three-component tandem reaction
of CO2, propargylic alcohols, and primary amines employing the ruthenium complex as
the catalyst. With the participation of Ru3(CO)12, 2-oxo-l,3-oxazolines were generated in
13–28% yields from the reaction of prop-2-yn-1-ol or 3-butyn-2-ol with n-propylamine
under 5 MPa of CO2 in CH3CN (Scheme 2).
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Until 2005, a relatively economical copper(I) catalyst was developed for this three-
component reaction by Deng et al. [66], who reported a type of recyclable CuCl/1-butyl-3-
methylimidazolium tetrafluoroborate ([BMIm]BF4) system. With this catalyst, 4-methylene-
2-oxazolidinones could be obtained in 78–95% yields from the corresponding propar-
gylic alcohols and primary amines under 2.5 MPa of CO2 (Scheme 3). Furthermore, the
CuCl/[BMIm]BF4 system could be reused at least 3 times without obvious activity de-
cline. Unfortunately, when primary and secondary propargylic alcohols or aniline were
applied as one of the substrates, the desired oxazolidinone products could not be formed.
In 2007, Jiang et al. [67] proposed a superior copper-catalyzed process in which CuI was
utilized under supercritical CO2 (scCO2) conditions. Both 4-methyleneoxazolidin-2-ones
and 4-methyloxazol-2-ones were obtained from the reactions of various primary propar-
gylic alcohols and secondary propargylic alcohols with primary amines in 70–95% and
88–96% yields (Scheme 4), indicating its broad substrate scope. Shortly afterwards, Zhao
et al. [68] found that CuCl was also an effective catalyst without the participation of ILs,
which enabled this three-component reaction under solvent-free and atmospheric CO2
pressure. Although excess primary amines were required and the yields were relatively
low, the oxazolidinones could be obtained through this facile and mild process (Scheme 5).

In 2019, Wang et al. [69] reported a CuI/tetrabutylphosphoniumimidazol ([P4444][Im])
system for the transformation of CO2 into oxazolidinones under room temperature and
atmospheric CO2 pressure (Scheme 6). The corresponding products were obtained in
54–87% yields. However, anilines also failed to generate the oxazolidinones. Regarding
the mechanism, CuI and [P4444][Im] synergistically catalyzed the reaction. CuI activated
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the C≡C bonds of the propargyl alcohols; meanwhile, [P4444][Im] activated the hydroxyl
groups of the propargyl alcohols. Furthermore, the authors proposed that the catalytic
activity was affected by the alkalinity of ILs. A higher pKa would enhance its CO2 fixation
ability in this three-component reaction, which led to an improved reaction performance of
CO2, propargylic alcohols and primary amines. On the other hand, the dissociation ability
of the metal anions played a pivotal role in the activity of the halogenated copper salts.
Generally, a stronger dissociation ability of the anions would result in the better catalytic
activity of the corresponding copper salt.
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Apart from the copper(I) compounds, silver salts had been found to be an excellent
catalyst for this three-component reaction. In 2009, Jiang and Zhao [70] reported that
AgOAc could efficiently promote the reaction of internal propargylic alcohols with primary
amines in scCO2. It was noteworthy that when internal propargylic alcohols were used
as substrates, both the primary and secondary alcohols could participate in this reaction,
providing corresponding oxazolidinones rather than oxazolones (Scheme 7). In 2014, He
group [71] developed a AgWO4/Ph3P system that worked under solvent-free conditions
and 0.5 MPa of CO2. The oxazolidinones derivatives were obtained in 83–95% yields
(Scheme 8). Notably, this catalytic system was not sensitive to air and moisture, which
facilitated the operations of the CO2 conversion process. Recently, Zhang and He et al. [72]
demonstrated that the 1,3-oxazolidin-2-one derivatives could be achieved from the three-
component reaction of typical terminal propargylic alcohols, CO2, and diverse primary
amines employing Ag2CO3 as catalyst and (p-MeOC6H4)3P as an additive. Specifically, they
developed a one-pot stepwise strategy to afford oxazolidinones. In this stepwise process,
propargylic alcohols react with CO2 to form α-alkylidene cyclic carbonates under 2 MPa of
CO2. Then, primary amines were directly added without any separation operation. Finally,
the oxazolidinones were obtained at 120 ◦C under atmospheric CO2 pressure (Scheme 9).
Moreover, this catalytic system could be reused at least 3 times.
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Although transition metal compounds proved to be suitable catalysts for promoting
CO2 conversion, most reported systems were costly, unstable, and sensitive to air, water, or
light. Therefore, some attention has been drawn to metal-free organocatalysis due to its
economy, tunability, and functionality [73,74].

In 1990, Fournier and his colleagues [75] demonstrated that organocatalysts could
efficiently promote the three-component tandem reaction of CO2, propargylic alcohols, and
primary amines. In the presence of tri-n-butylphosphine (Bu3P), 4-methylene oxazolidin-
2-ones were generated from the reaction of 2-methyl-3-butyn-2-ol, CO2, and primary
amines in 38–72% yields under 5 MPa of CO2 (Scheme 10). Based on this, the Costa
group [76] discovered that a series of organic bases and bicyclic guanidines, were a type
of favorable catalysts for the reaction of scCO2 with terminal propargylic alcohols and
primary amines. The yield of desired products were generally high when primary alkyl-,
allyl- and benzylamines were employed, while lower yields were given using primary
arylamines (Scheme 11). In 2016, Liu and Hua [77] revealed that both secondary and
tertiary propargylic alcohols could efficiently react with primary amines and CO2 under
the catalysis of 2,2’,2”-terpyridine in one-pot at 3 MPa of CO2 to afford oxazolidinones and
oxazolones (Scheme 12).
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ILs are a type of new green organic solvents, which have been applied in numerous
areas owing to their unique features such as high stability, nonvolatility, recyclability,
and tunability [78,79]. Mainly, ILs are often used as catalysts for the conversion of CO2.
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In 2005, Deng et al. [80] demonstrated that even if the metal compounds were absent,
the ILs themselves could act as a superior catalyst for this three-component reaction. For
example, a range of terminal tertiary propargylic alcohols were able to effectively react
with CO2 and primary amines to afford N-substituted 4-methylene-2-oxazolidinones in
IL of 1,3-dimethylimidazolium tetrafluoroborate ([DMIm] [BF4]) under 5 MPa of CO2
(Scheme 13).
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Scheme 13. [DMIm][BF4] catalyzed three-component reaction of CO2, propargylic alcohols and
primary amines.

ScCO2 has been recognized as an environmentally friendly alternative to organic
solvents owing to its nonflammability, easy separation, availability and low cost. In par-
ticular, it could be used as a green reaction medium as well as an exceptional raw mate-
rial [67]. In order to develop an efficient and eco-friendly process for transforming CO2
into oxazolidinones, Xu et al. [81] tried to adopt scCO2 to react with propargylic alcohols
and primary amines in the absence of any additional catalyst and solvent under 14 MPa
pressure. Although aniline and tert-butylamine could not produce the desired product,
the corresponding 4-methyleneoxazolidin-2-ones were smoothly given in 65–88% yields
(Scheme 14).
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Apart from the intensively studied homogeneous catalysis, various kinds of heteroge-
neous catalysts, including metal–oxides [82], metal nanoparticles [83], molecular sieves [84],
silica-supported metal salts [85], and porous polymers [86], etc., were also employed to
transform CO2 into high-value chemicals. Recently, metal–organic frameworks (MOFs)
have been demonstrated to be favorable solid-state catalysts, owing to their high poros-
ity, thermal stability, structural diversity, and excellent reusability [87,88]. Additionally,
MOFs have been regarded as one of the most effective and promising CO2 adsorbents.
Therefore, MOFs can significantly heighten the local concentration of CO2 near the catalytic
sites to promote the conversion of CO2 [89]. In this aspect, Fei et al. [87] synthesized a
Ag(I)-embedded sulfonate-MOF, a non-interpenetrated sulfonate-based porous structure
with a prototypical primitive-cubic (pcu) topology, which possessed high CO2 affinity and
alkyne activation properties. This MOF could efficiently promote the cyclization reaction of
propargylic alcohols with CO2 and the three-component reaction of propargylic alcohols,
CO2 and primary amines affording α-alkylidene cyclic carbonates and oxazolidinones with
excellent yields under atmospheric pressure (Scheme 15).
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alcohols and primary amines.

Moreover, this Ag(I)-embedded sulfonate-MOF can be reused at least three times.
In 2020, Das and Nagaraja [90] reported the one-pot three-component reaction of propar-
gylic alcohols, CO2, and primary amines at room temperature and atmospheric pressure
conditions in the presence of a functional MOF-SO3Ag, which was constructed by a Ag(I)-
anchored sulfonate-functionalized UiO-66 structure. When 1,8-Diazabicyclo[5.4.0]undec-7-
ene (DBU) was employed as an additive, the yield of several oxazolidinones increased to
99%. Further, the recyclability investigation demonstrated that the activity of MOF-SO3Ag
would not significantly decrease after five cycles of regeneration, and the original skele-
ton structure remains intact. In the mechanism study, the high catalytic activity might
be ascribed to the synergistic effect between sulfonate functionality and Ag(I) ions, in
which Ag(I) activated the C≡C bonds of propargylic alcohols and sulfonates which were
responsible for attracting CO2 (Scheme 16).
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2.2. Carbamates as Products

Originally, methods for synthesizing carbamates through a one-pot three-component
reaction of CO2, propargylic alcohols, and secondary amines were reported by Bruneau
and Dixneuf [91] in 1987, employing (RuCl2(Norbornadiene))n as a catalyst in CH3CN.
The corresponding carbamates were given in low to moderate yields (Scheme 17). In the
same year, an analogous strategy was reported by Sasaki [65], in which Ru3(CO)12 was
used to afford carbamates (Scheme 18). In addition to ruthenium compounds, iron and
copper complexes were found to be suitable catalysts for this reaction [92,93]. In 1997, Kim
et al. [93] demonstrated that a copper complex [Cu(L)]PF6 can effectively promote this
three-component reaction under 3.8 MPa of CO2 to afford carbamates. Years later, Jiang
et al. [94] reported a AgOAc/DBU system to synthesize β-oxoalkyl carbamates from the
reaction of CO2, internal propargylic alcohols and secondary amines in 1,4-dioxane under
2 MPa of CO2. Although the bulky diisopropylamines failed to give the desired products, a
range of carbamates could be obtained in 70–93% yields (Scheme 19).
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Inspired by this case, the synergistic catalytic systems of silver(I) compounds with
organic additives have been widely applied in this three-component tandem reaction. In
2014, the He group developed a milder Ag2WO4/Ph3P system [71], which was suitable for
the three-component reaction of terminal propargylic alcohols, CO2 and secondary amines.
Catalyzed by this system, carbamates were obtained in moderate to excellent yields under
0.5 MPa (Scheme 20). Subsequently, the same group found that once Ag2WO4 was replaced
by Ag2CO3 [95], this three-component tandem reaction could be realized under atmospheric
CO2 pressure. The yields of the corresponding β-oxopropylcarbamates were up to 68–98%
(Scheme 21a). According to the proposed mechanism, Ag(I) activated the C≡C bonds of
propargylic alcohols; meanwhile, the Ag2CO3 and Ph3P in situ formed [(Ph3P)2Ag]2CO3
to simultaneously activate the hydroxyls of the propargyl alcohols and CO2, embedding
CO2 into propargyl alcohols to generate cyclic carbonate IV via intermediates I, II and III.
Afterwards, the nitrogen atoms in secondary amines attacked the carbonyl groups of the
cyclic carbonate IV to produce intermediate V, followed by the tautomerization of the enol
to the carbamates 3 (Scheme 21b).

Driven by these works, ever increasing attention has been paid to developing the
reaction conditions’ mildness and economy for the reaction system, especially for the low
CO2 pressure and recycling performance of the catalyst. In 2018, Zhang and He et al. [72]
reported the Ag2CO3/(p-MeOC6H4)3 system for the synthesis of β-oxopropylcarbamates
via a one-pot stepwise method. Similar to the abovementioned synthesis method for ox-
azolidinones, the first step was to generate α-alkylidene cyclic carbonates under 2 MPa
of CO2. Then, the second step involved directly adding secondary amines to synthesize
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carbamates under ambient temperature and atmospheric CO2 pressure without any sep-
aration operations or additional additives (Scheme 22). Although this strategy required
high pressure, the metal loading of this system was extremely low (0.01%), and the catalyst
could be recycled at least 3 times. In the same year, a AgCl/Et4NCl system was proposed
by Song, Zhang and Hao et al. [96], which could obtain β-oxopropylcarbamates through a
milder and easier strategy. In this reaction, β-oxopropylcarbamates were synthesized in
moderate to excellent yields at 60 ◦C and atmospheric CO2 pressure in CH3CN. Yields of
products were mainly affected by the steric hindrance effect and the induction effect of the
oxygen atom (Scheme 23).
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Recently, our group also achieved significant progress in preparingβ-oxopropylcarbamates
through this one-pot three-component tandem reaction strategy. For example, in 2018, we
reported a green and recyclable catalytic system based on AgBr and an IL of 1-ethyl-3-
methylimidazolium acetate ([C2C1im][OAc]) for the three-component tandem reaction of
propargylic alcohols, secondary amines, and CO2 under atmospheric CO2 pressure with-
out any solvent (Scheme 24a) [97]. Notably, this AgBr/[C2C1im][OAc] system exhibited
desirable stability and could be reused at least 5 times. Judging from the yield data, the
generation of carbamates was mainly affected by the steric effects of the substituted R1
and R2 groups in the propargylic alcohols. The desired products were obtained in high to
excellent yields in the case of most secondary amines. The seldom-reported dissymmetric
secondary amine also gave the target product in a moderate yield. Its proposed mechanism
is shown in Scheme 24b. Initially, OAc− and secondary amines simultaneously activated
CO2 and the hydroxyl groups of substrate 1 (intermediate I) and enhanced the nucleophilic-
ity of the hydroxyl oxygens to the CO2 molecules, leading to the formation of carbonate
intermediate II. Subsequently, Ag(I) activated the C≡C bond to facilitate the combination of
C−O, generating the five-membered ring III. Afterwards, the catalysts were released from
III to form the key intermediate IV. Finally, the secondary amine attacked the carbonyl
groups of the intermediate IV to generate the intermediate V, followed by the keto-enol
tautomerism and formation of β-oxopropylcarbamates 3. Moreover, N-heterocyclic carbene
(NHC) silver complexes were found in this catalytic system, which might be formed by the
interaction between C(2) protons and acetate ions, generating free NHC and then reacting
with the Ag salt to create the bis-NHC structure (Scheme 24c).

Apart from the metal-catalyzed process, the metal-free organocatalytic method was
also studied. The Costa group [76] studied the reactions of propargylic alcohols with scCO2
or in acetonitrile with gaseous CO2, employing organic bases as catalysts. They found
that bicyclic guanidines such as 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) and 7-Methyl-
1,5,7-triazabicyclo[4.4.0]dec-5-ene (MTBD) were effective catalysts for transforming CO2
into α-alkylidene cyclic carbonates. Based on this, they successfully obtained a range of
carbonates in high yields and good selectivity through a one-step three-component tandem
reaction of CO2, terminal propargylic alcohols and an external N-nucleophiles (secondary
amines). According to his results, the catalytic performance of MTBD was better than TBD
(Scheme 25). In 2007, Qi and Jiang [98] reported that β-oxopropylcarbamates could be
efficiently synthesized in the absence of any additional catalysts and organic solvents in
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compressed CO2 with propargylic alcohols, secondary amines. The target products were
obtained in 35–88% yields at 130 ◦C and 14 MPa of CO2 (Scheme 26).
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Recently, some heterogeneous catalysts were also developed for the target reaction,
such as the metal-based nanostructured materials of one-dimensional silver nanowires
(Ag NWs) and spherical silver nanoparticles (Ag NPs). Their unique properties (good
dispersity and uniformity) and the rapid development of synthesis strategies made it
feasible to prepare nanomaterials with different shapes, sizes, structures and tunable
compositions [99]. Recently, these kinds of materials were gradually applied in converting
CO2 under environmentally friendly conditions. In 2015, the Han group [100] reported the
Ag NPs catalyzed cyclic carboxylation reaction of CO2 with propargylic alcohols affording
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α-alkylidene cyclic carbonates. Later, Ag NPs combined with MOF was employed to
synthesize propionic acid from terminal alkynes and CO2 [54,101].
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Inspired by these works, Qi and Hu et al. [99] successfully synthesized a diversity of
β-oxopropylcarbamates via a three-component coupling reaction of propargylic alcohols,
CO2 and secondary amines employing Ag NWs as a catalyst for the first time (Scheme 27).
In this reaction, terminal propargylic alcohols with various alkyl or aryl substituents could
react with symmetric and asymmetric dialkylamines and amines with long alkyl chains to
afford target products with good to excellent yields under 1 MPa of CO2 in CH3CN with
DMAP as an additive. Moreover, Ag NWs could be easily recycled by centrifugation and
reused at least 4 times. In 2019, Chang and Sadeghzadeh et al. [102] developed ionic gelation
(IG) (of TPP and spirulina) related catalyst (DFNS/IG–Ag(I) NPs) for the one-pot synthesis
of β-oxopropylcarbamates through the three-component tandem reaction of propargylic
alcohols, CO2 and secondary amines at 50 ◦C and 1.5 MPa of CO2 (Scheme 28). The yields
of carbamates were mainly affected by steric hindrance of the substituents in propargylic
alcohols or amines. Notably, this catalyst could be recycled 5 times. In the proposed catalytic
mechanism, spirulina and TPP synergistically activated the hydroxyl groups of propargyl
alcohols. Simultaneously, CO2 was captured and activated by the synergistic effects of
TPP and spirulina. Afterwards, Ag(I) species activated the C≡C bonds to facilitate the
combination of the negatively charged oxygen atoms with the carbons in the triple bonds,
leading to the formation of the five-membered rings. Subsequently, the catalysts were
released from the five-membered ring to form the cyclic carbonate intermediate. Finally,
the secondary amine attacked the carbonyl groups of the cyclic carbonate intermediates,
followed by the keto-enol tautomerism and formation of β-oxopropylcarbamates.

In the same year, Fan et al. [103] developed a unique bifunctional hybrid catalyst
(TEMPO–FPS-laccase NPs) through co-immobilization of 2,2,6,6-tetra-methylpiperidine-
1oxyl (TEMPO) and laccase in the same cavities into glycidyloxypropyl functionalized
fibrous phosphosilicate (FPS) nanoparticles (Scheme 29a). This catalyst was applied for
the one-pot synthesis β-oxopropylcarbamates via a three-component tandem reaction of
propargylic alcohols, CO2, and secondary amines employing water as the solvent under
1.5 MPa of CO2 (Scheme 29b). The yields of the corresponding carbamates ranged from
48–97%. Although the system required relatively high CO2 pressure, this heterogeneous bio-
catalyst was truly attractive due to its environmentally friendly characters such as superior
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storage stability, easy separation and remarkable recyclability, which could be reused at
least 10 times by extremely low catalyst loading. The remarkable cycle performances were
mainly attributed to the FPS nanostructure, while the excellent catalytic performances were
determined by the use of enzymes. Similar to the above mechanism, this production of β-
oxopropylcarbamates also proceeded with the formation of α- alkylidene cyclic carbonate,
nucleophilic attack of amine, and keto-enol tautomerism. In 2020, Hassan et al. [104]
reported that in the presence of a new magnetic nano-catalyst, palladium NPs supported on
magnetic fibrous silica ionic gelation (FeNi3/DFNS/IG/Pd MNPs), β-oxopropylcarbamates
were synthesized through a three-component tandem reaction of propargylic alcohols, CO2
and secondary amines in 54–98% yields at 70 ◦C and 2 MPa of CO2 with water as a solvent.
Moreover, this nano-catalyst can be recycled at least 10 times (Scheme 30).
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In the past decades, graphene has been widely used as a favorable supporter for
metal or metal–oxide nanoparticles due to its large specific surface area [105,106], excellent
dispersion for metal particles, and superior stability [107–109]. Based on this, a more
gentle strategy was developed by He et al. [109]. They reported the graphene oxide (rGO)
supported Ag NPs catalysts (Ag-rGO) for the efficient transformation of CO2 at ambient
conditions. Target β-oxopropylcarbamates could be obtained smoothly from the reaction
of 2-methyl-3-butyn-2-ol, diethylamine, and CO2 in 86% yield under atmospheric CO2
pressure in the presence of Ag-rGO and [N4444][Triz]. Additionally, the robust stability of
Ag-rGO enables its structure and activity to be maintained after 5 cycles (Scheme 31).
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3. Three-Component Reactions of Propargylic Alcohols, CO2 and H2O

Since Kutscheroff developed the Hg(II) salts/H2SO4 catalytic system for the hydration
of alkynes [110,111], great efforts have been devoted to a mercury-free route to obtain versa-
tile carbonyl compounds [112–114]. Hydration of propargylic alcohols is a straightforward
method to generate α-hydroxy ketones, which are vital skeletons in various drugs and nat-
ural products [115–117]. However, the direct hydration of propargylic alcohols to prepare
α-hydroxy ketones was not an ideal route, owing to the formation of byproducts resulting
from the Meyer–Schuster and Rupe rearrangements [118,119]. Therefore, a more efficient
and eco-friendly reaction route has been developed, employing CO2 as a promoter for
hydrating propargylic alcohols and H2O. The procedures of this three-component reaction
were involved with the generation of α-alkylidene cyclic carbonates, in situ hydrolysis and
the keto−enol tautomerization to afford the desired α-hydroxy ketones (Scheme 32). In the
overall cycle, CO2 was not consumed and acted as a co-catalyst.
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Transition-metal compounds such as Ag and Cu salts are favorable catalysts for the
CO2-promoted hydration of propargylic alcohols. In 2014, Qi et al. [40] reported that
the CO2-promoted process could proceed smoothly in the presence of AgOAc and DBU
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under 2 MPa of CO2 in a mixed acetonitrile/water solvent. Both the internal and terminal
propargylic alcohols could produce the target products in good yields (Scheme 33). In 2018,
Song and Liu et al. [46] discovered that α-hydroxy ketones could be efficiently produced
in the presence of ZnCl2 and DBU under 1 MPa of CO2 in CH3CN (Scheme 34). In 2019,
Chen et al. [42] developed a Cu2O/DBU system that could efficiently transform a range of
propargylic alcohols into desired α-hydroxy ketones under atmospheric CO2 pressure in
CH3CN employing cyclohexyldiphenylphosphine as an additive (Scheme 35).
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Scheme 35. Cu2O/DBU system catalyzed CO2-promoted hydration of propargylic alcohols.

In order to synthesize α-hydroxy ketones through a greener route, our group devel-
oped an effective AgOAc/1-ethyl-3-methylimidazolium acetate ([Emim][OAc]) system for
the CO2-promoted hydration of propargylic alcohols to afford α-hydroxy ketones under
atmospheric CO2 pressure and solvent-free condition (Scheme 36a) [43]. Diverse propar-
gylic alcohols could be transformed into target hydroxy ketones in excellent yields with the
catalysis of only a trace amount of silver (0.005−0.25 mol %). Notably, this system could be
reused at least 5 times. Furthermore, an unprecedented turnover number (TON) of 9200
was obtained. The proposed catalytic mechanism of the AgOAc/[Emim][OAc] system is
shown in Scheme 36b. Firstly, the highly concentrated [OAc] simultaneously activated
CO2 and the hydroxyl groups from substrates 1, inducing the following nucleophilic attack
and formation of intermediates II. Afterward, Ag species activated the C≡C bonds to
promote the formation of the C−O bonds, resulting in the creation of five-membered rings
III. Then, the catalysts were released and the key α-alkylidene cyclic carbonates IV were
generated. Subsequently, water molecules acted as nucleophiles and attacked the carbonyls
of α-alkylidene cyclic carbonates IV to generate the intermediates V with the catalysis of
the basic ILs, followed by the keto-enol tautomerism. Finally, one equivalent of CO2 was
released and the desired ketone 2 was formed.
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Scheme 36. (a) AgOAc/[Emim][OAc] system catalyzed CO2-promoted hydration of propargylic
alcohols; (b) The proposed catalytic mechanism of the AgOAc/[Emim][OAc] system.

In 2015, Liu et al. [41] reported a metal-free catalytic system for hydrating propargylic
alcohols and H2O with CO2 as a co-catalyst to produce α-hydroxy ketones at atmospheric
CO2 pressure (Scheme 37). A series of desired products could be obtained in good to
excellent yields in the presence of tetrabutylphosphonium imidazole ([Bu4P][Im]). More
investigations revealed that both CO2 and [Bu4P][Im] were indispensable for this reaction.
Additionally, [Bu4P][Im] acts as the catalyst and solvent, which could be easily separated
and reused at least 5 times without obvious activity loss.
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4. Three-Component Reactions of Propargylic Alcohols, CO2 and
Monohydric Alcohols

As weak nucleophiles, monohydric alcohols could also react with propargylic alcohols
and CO2, affording β-oxoalkyl carbonates, which are a kind of dissymmetric carbonate and
generally used as important reagents and intermediates in organic synthesis [120,121]. The
three-component reaction of propargylic alcohols, CO2 and monohydric alcohols could



Catalysts 2022, 12, 73 19 of 35

proceed smoothly through the sequential steps of carboxylative cyclization, nucleophilic
attack of monohydric alcohols, and tautomerization (Scheme 38).
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Dixneuf et al. [122] initially first synthesized cyclic carbonates using tributylphosphine
as a catalyst. Then these cyclic carbonates react with monohydric alcohols to afford desired
dissymmetric carbonates in the presence of triethylamine or KCN (Scheme 39). Later, the
Costa group [76] developed the one-pot synthesis strategy to obtain β-oxoalkyl carbon-
ates through the three-component reaction of propargylic alcohols, CO2 and monohydric
alcohols employing bicyclic guanidines as catalysts under scCO2 conditions.

Catalysts 2022, 12, x FOR PEER REVIEW 19 of 35 
 

 

 
Scheme 37. [Bu4P][Im] catalyzed CO2-promoted hydration of propargylic alcohols. 

4. Three-Component Reactions of Propargylic Alcohols, CO2 and Monohydric  
Alcohols 

As weak nucleophiles, monohydric alcohols could also react with propargylic alco-
hols and CO2, affording β-oxoalkyl carbonates, which are a kind of dissymmetric car-
bonate and generally used as important reagents and intermediates in organic synthesis 
[120,121]. The three-component reaction of propargylic alcohols, CO2 and monohydric al-
cohols could proceed smoothly through the sequential steps of carboxylative cyclization, 
nucleophilic attack of monohydric alcohols, and tautomerization (Scheme 38). 

 
Scheme 38. The process of the three-component reaction of propargylic alcohols, CO2 and monohy-
dric alcohols. 

Dixneuf et al. [122] initially first synthesized cyclic carbonates using tribu-
tylphosphine as a catalyst. Then these cyclic carbonates react with monohydric alcohols 
to afford desired dissymmetric carbonates in the presence of triethylamine or KCN 
(Scheme 39). Later, the Costa group [76] developed the one-pot synthesis strategy to ob-
tain β-oxoalkyl carbonates through the three-component reaction of propargylic alcohols, 
CO2 and monohydric alcohols employing bicyclic guanidines as catalysts under scCO2 
conditions. 

 
Scheme 39. Two step strategy for the three-component reaction of propargylic alcohols, CO2 and 
monohydric alcohols. 

In recent years, silver and zinc compounds have been developed as excellent catalysts 
for this three-component reaction. In 2016, He et al. [44] reported an effective Ag2CO3/Ph3P 
system for the target reaction under 1 MPa of CO2 in CH3CN (Scheme 40). In 2017, Ma and 
Han et al. [123] developed a AgCl/1-butyl-3-methylimidazolium acetate ([Bmim][OAc]) 
system, which could catalyze this three-component reaction under ambient conditions 
without any solvents. In addition, this catalytic system could be recycled 5 times (Scheme 
41). In 2018, Song and Liu et al. [46] explored non-noble ZnCl2 and DBU as the catalytic 
system for the synthesis of β-oxopropyl carbonates under 1 MPa of CO2 in CH3CN 
(Scheme 42). 
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monohydric alcohols.

In recent years, silver and zinc compounds have been developed as excellent catalysts
for this three-component reaction. In 2016, He et al. [44] reported an effective Ag2CO3/Ph3P
system for the target reaction under 1 MPa of CO2 in CH3CN (Scheme 40). In 2017, Ma and
Han et al. [123] developed a AgCl/1-butyl-3-methylimidazolium acetate ([Bmim][OAc])
system, which could catalyze this three-component reaction under ambient conditions with-
out any solvents. In addition, this catalytic system could be recycled 5 times (Scheme 41).
In 2018, Song and Liu et al. [46] explored non-noble ZnCl2 and DBU as the catalytic system
for the synthesis of β-oxopropyl carbonates under 1 MPa of CO2 in CH3CN (Scheme 42).
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Although the above strategies could effectively synthesize β-oxoalkyl carbonates,
several drawbacks remain, such as high CO2 pressure, narrow substrate scope, etc. To im-
prove the reaction conditions, Song and Zhang et al. [47] developed a synergistic silver
sulfadiazine/nBu4NBr system for the one-pot synthesis of β-oxopropyl carbonates under
atmospheric CO2 pressure and solvent-free conditions (Scheme 43). Additionally, this pro-
tocol showed excellent tolerance for a wide range of propargyl alcohols and monohydric
alcohols. Various desired carbonates could be obtained in 64–99% yields, although phenol
failed to afford the target product, and an excess amount of alcohol was generally required.
Furthermore, they speculated that the excellent catalytic performance was attributed to the
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synergistic catalysis of silver sulfadiazine and nBu4NBr. In 2020, Detrembleur et al. [51]
proposed a AgI/tetrabutylammonium phenolate ([TBA][OPh]) catalytic system, which
was highly active for this one-pot process (Scheme 44). Most of the desired products
could be obtained in more than 97% yields under atmospheric CO2 pressure in DMSO.
The yield data further demonstrated that primary monohydric alcohols were more active
than secondary or tertiary monohydric alcohols. Notably, the authors explored the kinetic
insights and the catalytic mechanism through FT-IR spectroscopy and density functional
theory (DFT) calculations.
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Recently, natural minerals have also been designed as catalysts for the transformation
of CO2. In 2020, Liu et al. [50] loaded silver on attapulgite (ATP) material, a hydrous silicate
clay mineral-rich in Mg and Al with a fibrous morphology and demonstrated a certain
adsorption effect on CO2. This effective Ag/ATP nanocomposite catalyst was applied for
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the one-pot synthesis of non-symmetric carbonates through the three-component reaction
of propargylic alcohols, CO2 and monohydric alcohols (Scheme 45a). The desired β-
oxoalkyl carbonates were obtained in low to high yields under 1 MPa of CO2 in DMF
with 1,5-diazabicyclo[4.3.0]non-5-ene (DBN) as a co-catalyst. Moreover, the yields were
largely influenced by the electron-donating effect of R3 in alcohols. In the investigations
on recyclability, the authors found that Ag/ATP could be recycled at least 10 times by
increasing the reaction temperature to decompose the produced carbonates coated on the
catalyst’s surface. Regarding the catalytic mechanism, the hydroxyl protons in propargyl
alcohols firstly interacted with DBN to form [DBNH]+. Then the adsorbed CO2 on the ATP
was attacked by the hydroxyl and oxygen anions to form intermediates II. Subsequently, the
silver nanoparticles on the ATP activated the C≡C to promote the connections of the oxygen
atoms from the CO2 to the carbon atoms in the triple bonds, resulting in the formation of
five-membered rings III. Afterward, intermediates III received the protons from [HDBN]+

and gave the key α-alkylidene cyclic carbonates IV. Eventually, DBN activated the hydroxyl
groups in monohydric alcohols to attack the carbonyl groups of the cyclic carbonates IV to
produce intermediates V. The target β-oxoalkyl carbonates 3 were finally formed by the
following tautomerism (Scheme 45b).
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5. Three-Component Reactions of Propargylic Alcohols, CO2 and Bi-Nucleophiles

In the area of CCU, the condensation of vicinal diols or 2-aminoethanols with CO2
has attracted significant attention. Many strategies have been reported for this reaction
to afford the corresponding cyclic carbonates or 2-oxazolidinones, which are a series
of high-value chemical intermediates [124–130]. Unfortunately, these condensations are
usually incomplete due to the thermodynamic limitations and invalidation of catalysts
caused by the formation of by-products such as water. Although dehydrating agents
are typically applied to overcome the equilibrium limitation [126,127,130], the other by-
products derived from the consumed additives still remained in this process [58]. As a
result, the yields of desired products in these reactions were usually unsatisfactory even
under harsh reaction conditions, which largely limits its practical application. Delightedly,
a significant breakthrough has been achieved recently. Scientists revealed that introducing
propargylic alcohols into these reactions could effectively avoid the formation of water and
bypass the thermodynamic limitation. In this method, the reverse reactions were completely
suppressed due to the low nucleophilicity of the generated α-hydroxy ketone [45,49,53].
More importantly, these three-component reactions of propargylic alcohols, CO2 and
vicinal diols or 2-aminoethanols could simultaneously afford the high-value products of
cyclic carbonates or 2-oxazolidinones. Regarding the mechanism, this thermodynamically
favorable process undertook a two-step procedure: (1) the formation of α-alkylidene cyclic
carbonate intermediates M1 from the carboxylative cyclization of propargylic alcohols and
CO2; (2) the nucleophilic ring-opening reaction of intermediates M1 and vicinal diols or
2-aminoethanols to produce M2 or M3, followed by the generation of cyclic carbonates 2 or
2-oxazolidinones 3 with 1 equiv. of α-hydroxyl ketones through intramolecular nucleophilic
cyclization (Scheme 46).
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5.1. Vicinal Diols as Bi-Nucleophiles

In the past few years, considerable progress on metal-catalyzed systems for this re-
action has been achieved. In 2017, He et al. [45] first proposed a Ag(I)-catalyzed system
for this three-component reaction of propargylic alcohols, CO2 and vicinal diols to af-
ford cyclic carbonates and α-hydroxyl ketones with an electron-rich bidentate phosphine
4,5-Bis(diphenylphosphino)-9,9-dimethylxanthene (Xantphos) as an additive (Scheme 47).
They proved this process was a thermodynamically favorable route through DFT calcu-
lations, in which desired products could be obtained in good to excellent yields under
1 MPa of CO2 in CH3CN catalyzed by the Ag2CO3/Xantphos system. Subsequently, Song
and Liu et al. [46] developed a Zn(II)-catalyzed system for this three-component reaction
(Scheme 48) in 2018. Target products could be obtained in excellent yields under 1 or 2 MPa
in CH3CN. However, an excess of vicinal diols (1.5 equiv.) was required. Moreover, both of
these routes required solvents and high CO2 pressure.
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Scheme 48. ZnCl2/DBU system catalyzed three-component reactions of propargylic alcohols, CO2
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In 2019, Song and Zhang et al. [48] developed an efficient silver sulfadiazine/Et4NBr
synergistic catalytic system, enabling this three-component reaction to proceed smoothly
under atmospheric CO2 pressure and solvent-free conditions (Scheme 49a). Furthermore,
this catalytic system exhibited a broad substrate scope. Propargylic alcohols with different
alkyl substituents, including long-chain alkyl, isopropyl, cyclohexyl, vinyl, and phenyl,
could react smoothly with 1,2-diols bearing short- or long-chain alkyl and sterically hin-
dered substituents. The corresponding cyclic carbonates and α-hydroxyl ketones were
obtained in satisfactory yields under optimal conditions. Moreover, a plausible mech-
anism was speculated, as shown in Scheme 49b. Initially, sulfadiazine and Ag species
simultaneously activated −OH and C≡C of the propargylic alcohols to form the carbon-
ate intermediates II. Significantly, Et4N+ stabilized the carbonate intermediates II and
enhanced the nucleophilicity of the oxygen atoms. Then, the catalysts were released and
the cyclic carbonates III were generated. Afterward, the activated −OH from vicinal diols
attacked the carbonyl groups of intermediates III to produce intermediates IV. Eventu-
ally, the target cyclic carbonates 3 were produced through the intramolecular nucleophilic
cyclization with 1 equiv. of α-hydroxyl ketones 4 released from the skeletons.

Regarding organocatalysis, strong bases such as DBU, TBD, and MTBD, etc., are beneficial
for the activation of CO2 and hydroxyl groups due to their rich electronegativity [52]. Based
on this, Song and Liu et al. [52] reported a facile metal-free DBU-catalyzed strategy for the
one-pot preparation of cyclic carbonates and α-hydroxy ketones from propargylic alcohols,
CO2 and vicinal diols. However, the reaction required a large amount of solvent (DMF)
and relatively high CO2 pressure (3 MPa) (Scheme 50). Subsequently, mild N-heterocyclic
olefins–CO2 adducts (NHO–CO2)/MTBD organic catalytic system was reported by Zhou
and Lu et al. [49]. In the presence of this system, various functionalized five-membered
cyclic carbonates could be obtained under ambient conditions (Scheme 51a). Notably, this
system showed high tolerance for a wide range of vicinal diols. The corresponding cyclic
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carbonates could be produced in moderate to high yields. Specifically, this three-component
reaction proceeded via a one-pot two steps strategy. The initial carboxylative cyclization
was catalyzed by the NHO-CO2 adducts under ambient conditions. Once propargylic alco-
hols were completely converted, MTBD, vicinal diols and solvents were added successively
for the subsequent transesterification. Additionally, the authors employed complicated
polyhydroxy carbohydrate derivatives for this one-pot method to accurately synthesize
bio-based cyclic carbonates.
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5.2. Aminoethanols as Bi-Nucleophiles

Recently, Ag(I) and Cu(I) compounds have been found to be efficient catalysts for this
three-component reaction. In 2016, the He group [53] first reported the Ag2CO3/Xantphos
system for the three-component reaction of propargylic alcohols, CO2, and 2-aminoethanols,
which could smoothly convert diverse substrates into the corresponding 2-oxazolidinones
and a-hydroxyl ketones under 1 MPa of CO2 in CHCl3 (Scheme 52). This reaction pro-
ceeded through the sequential steps of carboxylative cyclization, ring-opening and in-
tramolecular nucleophilic cyclization. Subsequently, they reported a similar Ag2O/1,1,3,3-
tetramethylguanidine (TMG) system for this three-component reaction, which could pro-
ceed successfully under 1 MPa of CO2 in CH3CN with a TON up to 1260 (Scheme 53) [54].
In addition to the Ag(I) catalytic systems, more economical Cu(I) catalytic systems were
developed for this three-component reaction by the same group in 2018. The desired
products could be obtained in good to excellent yield in the presence of CuI, 1,10-phen,
and t-BuOK under 0.5 MPa of CO2 (Scheme 54) [55]. Although significant progress has
been achieved, these catalytic systems still suffered from several shortcomings such as
the requirement for high CO2 pressure, the addition of solvents or additives, low catalyst
recyclability, and high metal loading, which limited their further applications in industry.
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Inspired by these works, our group combined the advantages of transition-metal cata-
lysts and ILs and developed a favorable AgNO3/[C2C1im][OAc] system for this reaction
(Scheme 55a) [57]. A wide range of 2-oxazolidinones and α-hydroxyl ketones could be
simultaneously obtained in excellent yields under atmospheric CO2 pressure at 60 ◦C
without any additives or traditional volatile solvents with an extremely low metal loading
(0.25% AgNO3). In addition, this system showed excellent recyclability, which could be eas-
ily recycled and reused 5 times. Moreover, this system exhibited outstanding performance
in evaluating the green metrics. In the aspect of the catalytic mechanism, the basic OAc−

firstly activated the −OH in substrates 2, promoting its interaction with CO2 to form the
carbonate intermediates II. Next, the Ag species activated the C≡C bonds, resulting in the
combination of the negatively charged oxygen atoms with the carbon atoms in the triple
bonds to afford the five-membered rings III. Subsequently, the catalysts were released from
the five-membered rings and intermediates IV were generated. Afterwards, intermediates
V were produced through the nucleophilic attack of the carbonyl groups in intermediates IV
by the nitrogen atoms of the substrates 2. Then the keto-enol tautomerism occurred, leading
to the formation of intermediates VI. Finally, the desired 2-oxazolidinones 3 were generated
via the intramolecular nucleophilic cyclization of intermediates VI with α-hydroxyl ketones
4 released from the molecules (Scheme 55b). Later, we demonstrated that the cheaper Cu(I)
salt could also be employed as an effective catalyst for this reaction when combined with
ILs (Scheme 56) [58]. In the presence of CuBr and 1-butyl-3-methylimidazolium acetate
([C4C1im][OAc]), a variety of desired products could be produced in good to excellent
yields under 1 atm of CO2 pressure with a low metal loading (0.5 mol% of CuBr). This
system also did not require additional volatile organic solvents and additives. Moreover,
it could be reused at least 3 times.
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In 2018, Li and He et al. [56] synthesized a task-specific IL, 1,5,7-triazabicylo[4.4.0]dec-
5-ene trifluoroethanol ([TBDH][TFE]) through an anion-exchange resin, for the green
synthesis of 2-oxazolidinones and α-hydroxyl ketones based on the three-component
reaction of propargylic alcohols, CO2 and 2-aminoethanols under atmospheric CO2 pressure
at 80 ◦C (Scheme 57). These ILs act as both catalysts and solvents, which could be easily
recycled and reused at least for 5 times without significant loss of activity.
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6. Isomerization of α-Alkylidene Cyclic Carbonates

Recently, the isomerization of α-alkylidene cyclic carbonates generated from the car-
boxylative cycloaddition of CO2 into propargylic alcohols was developed to afford valuable
tetronic acids, which are a series of crucial intermediates and essential skeletons in agri-
cultural, pharmaceutical, and biological chemistry [131–133]. Compared with the already
reported route [59,134–139], this route showed the advantages of easily accessible raw ma-
terials, mild reaction conditions, simple operation, high atom economy, etc. Consequently,
it is an environmentally friendly alternative strategy, which provides a new methodology
for the subsequent derivative applications of α-alkylidene cyclic carbonates.

AnUntil now, the only example for synthesizing tetronic acids through the reactions
of propargylic alcohols and CO2 was reported in 2018. Zhou and Yu et al. [59] demon-
strated that a wide range of tetronic acid derivatives could be obtained in 58–90% yields
through the tandem reactions of cyclization and isomerization in the presence of excessive
Cs2CO3 at atmospheric CO2 pressure and 65 ◦C in 1,3-dimethyl-2-imidazolidinone (DMI)
(Scheme 58a). This system showed excellent tolerance for functional groups. The substrates
with both symmetric and asymmetric dialkyl, methyl, and phenyl at α-position of the hy-
droxyl group, and cyclic, tertiary alcohols with various halogen substituents could undergo
this process smoothly and obtain the target products with satisfactory yields. Based on
the yield data, the aryl propargylic alcohols with electron-withdrawing groups were more
favorable than those with electron-donating groups. The proposed mechanism for this
reaction is shown in Scheme 58b. First, the CO2 reacts with the proton-removed substrates
1 to form carbonate intermediates I. Then the α-alkylidene cyclic carbonate intermediates
II are formed through the intramolecular cyclization of intermediates I. Afterwards, the
carbonate anions attacked the carbonyl groups in intermediates II and opened the rings
to form intermediates III. Next, the carbonate anions were released via Dieckmann-type
condensation and the intermediates IV were formed. Finally, the intermediates IV under-
went further deprotonation by addition of excess Cs2CO3, resulting in the formation of
enolates V, which could be quenched by the acids to produce the desired tetronic acids 2.
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7. Conclusions

In summary, the tandem reactions based on the cyclization of CO2 and propargylic
alcohols were summarized in this review. Notably, the three-component tandem reaction
of CO2, propargylic alcohols with nucleophiles and the isomerization of α-alkylidene
cyclic carbonates could afford a series of vital skeletons in organic synthesis, biology, and
pharmacy. Moreover, these tandem routes exhibited great economic and environmental
benefits. Currently, catalytic systems have been increasingly developed for these reactions,
aiming to remove volatile organic solvents, and improve catalytic activity and recyclability.
However, the reported reaction systems still have some drawbacks such as dependence on
high catalyst equivalent and high purity of CO2, which limits their large-scale industrial
application. Therefore, the development of catalysts with low catalyst loading to reduce
costs and a higher CO2 adsorption to utilize low-concentration CO2 are urgently required.
These achievements will expand this area into a more important branch of the future
CCU strategy.
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