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Abstract: Composite catalysts of mixed metal oxides were prepared by mixing a phase-pure M1
MoVNbTeOx with anatase-phase TiO2. Two methods were used to prepare the composite catalysts
(the simple physically mixed or sol-gel method) for the improvement of the catalytic performance in
the oxidative dehydrogenation of ethane (ODHE) process. The results showed that TiO2 particles
with a smaller particle size were well dispersed on the M1 surface for the sol-gel method, which
presented an excellent activity for ODHE. At the same operating condition (i.e., the contact time
of 7.55 gcat·h/molC2H6 and the reaction temperature of 400 ◦C), the M1-TiO2-SM and M1-TiO2-PM
achieved the space time yields of 0.67 and 0.52 kgC2H4/kgcat/h, respectively, which were about ~76%
and ~35% more than that of M1 catalyst (0.38 kgC2H4/kgcat/h), respectively. The BET, ICP, XRD,
TEM, SEM, H2-TPR, C2H6-TPSR, and XPS techniques were applied to characterize the catalysts. It
was noted that the introduction of TiO2 raised the V5+ abundance on the catalyst surface as well as
the reactivity of active oxygen species, which made contribution to the promotion of the catalytic
performance. The surface morphology and crystal structure of used catalysts of either M1-TiO2-SM
or M1-TiO2-PM remained stable as each fresh catalyst after 24 h time-on-stream tests.

Keywords: ODHE; ethylene; mixed metal oxides; MoVNbTeOx; TiO2

1. Introduction

Ethylene is a principal chemical commodity and an essential petrochemical building
block, for example, to produce polyethylene, the most extensively used plastic in the chemical
industry [1–3]. The oxidative dehydrogenation of ethane (ODHE) to ethylene has been
recognized as the most attractive alternative to the conventional steam cracking process due
to its low energy demand, mild exothermic properties, high productivity of ethylene, and
little risk of carbon deposition [4,5]. Among the numerous catalysts studied in the ODHE
process [5–24], the MoVNbTeOx catalyst possesses the merit of higher catalytic performance
(e.g., ethylene selectivity and productivity) at lower temperature [5,9,10,19,24], which is
synthesized by the hydrothermal [25] or slurry [26] method and composed of M1, M2, and
some minor phases [27]. The M1 (orthorhombic phase) is mainly responsible for the ODHE
reaction, while M2 (pseudo-hexagonal phase) shows a poor or even negative effect during
the ODHE process [10,28]. The phase-pure M1 catalysts can be obtained from the mixed
metal oxides after dissolving the M2 crystalline and other phases in MoVNbTeOx [29]. The
M1 phase is a two-dimensional projection of the polyhedral network in the crystallographic
(001) plane, in which the pentagonal Nb-centered pillars are surrounded by edge and
corner-sharing MoO6 and VO6 octahedra and these pentagonal units are connected with
metal oxygen octahedra to form hexagonal and heptagonal channels, which are partially
occupied by Te. Moreover, the V5+ ions at the active sites are responsible for the abstraction
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of the first C–H bond in ethane [5,30,31]. The M2 phase has characteristic hexagonal rings
hosting the Te–O units without any pentagonal or heptagonal rings in the (001) plane [32].

The purification process can be implemented by the hydrothermal method with a
strict preparation procedure or by post-treatment [10,33,34]. In order to meet the de-
mand for the commercialization of the ODHE process, e.g., a 60% ethylene yield and a
1.00 kgC2H4/kgcat/h productivity at below 500 ◦C [19,35–37], the catalytic performance
should be enhanced, and a lot of work has been performed in recent years [38–48]. As one
of the possible solutions, it would be worth trying to introduce additives or promoters to in-
crease the activation sites (e.g., V5+ ions on the phase-pure M1) so as to promote the catalytic
efficiency. To be noted, several successful attempts have been achieved in the literature.
By the combination of CeO2 or MnOx with phase-pure M1 catalysts, composite catalysts
markedly enhance the catalytic performance for the ODHE process [9,44,45,49], which
provides a possibility and preliminary verification on adding cheaper promoters to increase
the catalytic activities of MoVNbTeOx catalysts. TiO2 as an effective promoter/catalyst has
been widely used in catalytic processes [50–52]. Holmberg et al. [53] used TiO2 as a diluter
to study the catalytic performance for propane ammoxidation. They mixed the Mo–V–Nb–
Te precursors (slurry method) with TiO2 sol (the TiO2 phase is formed) and evaporated
the mixture to obtain the MoVNbTeOx/TiO2 catalyst. However, Mo5–x(V/Nb/Te)xO14,
instead of the M1 phase, was formed, and the prepared catalysts did not demonstrate
an increase in activity. Li et al. [54] studied of the support and promotion effect of TiO2
for the selective oxidation of ethane to acetic acid catalyzed by Mo–V–Nb oxides. They
prepared a Mo0.61V0.31Nb0.08Ox/TiO2 catalyst by the slurry method, where a MoVNb cat-
alyst was directly loaded on TiO2 particles. Che-Galicia et al. [55] studied the mass and
heat transfer in an industrial packed-bed reactor using TiO2 as a MoVNbTeOx catalyst
carrier (MoVTeNbO/TiO2) for the oxidative dehydrogenation of ethane to the ethylene
reactor. TiO2 is only a catalyst carrier to form particles for industrial applications, and the
catalyst–carrier interaction between TiO2 and M1 is not considered. Nevertheless, these
researches have not reported the effective enhancement of the catalytic performance of
MoVNbTeOx catalysts.

In our recent work, a sol-gel method was used to prepare M1–TiO2 nano-composite
catalysts, which showed a positive influence on the catalytic performances of M1 cata-
lysts [56]. This work aimed to investigate how the contact pattern between M1 and TiO2
particles affected the catalytic performance and unveiled the synergistic effect of M1 and
TiO2 in the catalytic process. We adopted two different methods to prepare the M1–TiO2
nanocomposite oxide catalysts with different contact interactions between M1 and TiO2.
The phase-pure M1 and TiO2 were mixed at the macro- or micro-scales by the physical mix-
ing or sol-gel methods, respectively. The potential mechanisms were explained by different
characterization techniques, which can provide new insights on how to manipulate the
catalytic performance of M1-based catalysts for ODHE.

2. Experimental
2.1. Preparation of Catalysts

MoVNbTeOx mixed metal oxide was synthesized hydrothermally via an aqueous
solution composed of ammonium heptamolybdate (99.0%; Sigma-Aldrich, Darmstadt,
Germany), vanadyl sulfate (97%; Sigma-Aldrich, Tokyo, Japan) telluric acid (98%; Sigma-
Aldrich, Tokyo, Japan), and ammonium niobium oxalate (99.99%; Sigma-Aldrich, Darm-
stadt, Germany), on the basis of the procedure reported in the literature [9,57]. The aque-
ous solution contained Mo, V, Te, and Nb at a molar ratio of 1:0.25:0.23:0.18. The lump
solid obtained was ground to the powder form mainly consisting of phases M1 and M2.
The phase-pure M1 was achieved by the post-treatment to remove the M2 phase using
30% HNO3.

Titanium sol was prepared as follows: tetrabutyl titanate (Sinopharm Chemical
Reagent Co., Ltd., Shanghai, China), deionized water, anhydrous alcohol (Sinopharm Chem-
ical Reagent Co., Ltd.), and hydrochloric acid (Sinopharm Chemical Reagent Co., Ltd.,
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Shanghai, China) were mixed thoroughly at a C16H36O4Ti:H2O:C2H5OH:HCl molar ratio
of 1:1:15:0.3, forming a stable transparent sol with 7.4 wt % TiO2. Titanium sol was dried
overnight at 80 ◦C and calcined in air for 6 h at 400 ◦C in a muffle furnace to obtain a TiO2
sample. The preparation procedure of the catalysts is shown in Scheme 1A.
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activity test.

As mentioned above, the major concern of this work was to present the influence of the
preparation method of M1–TiO2 composite catalysts on the catalytic performance in ODHE
process. Two methods were employed to synthesize the catalysts of M1–TiO2, where
40 wt % TiO2 was chosen as an optimized composition based on our earlier work [56].
Firstly, the simplest way to make the composite catalyst was the physical mixing, i.e., solid
TiO2 was milled together with the phase-pure M1 at a mass ratio of 2:3 and then ground
mechanically for 10 min. In this way, the obtained catalyst was named as M1-40TiO2-
PM. Secondly, the sol-gel method was employed to have the M1 mixed with TiO2 more
intimately at the micro-scale. That is, the phase-pure M1 was mixed with the titanium sol
at a mass ratio of 9:1, stirred in a 60 ◦C water bath for 2 h and dried overnight at 80 ◦C.
After the activation by calcination in air for 6 h at 400 ◦C with the heating rate of 5 ◦C/min
in the muffle furnace, the obtained catalyst was named as M1-40TiO2-SM.

2.2. Characterization of Catalysts

The Brunauer-Emmett-Teller specific surface area (BET), inductively coupled plasma
optical emission spectrometer (ICP-OES), X-rays diffraction (XRD), transmission Electron
Microscope (TEM), scanning electron microscope (SEM), and X-ray photoelectron spec-
troscopy (XPS) techniques were applied to characterize the catalysts, which is consistent
with our previous work [45,58]. A H2 temperature-programed reduction (H2-TPR) mea-
surement was conducted in a quartz tube (inner diameter 4 mm ), and 10 mg sample
were used in analysis. Prior to analysis, the catalyst was purged for 30 min at 200 ◦C in
an Ar stream at a flow rate of 20 mL/min and then cooled to 50 ◦C. Then, the gas flow
was switched to a 10% H2/Ar flow at a flow rate of 20 mL/min by a 6-way valve and
ramped from 50 to 800 ◦C at 10 ◦C/min. A thermal conductivity detector (TCD) detector
(8860 GC system, Agilent) was used to measure H2 consumption during the process. A
C2H6 temperature-programmed surface reaction (C2H6-TPSR) experiment was performed
in a quartz tube (4 mm i.d.), and 20 mg sample were used in analysis. Prior to analysis,
the catalyst was purged for 30 min at 200 ◦C in a N2 stream at a flow rate of 20 mL/min.
Then, the gas flow was switched to a 25% C2H6/N2 flow at a flow rate of 20 mL/min
and ramped from 200 to 700 ◦C at 10 ◦C/min. The outlet gas was detected by an on-line
FTIR (Nicolet-is50; Thermo Fisher). For all used catalysts, the reaction condition was a
reaction temperature of 400 ◦C and a contact time of 18.52 gcat·h/molC2H6 at the ambient
pressure, the inlet molar ratio of C2H6/O2/He was 30/20/50, and the reaction time was
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about 24 h. Laser Raman spectra were recorded at the ambient temperature in air with a
325 nm laser excitation on a HORIBA Raman Spectrometer (LabRAM HR Evolution Raman
Spectrometer, HORIBA). The laser power on the sample was 3.2 mW, and the integration
time was 60 s 4 times for each spectrum.

2.3. Evaluation of the Catalysts

The prepared catalyst samples were evaluated in a quartz tubular reactor (8 mm i.d.;
600 mm in length) at the atmospheric pressure for the ODHE process. For each series of
experiments, 0.3 g catalyst was diluted by 3.0 g SiC particles with a size of about 200 µm
to weaken the heat effect on the temperature distribution in the packed bed [41]. The
compositions of the reactant gases at the inlet were given as 30% C2H6, 20% O2, and 50% He
(molar ratio), which referred to the literature as a reasonable base to compare the reaction
performances [57]. The contact time was defined as W/FC2H6 (where W is the mass of the
catalyst and FC2H6 is the ethane molar flow rate), and the total flow rate was varied from
about 22 to 55 mL/min, corresponding to the contact time of 7.55–18.52 gcat·h/molC2H6.

Intrinsic kinetic analysis was performed according to the conditions of the reference
literature [59]. In order to exclude the effect of the mass and the heat transfer in the fixed
bed, about 20–40 mg catalyst were diluted by SiC particles to a total mass of 1100 mg,
using a total gas flow of 30 mL/min during the whole process and keeping the XC2H6
smaller than ~5%. The partial pressures of C2H6 were 10/20/30 kPa and those of O2 were
10/15/20 kPa (He as a balance gas) were used to determine the order dependence of the
reaction on the reactants. For the activation energy determination, the inlet reactant molar
ratio (C2H6/O2/He) of 30/20/50 was used at the temperature range of 360–440 ◦C.

An on-line Shimadzu GC 2014 equipped with a TCD detector was used to measure
the compositions of the reactants and the products, in which two columns were used to
separate the products (a PorapakQ column for CO2, C2H4, and C2H6 and a 5A molecular
sieve column for O2 and CO). The conversion of ethane and the selectivity to products were
calculated as follows:

XC2 H6 = (1 −
2 fC2 H6

2 fC2 H6 + 2 fC2 H4 + fCO + fCO2

)× 100%, (1)

SC2 H4 =
2 fC2 H4

2 fC2 H4 + fCO + fCO2

× 100%, (2)

SCO =
fCO

2 fC2 H4 + fCO + fCO2

× 100%, (3)

SCO2 =
fCO2

2 fC2 H4 + fCO + fCO2

× 100%, (4)

where XC2H6 is the ethane conversion, S is the selectivity to a certain product, and f is the
molar fraction in the effluent gas. The diagram of fix-bed system for the catalytic activity
test is shown in Scheme 1B.

3. Results and Discussion
3.1. Reaction Performance in the ODHE Process
3.1.1. Catalytic Performance

Figure 1 shows the catalytic performances of the catalysts at different reaction tem-
peratures and contact times. The main products included ethylene, carbon monoxide, and
carbon dioxide, whereas a very small amount of acetic acid was ignored [60]. It can be seen
that TiO2 itself had almost no catalytic activity for the selective oxidative dehydrogenation
of ethane to ethylene over a wide range of temperatures and contact times for the ODHE
reaction, which showed a ~12% ethane conversion with a ~3% ethylene selectivity at the
reaction temperature of 400 ◦C and a contact time of 18.52 gcat·h/molC2H6. In addition,
the performances of the catalysts M1, M1-40TiO2-SM, and M1-40TiO2-PM were typical of
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the oxidative transformations of hydrocarbons as reported in the literature [24]. However,
the addition of TiO2 can significantly promote the catalytic performance, no matter which
method was employed to add the TiO2 to the phase-pure M1.
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function of reaction temperature; and (D) products selectivity as a function of the ethane conversion
in the ODHE process at the contact time of 18.52 gcat·h/molC2H6. Reaction conditions: ambient
pressure and the C2H6/O2/He molar ratio = 30/20/50 at the reactor inlet.

As shown in Figure 1A, the conversion of ethane rose linearly with the increase of the
contact time, while the selectivity of ethylene decreased because of the over-oxidation of
ethane/ethylene to carbon oxides. Interestingly, in spite of the fact that the M1-40TiO2-SM
catalyst displayed an obvious advantage in the ethane conversion at the same conditions,
the M1-40TiO2-PM catalyst showed a higher ethylene selectivity at the same ethane con-
version than the M1-40TiO2-SM catalyst (Figure 1B). As presented in Figure 1C, increasing
the reaction temperature could significantly enhance the catalytic performances of all the
samples. Generally, because the Arrhenius rate increases with temperature [61], which can
explain the tendency of the ethane conversion rising linearly with the increase of the reac-
tion temperature. As mentioned above, catalysts M1, M1-40TiO2-SM, and M1-40TiO2-PM
showed similar trends in selectivity for ethylene (Figure 1D). The increase of the ethane con-
version and the decrease of the ethylene selectivity resulted from the deep over-oxidation
in the ODHE reaction.

Figure 2 shows the space-time yields (STYs) of ethylene at different reaction conditions.
At the reaction temperature of 400 ◦C (Figure 2A), the STY decreased with the increasing
contact time, which was related to the fact that the ODHE reaction was the first-order
dependence on ethane. Conversely, the temperature had a positive effect on the STY
(Figure 2B). At the contact time of 7.55 gcat·h/molC2H6 and the reaction temperature of
400 ◦C, the STY of ethylene of the M1-40TiO2-SM catalyst was 0.67 kgC2H4/kgcat/h, while
that of the M1-40TiO2-PM catalyst was 0.52 kgC2H4/kgcat/h, which were 76% and 35%
more than that of the phase-pure M1 (0.38 kgC2H4/kgcat/h), respectively. In addition, the
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M1-40TiO2-SM catalyst presented a higher catalytic activity than that of the M1-40TiO2-PM
catalyst in a wide range of reaction temperatures and contact times.
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ature of 400 ◦C; and (B) space-time yield as a function of the reaction temperature at the contact
time of 18.52 gcat·h/molC2H6 in the ODHE process. Reaction conditions: ambient pressure and the
C2H6/O2/He molar ratio = 30/20/50 at the reactor inlet.

As shown in Figure 3 and Table 1, the activation energies for the ethane conversion
were 91.4 kJ/mol for M1 and 82.3/88.4 kJ/mol for M1-40TiO2-SM/PM. At the same time,
the order dependence of the response to C2H6 and O2 was only slightly changed, which
was similar to the ODHE reaction following the MvK mechanism reported in the liter-
ature [46,62]. However, the difference in the activation energy of about 8 kJ/mol and
the reaction order were not sufficient to demonstrate a change in the reaction mecha-
nism [19]. Furthermore, the different preparation methods (sol-gel or physical mixing
methods) showed a different activation energy and reaction order dependence on C2H6,
which implied a difference in the interaction between M1 and TiO2. Meanwhile, both
samples with the sol-gel and physical mixing methods showed an increase in the reaction
order dependence on O2, which implied the changes in oxygen species after introducing
TiO2 into the M1 phase.
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Table 1. Kinetic parameters for the ODHE process (–rC2H6 = A0·exp(–Ea/RT)·PC2H6
α·PO2

β).

Catalyst α β ODHE Ea (kJ/mol)

M1 0.90 0.02 91.4
M1-40TiO2-SM 0.99 0.06 82.3
M1-40TiO2-PM 0.90 0.06 88.4
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3.1.2. Catalyst Stability

Time-on-stream experiments in 24 h were performed to investigate the catalytic sta-
bility of the samples (Figure 4). As shown in Figure 4, the catalytic performances of the
phase-pure M1 catalyst and TiO2 were stable in 24 h time-on-stream tests. The ethane
conversion of the M1-40TiO2-SM catalyst had a certain decrease, and the ethylene selectivity
had a corresponding increase with the progress of the reaction time. Interestingly, instead
of reduction, both the ethane conversion and ethylene selectivity of the M1-40TiO2-PM
catalyst exhibited slightly improvements with the progress of the reaction time in 24 h.
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3.2. Catalyst Characterization
3.2.1. Elemental Compositions and Textural Properties

The bulk compositions of the samples were measured by ICP-OES, as shown in Table 2.
The addition of TiO2 to the phase-pure M1 by the sol-gel method and the physical mixing
method had no effect on the bulk metal content of the phase-pure M1, while it significantly
increased the surface areas and changed the pore volumes of the M1-40TiO2-SM and
M1-40TiO2-PM catalysts as given in Tables 2 and 3. This increase was much larger than
the addition of other elements to the M1 phase [9,24,63]. Compared with fresh catalysts,
the used catalysts M1, M1-40TiO2-SM, and M1-40TiO2-PM showed the relative stable
characteristics in terms of the specific surface area and the pore volume, which may explain
the reason for the stability of the catalytic performances of those catalysts in the 24 h
time-on-stream experiments.

Table 2. Compositions of the phase-pure M1 MoVNbTeOx-TiO2 catalysts.

Catalyst TiO2 Content (wt %) Bulk Composition

M1 - MoV0.25Nb0.24Te0.12
M1-40TiO2-SM 39.6 MoV0.25Nb0.24Te0.12
M1-40TiO2-PM 40.0 MoV0.25Nb0.24Te0.12
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Table 3. Textural characterization of the phase-pure M1 MoVNbTeOx-TiO2 catalysts.

Catalysts Specific Surface Area (m2/g) Pore Volume (cc/g)

M1 17.7 0.060
Used M1 15.7 0.048

M1-40TiO2-SM 52.4 0.085
Used M1-40TiO2-SM 49.6 0.080

M1-40TiO2-PM 36.3 0.066
Used M1-40TiO2-PM 36.1 0.063

TiO2 52.7 0.104

3.2.2. XRD

Figure 5 shows the XRD patterns of the samples. The typical characteristic peaks of
the M1 (ICSD 55097; 2θ = 6.6◦, 7.7◦, 8.9◦, 10.7◦, 22.1◦, 27.2◦, 29.2◦, and 35.48◦) [64] and
the anatase-phase TiO2 (JPDS 21-1272; 2θ = 25.4◦, 37.9◦, 48.2◦, 53.8, 54.1◦, 62.6◦, 70.5◦, and
75.1◦) [65] were observed, and no other crystalline peaks were detected. The full widths at
half maximum (FWHMs) of these peaks decreased after introducing TiO2, which implied
an increase in the size of the crystalline domain of the anatase phase. It also can be seen that
no significant change was detected in the XRD patterns of the used catalysts comparing
with in the XRD patterns of the fresh catalysts, suggesting that the catalytic performances
of the samples may be partly attributed to the stable crystal structures of the catalysts.
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3.2.3. Catalysts Morphologies

Figure 6A–F presents the surface micrographs of the catalysts M1 catalyst, M1-40TiO2-
SM, and M1-40TiO2-PM, together with those of the used ones in the ODHE process.
Figure 6A shows M1-phase crystals with a rod-like morphology and an average width of
~100 nm and an average length of ~200 nm, which is consistent with those in the litera-
ture [9]. The SEM image (Figure 6B) shows well-dispersed TiO2 particles on the surface
of the M1-40TiO2-SM catalyst. While for the M1-40TiO2-PM catalyst, the TiO2 particles
were not adhered uniformly to the surface of the phase-pure M1, and the size of rodlike
M1 decreased obviously, resulting from being ground mechanically with TiO2, which may
cause a slight improvement of the catalytic activity of the M1-40TiO2-PM catalyst in the
24 h time-on-stream experiment. The TEM images (Figure 7B,C) showed two different
crystals observed in the catalysts M1-40TiO2-SM and M1-40TiO2-PM, which represented
phase-pure M1 and TiO2, respectively. Comparing Figure 6B,C and Figure 7B,C, the at-
tachment of TiO2 added to the phase-pure M1 by the sol-gel method was greater than that
by the physical mixing method, which was in agreement with the appearance of the SEM
images. No obvious change was observed in the SEM and TEM images of the used catalysts
M1, M1-40TiO2-SM, and M1-40TiO2-PM, illustrating the structural stability of the catalysts.
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3.2.4. XPS Analysis

The XPS spectra of the key elements in the fresh and used catalysts M1, M1-40TiO2-SM,
and M1-40TiO2-PM were analyzed to study the influence of the TiO2 introduction on the
element valence states of the catalyst surface. The binding energy data of the reference
material were obtained from the NIST X-ray Photoelectron Spectroscopy Database.

As presented in Figure 8, the binding energy of Mo 3d (232.9 ± 0.2 eV) was simi-
lar to the value of 232.8 eV typically reported for MoO3; the binding energy of Nb 3d
(207.2 ± 0.2 eV) was identical to 207.2 eV typically reported for Nb2O5; the binding energy
of Te 3d (576.3 ± 0.2 eV) was the same as the value of 576.3 eV as reported for TeO2; and
the binding energy of Ti 2p (458.5 ± 0.1 eV) was similar to 458.4 eV reported for TiO2,
corresponding to valence states of Mo6+, Nb5+, Te4+, and Ti4+, respectively [3,9,60]. Intro-
ducing TiO2 to the phase-pure M1 did not affect the valence states of elements Mo, Nb, Te,
and Ti in catalysts M1-40TiO2-SM and M1-40TiO2-PM. However, the surface composition
was changed significantly for M1-40TiO2-SM, in which the Te was associated with C–H
cleavage and active oxygen species was enriched on the surface [66–68]. It also can be seen
that no change was detected on the surface compositions and valence states in Mo, Nb, Te,
and Ti elements in the 24 h time-on-stream tests.
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Figure 9 illustrates the XPS spectra of vanadium on the fresh and used samples
(M1, M1-40TiO2-SM, and M1-40TiO2-PM). The V 2p3/2 peak could be fitted into two
phases at 516.3 ± 0.1 eV and 517.1 ± 0.1 eV, corresponding to the V4+ and V5+ species,
respectively [69,70]. As shown in Table 4, the V5+/V4+ ratios of catalysts M1-40TiO2-SM
and M1-40TiO2-PM increased considerably due to the introduction of TiO2, which is the
important reason for promoting remarkably the catalytic performance. The ratio of the
vanadium valence states of the M1-40TiO2-SM catalyst (V5+/V4+ ratio = 1.18) was higher
than that of the M1-40TiO2-PM catalyst (V5+/V4+ ratio = 1.10), which was consistent
with the result of the evaluation in Section 3.1.1. Moreover, the decrease of the catalytic
performance of the used M1-40TiO2-SM catalyst (in Section 3.1.2) was accompanied by
the decrease of the V5+/V4+ ratio, which has also been proved that the amount of V5+

in catalysts significantly influenced the catalytic activity in the ODHE reaction, just as
reported in the reference [32]. Unlike the M1-40TiO2-SM catalyst, the used M1-40TiO2-PM
catalyst showed a slight promotion in the 24 h time-on-stream test, which may be caused
by the synergistic effect of the decrease of the V5+/V4+ ratio and the increase of the specific
surface area of the used M1-40TiO2-PM catalyst.

3.2.5. H2-TPR and C2H6-TPSR Characterizations

It is widely accepted that the ODHE process catalyzed by M1 catalyst follows the
MvK mechanism, in which the lattice oxygen species is responsible for the cleavage of
the C–H bond in ethane [71,72]. Therefore, there must be some correlation between the
activity of lattice oxygen species and the catalytic performance of the catalyst. Hence,
we conducted the H2-TPR and C2H6-TPSR characterizations to evaluate the amount and
activity of oxygen species, which may contribute to the catalytic activity. As shown in
Figure 10, broad peaks in the range of 300–650 ◦C were observed for all samples, except for
TiO2. After introducing the TiO2, the peak position was shifts from 550 to 520 ◦C and 504 ◦C
for M1-40TiO2-PM and M1-40TiO2-SM, respectively. In addition, for the M1-40TiO2-SM
sample, an additional peak was observed at about 420 ◦C. The new peak might correlate
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with surface oxygen species (electrophilic oxygen species) and had a negative effect for
the ethylene selectivity [73,74], as shown in Section 3.1.1. Moreover, the H2 consumption
decreased after the introduction of the TiO2 phase, which implied the decreased amount of
available lattice oxygen species.
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Table 4. Ratios of the vanadium valence states and the surface compositions of the fresh and used
catalysts in the ODHE process.

Catalyst V5+/V4+ Ratio Surface Composition

M1 1.00 MoV0.10Nb0.34Te0.21
Used M1 1.00 MoV0.10Nb0.34Te0.21

M1-40TiO2-SM 1.18 MoV0.11Nb0.33Te0.34
Used M1-40TiO2-SM 0.87 MoV0.11Nb0.32Te0.32

M1-40TiO2-PM 1.10 MoV0.11Nb0.36Te0.21
Used M1-40TiO2-PM 1.10 MoV0.11Nb0.36Te0.21
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M1-40TiO2-SM, M1-40TiO2-PM, and TiO2).

Figure 11A–F shows the C2H6-TPSR profiles for all samples. As shown in Figure 11A,
peaks at about ~400, ~580, and ~640 ◦C can be observed for C2H4 signals. It should be
noted that the reaction temperature of ODHE based on the M1 catalyst was in the range
of 300 to 500 ◦C and the peak at about ~400 ◦C was more relevant. After the introduction
of TiO2, the peak position shifted from 420 to 405 and 395 ◦C for M1-40TiO2-PM and
M1-40TiO2-SM, respectively.
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In addition, the peaks area at ~400 ◦C had a positive correlation with the catalyst
activity (M1-40TiO2-SM > M1-40TiO2-PM > M1), which indicated a difference in the amount
of active oxygen species available for the C–H bond cleavage in different catalysts. Besides,
at high reduction temperatures, there were huge differences among different catalysts
(which may be related to thermal cracking reaction or coke formation). In conclusion, both
H2-TPR and C2H6-TPSR profiles demonstrated that the introduction of TiO2 by the physical
mixing method or sol-gel method significantly affected the reduction properties and the
amount of available oxygen species for the cleavage of C–H bonds, which may contribute to
the activity of M1 catalysts for the ODHE process. Moreover, the differences of the H2-TPR
and C2H6-TPSR profiles between M1-40TiO2-SM and M1-40TiO2-PM implied the presence
of different promotion mechanisms underlying the M1–TiO2 nanocomposite, which may
be caused by the different interaction mechanisms between TiO2 and M1 prepared by
different methods.

3.2.6. Raman Spectra

Figure 12 shows the Raman spectra of M1 and M1-40TiO2-PM/SM samples including
the reference material (TiO2). The peaks corresponding to M1 (872 and 792 cm−1) [60]
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and anatase-phase TiO2 (148, 400, 522, and 643 cm−1) [75] were detected. The M1-40TiO2-
PM/SM samples showed different relative intensities about the M1 and anatase-phase TiO2
in Raman spectra, and the relative intensity of TiO2 in M1-40TiO2-SM was increased. The
results are consistent with Figures 6 and 7, in which the TiO2 particles were well dispersed
in SM samples. There was no other peak detected, which implied that no change took place
in the M1 and TiO2 during the preparation procedure.
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4. Conclusions

Catalysts of 40 wt.% TiO2 introduced to a phase-pure M1 were prepared by the sol-
gel method and the physical mixing method and evaluated in a fixed bed reactor for
the ODHE process. Many characterization methods were applied to reveal the effects of
TiO2 introduced by different methods. It was found that the introduction of TiO2 to the
phase-pure M1 by two methods can both effectively promote the catalytic performance.
Compared to the M1-40TiO2-PM catalyst, the M1-40TiO2-SM catalyst presented a higher
STY of ethylene of 0.67 kgC2H4/kgcat/h, showing an increase by 76% than that of the
phase-pure M1 catalyst at the reaction temperature of 400 ◦C. The introduction of TiO2 to
the phase-pure M1 can significantly increase the activity of oxygen species and improve
the oxidative state of vanadium species on the surface of catalysts M1-40TiO2-SM and M1-
40TiO2-PM, which was proved as an essential factor in enhancing the catalytic performance
in the ODHE reaction. However, in comparison with the physical mixing method, the
sol-gel method changed the surface composition of the M1 phase significantly. H2-TPR
and C2H6-TPSR profiles also demonstrated the difference of oxygen species between
M1-40TiO2-SM and M1-40TiO2-PM. Moreover, the structure design of the M1-TiO2-SM
nanocomposite (e.g., a wrapped structure [76]) will be interesting for the improvement of
the catalytic performance. Though the sol-gel method beneficial for generating a better
catalytic performance, the M1-40TiO2-PM can reach a higher catalytic efficiency at a high
operation temperature and showed a superior stability in the long-term test. More details
deserve further investigation to improve the catalytic activity of the M1-40TiO2-PM catalyst,
as the physical mixing method is simpler than the sol-gel method.
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