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Abstract: A series of mesoporous carbonaceous materials were synthesized by the nanocasting
technique using boehmite as a template and glucose as a carbon precursor. After pyrolysis and
template removal, the resulting material is a mesoporous carbon that can be additionally doped
with N, B and K during prepyrolysis impregnation. In addition, the influence of doping on the
morphology, crystallinity and stability of the synthesized carbons was studied using X-ray diffraction,
nitrogen physisorption, thermogravimetry, Raman and IR spectroscopy and transmission electron
microscopy. While the nanocasting process is effective for the formation of mesopores, KOH and
urea do not modify the textural properties of carbon. The use of H3PO4 as a dopant, however, led
to the formation of an AlPO4 compound and resulted in a solid with a lower specific surface area
and higher microporosity. All doped solids present higher thermal stability as a positive effect of
the introduction of heteroatoms to the carbon skeleton. The phosphorus-doped sample has better
oxidation resistance, with a combustion temperature 120–150 ◦C higher than those observed for the
other materials.

Keywords: nanocasting; mesoporous carbons; doping; boehmite; glucose

1. Introduction

Mesoporous carbons are materials with a continuous carbon skeleton with a pore size
within the range of 2 to 50 nm [1]. These materials present very interesting properties such as
a large surface area, adjustable framework, tunable pore size, high resistance to corrosion and
high mechanical and thermal stability. These features, along with their appreciable electron
conductivity and relative chemical inertness, make these materials very useful in various
fields such as adsorption, biotechnology, energy storage, sensing applications and in catalysis
as catalytic supports or catalysts [2,3]. When obtained from waste biomass (a renewable
and low-cost source), mesoporous carbons are considered environmentally benign and cost
competitive to other supports or heterogeneous catalysts [4]. Mesoporous carbons can be
obtained by different processes such as carbonization and activation of organic precursors or
by direct synthesis [5,6]. More complex and interesting carbon-based structures can also be
obtained using new methods such as additive manufacturing and high-temperature pyrolysis
procedures, which allow the formation of pyrolytic carbon micropillars with nanosized voids
and associated nanolattices with improved mechanical properties and large deformability
with great potential for energy storage applications [7–9].

However, molding or templating is one of the most powerful techniques in which
highly structured porous networks are obtained using either solids (exotemplating or
hard templating) or molecules (endotemplating or soft templating) as templates to ob-
tain inverse carbon replicas. This method has the advantage of easy control of particle
morphology and pore size by selecting the used template [10]. On the other hand, hard
templating, also known as nanocasting, is a versatile, cheap and suitable way for industrial
applications. The mold that acts as a ‘template’ is impregnated with a carbon precursor
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and then processed and submitted to chemical treatments to obtain an inverse replica of
the initial mold.

Rigid inorganic solids, such as mesoporous zeolites, aluminas and lamellar solids
such as hydrotalcites, can be used as templates. The mesostructure and pore surface of the
template are decisive for the infiltration of the precursor and favored by its rigid replica’s
structure control [5].

The template channels are infiltrated with an appropriate carbon precursor, commonly
a sugar, such as sucrose or glucose, that is in situ converted by carbonization or pyrolysis
to carbon which within the template structure appears as a continuous carbon network.
Once the precursor has replicated the negative of the template, the target materials are
received after template removal [2,3,11].

Doping the carbonaceous structure with specific heteroatoms can increase its thermal,
mechanical and structural stability while improving the selectivity, activity and durability
of these materials in catalytic reactions [12,13]. Heteroatoms such N, B and P have been
classically used for this purpose, as they can generate superficial defect sites that break
carbon electroneutrality, improving this way the performance of the carbonaceous material.
For example, P- or B-doped mesoporous carbons present better catalytic properties in
direct dehydrogenation of propane (higher propane conversion and propene selectivity)
than undoped carbon due to the increase in the population of the main active sites (car-
bonyl/quinone groups) [14]. On the other hand, N-doped carbon catalysts speed up the
dissociative adsorption of oxygen molecules, decreasing the activation energy for oxidative
dehydrogenation [15,16]. Carbon activation achieved by doping with potassium is espe-
cially interesting. This element is intercalated between the graphite sheets in their cationic
form, K+, increasing the specific surface of these materials. It also manages to increase
graphite conductivity by more than one order of magnitude, achieving superconductivity
at very low temperatures in crystalline graphite. Finally, and because of its low reduction
potential, potassium is easily reduced to its neutral form during all heating stages which is
coupled with the oxidation of C [17,18]. The main strategies described in the literature for
the production of doped carbons are based on the use of a precursor rich in the desired
element, included either directly in the synthesis process or in the post-treatment process
after the synthesis of the carbonaceous material [19–21].

Boehmite is a mesoporous aluminum oxyhydroxide (AlOOH) that can be used as a
template in nanocasting processes. Orthorhombic boehmite minerals (space group Cmcm)
crystallize in a two-dimensional structure, with layers of edge-shared AlO4(OH)2 octahedra
linked by hydrogen bonds (Figure 1) [22–24]. Boehmite is a cheap template and can be
prepared using a simple sol–gel method.
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The pyrolysis treatment to which the template is subjected after infiltration with the
carbon source could cause boehmite transformation into different transitional alumina
phases, depending on the used temperature and atmosphere. In the temperature range
generally used for the pyrolysis of organic matter to obtain carbon materials, a gamma-
alumina phase is produced. Gamma-alumina, γ-Al2O3, is transitional metastable alumina
in the temperature range of 500–850 ◦C [25]. The structure of γ-Al2O3 is traditionally
considered a cubic defective spinel in which the oxygen atoms are arranged in a cubic
close packing (face-centered cubic (fcc)), and the Al atoms occupy the octahedral and
tetrahedral sites with existing cationic vacancies that maintain the electric neutrality [26,27].
It is also a mesoporous oxide widely used as catalytic support due to its suitable surface
and textural properties.

As far as we know, boehmite has not been used before as a template in the nanocast-
ing process to obtain mesoporous carbon. However, some studies have been published
dedicated to obtaining carbon nanotubes using anodic aluminum oxide (AAO) as a tem-
plate [28–30].

Taking into account all described above, the objective of this work is to explore the use
of boehmite as a template to obtain mesoporous carbons from biomass by the nanocasting
method and to study the influence of different dopants on carbon structure and textural
properties. The adopted strategy consists of using boehmite as a template, glucose as a
carbon precursor (glucose) and the incorporation of different additives (KOH, H3PO4 and
urea as a source of K, P and N, respectively) during the synthesis procedure. Glucose
was selected as a carbon precursor, being a molecule representative of renewable vegetal
lignocellulosic biomass as its main component [31].

2. Results and Discussion

A detailed description of doped/undoped mesoporous carbon preparation is provided
in Section 3.

Figure 2 shows X-ray diffractograms of the pyrolyzed samples before template re-
moval. The pyrolysis process induces the transformation of the boehmite crystalline phase
(AlOOH) to γ-Al2O3 (JCPDS: 00-010-0425). This transformation is consistent with the used
temperature (700 ◦C) [25]. Only in the case of the sample impregnated with phosphoric
acid does the formation of a new crystalline phase (aluminum phosphate (AlPO4), JCPDS:
00-051-1674) occur after the reaction between additive and template. In all samples, carbon
diffractions are not clearly discernible due to their overlap with those of the template.
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According to the XRD results, the materials generated after pyrolysis can be considered
template–carbon hybrids (AlPO4–C in the case of the sample treated with phosphoric



Catalysts 2021, 11, 1132 4 of 17

acid and γ-Al2O3–C for the rest of the series). However, while not the objective of the
present paper, the hybrid materials could be of high potential interest, as carbonaceous
hybrid materials with nanocomposites is an emerging field with a large variety of possible
applications in different scientific and technical fields, such as catalysis, electrochemistry,
absorption, sensors, etc. [32,33]. Additionally, our hybrids are obtained in an economical
and sustainable way.

The effectiveness of successive template removal treatments, i.e., dissolution stages
(up to four), was followed by XRD. As an example, Figure 3A shows an evolution of the
X-ray diffractograms of the pyrolyzed B_Glu sample after each dissolution stage. It can be
seen how the different dissolution stages lead to more effective removal of the template,
confirmed by the appearance of characteristic diffractions of the carbonaceous material
visible in the final solid. After the third dissolution stage, a new crystalline phase appears,
with a peak at 2θ ≈18◦, which could be assigned to a silicate, perhaps from contamination
produced by the glass containers used for the template dilution processes.
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Figure 3. Evolution of X-ray diffractograms of (A) pyrolyzed B_Glu sample and (B) pyrolyzed
B_Glu_P sample after each stage of template dissolution (� carbon, • γ-alumina, * silicate).

Similar results were obtained for the pyrolyzed B_Glu_K and B_Glu_N samples
(Figures S1 and S2), evidencing that the template removal treatments have a similar effect
in such materials.

In the case of the pyrolyzed B_Glu_P sample, complete elimination of the AlPO4 phase
was not achieved after four stages of dissolution, confirmed by the visible diffractions
corresponding to that compound (Figure 3B).

Figure 4 shows diffractograms of the final carbons obtained after the full template
dissolution treatment. In all cases, reflections at 2θ ≈ 25◦, 44◦ and 80◦ are observed,
corresponding, respectively, to the families of planes (002), (100) and (110) of graphitic
carbon. Diffraction of (002) planes is attributed to the structural packing of the aromatic
layers through van der Waals forces, while (100) and (110) signals arise from the aromatic
structures in the plane [34,35].

The intensity of the (002) peak is related to the degree of graphitic crystallinity in such
a way that wide and low-intensity peaks indicate a low order at short range of the graphite
carbon sheets organization, while sharp and narrow peaks correspond to highly crystalline
carbons with a high degree of order at long range [34–36].

To evaluate the degree of crystallinity of the obtained carbons, the crystallite height
(Lc) and crystallite diameter (La) parameters were calculated. The magnitudes of these
parameters determine the sizes of the crystals within the carbon sample [34,35,37]. An
increase in those parameters an increased graphitization of the carbon. Additionally, the
interlayer spacing (d002), the number of aromatic layers per carbon crystallite (Nave) and the
R value, considered as the empirical graphical ratio of the (002) XRD peak intensity relative
to the background at the same scattering angle, have been estimated [38]. All these values
are summarized in Table 1.
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Figure 4. Diffractograms of the synthesized carbons (� carbon, # AlPO4, * silicate).

Table 1. Structural parameters for the synthesized carbons.

Sample Lc (Å) La (Å) R d002 Nave

C(B_Glu) 14 29 1.56 3.63144 5
C(B_Glu_K) 10 29 1.7 3.72021 4
C(B_Glu_N) 10 29 1.6 3.6451 4
C(B_Glu_P) 14 24 1.64 3.79856 5

Insignificant differences are observed within the synthesized series of materials, point-
ing to a similar degree of crystallinity for all samples. While the presence of dopants such
as N and K results in a lower value of the Lc parameter and, therefore, a decrease in the
average number of graphenic layers (Nave), the C(B_Glu_P) sample remains similar to the
undoped carbon.

Figure 5 presents N2 adsorption isotherms of the obtained carbons. According to IU-
PAC [39], all present type IV isotherms with an H3 hysteresis loop in the 0.4 < P/P0 < 0.9
range, indicating a mesoporous character consisting of aggregates of particles with slit-shaped
pores and a nonhomogeneous distribution in shape and/or size [40–42]. A low microporosity
proportion is suggested by the small adsorption at very low pressures (P/P0 < 0,1) [41], and the
final materials can be described as micromesoporous carbons [39,43].
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Pore volumes were calculated from the desorption branch using the BJH method. Ac-
cording to the pore size distribution and assuming cylindrical pores (Figure 6), all samples
present dominant mesoporosity with the main pores around 4 nm in diameter and a certain
total volume fraction due to larger pores (20–50 nm) and micropores.

Catalysts 2021, 11, 1132 6 of 18 
 

 

Insignificant differences are observed within the synthesized series of materials, 

pointing to a similar degree of crystallinity for all samples. While the presence of dopants 

such as N and K results in a lower value of the Lc parameter and, therefore, a decrease in 

the average number of graphenic layers (Nave), the C(B_Glu_P) sample remains similar to 

the undoped carbon. 

Figure 5 presents N2 adsorption isotherms of the obtained carbons. According to IU-

PAC [39], all present type IV isotherms with an H3 hysteresis loop in the 0.4 < 𝑃/𝑃0 < 0.9 

range, indicating a mesoporous character consisting of aggregates of particles with slit-

shaped pores and a nonhomogeneous distribution in shape and/or size [40–42]. A low 

microporosity proportion is suggested by the small adsorption at very low pressures (𝑃∕𝑃0 

< 0,1) [41], and the final materials can be described as micromesoporous carbons [39,43]. 

 

Figure 5. N2 isotherms of the synthesized carbons. 

Pore volumes were calculated from the desorption branch using the BJH method. 

According to the pore size distribution and assuming cylindrical pores (Figure 6), all sam-

ples present dominant mesoporosity with the main pores around 4 nm in diameter and a 

certain total volume fraction due to larger pores (20–50 nm) and micropores. 

 Figure 6. Pore size distribution of the synthesized carbons (BJH desorption dV/dD pore volume).

Table 2 summarizes the textural properties of the synthesized carbons. All samples
have high BET surface areas (typically around 1000 m2/g) and pore volume (higher than
1,2 cm3/g) characteristics for mostly mesoporous carbons [41]), which makes them suitable
for possible applications as catalytic supports or absorbents. A revision of some uses of
templated mesoporous carbons can be found in Ref. [3]. The most suitable application will
depend not only on the carbon’s pore characteristics but also on the presence of surface
functional groups, which, as we will show later, is also dependent on the used dopant
agent. In any case, the textural characteristics of our carbons are similar to those reported
for mesoporous carbons acting as efficient supercapacitors as catalysts or as adsorbents
of organic molecules and metal ions. Saygılı et al. [44] reported that activated carbons
produced from tomato wastes in different pyrolysis conditions with a maximal BET area
of 1093 m2/g, a total pore volume of 1569 cm3/g and a mean diameter of 5.92 nm can
successfully be used as a sorbent to remove cationic (methylene blue) and anionic (metanil
yellow) dyes from aqueous solutions. Santos et al. [45] reported the beneficial effect of the
mesoporosity of carbon materials on palladium catalyst activity in the reaction of clean
hydrogen production via formic acid decomposition. A pore volume of 1 cm3/g and pore
sizes of around 2.7 nm are found optimal for maximal hydrogen productivity.

Table 2. Textural properties of the obtained carbons.

Sample BET
m2/g

Micropore
%

BJH desor
Pore vol. cm3/g

4V/A by BET
Pore diam. nm

C(B_Glu) 1038 5.9 1.50 4.8
C(B_Glu_K) 990 11.2 1.26 4.5
C(B_Glu_N) 1078 2.5 1.47 4.5
C(B_Glu_P) 569 57.3 0.54 3.7

The introduction of heteroatoms and potassium does not seem to have a great influence
on the textural properties of the materials, except in the case of the C(B_Glu_P) sample.
The latter presents different textural properties from the rest, such as a much smaller
surface area, lower mesoporosity and a higher percentage of micropores. This is due to
the formation of crystalline microporous aluminum phosphate, AlPO4, that results in less
mesoporous carbon after pyrolysis. This fact confirms the chief role of template porosity
for developing carbon replica textural properties.
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Table 3 shows the most relevant data of the thermogravimetric analysis of the carbona-
ceous materials after the first template dissolution stage and after its complete elimination.

Table 3. Thermal analysis results.

Sample Water loss
T (◦C) Water loss wt % Combustion

T (◦C)
Ashes
wt %

B_Glu (1) 63 6.5 451 45.3
C(B_Glu) 61 257 342 6.8

B_Glu_K (1) 66 6.2 457 52.2
C(B_Glu_K) 43 13.4 357 4.8
B_Glu_N (1) 65 6.5 462 41.0
C(B_Glu_N) 54 12.0 363 7.3
B_Glu_P (1) 55 8.1 484 13.0
C(B_Glu_P) 51 12.7 482 10.2

(1) After the first dissolution step

In general, two processes of weight loss are observed: one at low temperature (around
50 ◦C) ascribed to the loss of adsorbed water and another at higher temperatures due to
the combustion of the carbonaceous skeleton. The percentage of weight remaining after
combustion (ashes) is related to the mineral content of the sample, indicative of template
leftovers. Figure 7 shows, as an example, graphs corresponding to the B_Glu sample, while
Figures S3–S5 correspond to the other samples.
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Figure 7. Thermal analysis for samples B_Glu (after the first template dissolution step) and C(B_Glu).

After the first dissolution stage, the amount of ashes is much higher than that of
the final carbons, confirming the presence of a higher template proportion. Percentages
of ashes in the final materials (after the complete dissolution process) are considerably
reduced, demonstrating the effectiveness of the template removal process. Only for the
B_Glu_P sample is the amount of ashes similar after the first and the final dissolution
stages. This must be related to the formation of an AlPO4 phase, not fully removed with
the dissolution treatment, as evidenced by XRD (Figures 3B and 4).

Comparing the results for the final carbons (Figure 8 and Table 3), it is clear that
C(B_Glu) carbon has a lower capacity to retain physisorbed water than doped carbons,
which is evidenced by the smallest loss of weight at low temperatures (~3 wt% vs. ~13 wt%).
This fact points to a higher hydrophilic character for all doped samples, most probably
related to a higher functionalization degree.
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Figure 8. Thermal analysis for the obtained carbons.

Taking into account the combustion temperature of the carbonaceous skeleton (Table 3),
the thermal resistance of the obtained carbons can be deduced. The following order of thermal
resistance can be established: C(B_Glu_P) > C(B_Glu_N) > C(B_Glu_K) > C(B_Glu). All doped
solids have higher thermal stability than their undoped homologs, showing the positive effect of
heteroatom introduction and suggesting that all doped samples will be more difficult to oxidize.
This must be also related to the differences in crystallinity, structural disorder, concentration of
defects and edge plane sites exposition [46,47], with all doped samples presenting less disorder
than undoped carbon. In any case, the differences are small among these three samples, as stated
for XRD (Table 1 and Figure 4) and Raman (see later) analysis. The superior thermal stability of
the phosphorus-doped sample in comparison to all other materials (120–150 ◦C higher) should
also be mentioned, this effect being attributed to the presence of AlPO4.

Raman spectra of the prepared carbons in the first-order region (1800–1100 cm−1) are
shown in Figure 9. Two bands are clearly visible: one more intense around 1600 cm−1,
known as the G-band, characteristic of sp2 C hybridization and related to the degree of
graphitization; and another wide band around 1300 cm−1, known as the D-band, attributed
to the presence of structural defects, partially disordered structures and sp3 hybridization
of carbon. The estimation of the intensity ratio between both D- and G-bands (D/G ratio)
is generally used to evaluate the disordered character of carbonaceous materials [38,48,49].
All prepared samples present similar D/G ratios (Table 4), characteristic of medium-grade
disordered carbons [50]. Detailed analysis of the D/G ratios indicates that, except for the
C(B_Glu_P) sample, the doped carbons present slightly higher D/G values, indicating mild
modifications of the disorder degree, which could be related to the observed changes in
the combustion temperature and water adsorption capacity (Table 3).
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Figure 9. Raman spectra for the synthetized carbons.

Table 4. D/G intensity ratios for the obtained carbons.

Sample D/G ratio

C(B_Glu) 0.84
C(B_Glu_K) 0.85
C(B_Glu_N) 0.89
C(B_Glu_P) 0.82

Infrared studies evidence the similarity of the surface functionalities and carbonaceous
structure of the obtained carbons (Figure 10). In addition to aliphatic C–C (1460 cm−1),
C–H (2800–3000 cm−1) and aromatic C=C (1605 cm−1) and C–H (3060 cm−1 and group
of bands at 660–910 cm−1) bonds, bands characteristic of oxygenated functionalities are
also visible: C=O (1725 cm−1) and C–O (1110–1300 cm−1). The functionalization of the
surface is also demonstrated by the wide band observed at around 3400 cm−1 due to O–H
stretching of surface-adsorbed water. No bands due to the oxidic template are envisaged,
demonstrating its complete removal. Only the C(B_Glu-P) sample shows small changes in
the 1100–1000 cm−1 region, related to the existence of some traces of AlPO4, as P–O and
Al-O stretching vibrations have been described to appear in this region [50].
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The morphology, homogeneity and elemental chemical composition of the obtained
solids were studied by TEM (Figures 11 and 12). The carbons do not present a hierarchical
structure but a high degree of porosity, with pores within the mesoporosity order originated
by the effective nanocasting process. Again, the C(B_Glu_P) sample presents a different
structure, and two regions can be differentiated: one composed of several very thin sheets
and more open porosity (Region I, marked in red) and the other more similar to that
observed for all other samples (Region II, marked in yellow).
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Regarding the elemental composition of the materials, EDS compositional mappings for
C(B_Glu_K) and C(B_Glu_P) are compared in Figure 12 (the other samples are summarized in
Figures S6 and S7). Average EDS composition values are depicted in Table 5.

Table 5. EDS composition of the obtained carbons.

Mass
Fraction (%) C(B_Glu) C(B_Glu_K) C(B_Glu_N) C(B_Glu_P)

I region
C(B_Glu_P)

II region

C 83.39 65.42 74.75 75.26 87.02
O 9.76 19.05 15.40 12.92 8.72

Na 1.83 3.94 2.13 1.82 1.25
Al 0.16 4.38 1.18 0.22 0.16
Si 4.86 7.17 6.48 7.61 1.86
K - 0.04 - - -
N - - 0.07 - -
P - - - 2.81 0.98

Despite the apparently effective template removal evidenced by X-ray diffraction and
Raman, aluminum (Al) is detected in low concentrations. Some sodium (Na) is also present
and originated from the NaOH used for template dissolution. Additionally, silicium (Si),
coming from the beaker where the dilution treatments were carried out, is noticed. The two
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regions with differentiated morphologies observed for the C(B_Glu_P) sample also have
different compositions.

Concerning the incorporation of doping elements, a homogeneous distribution of
each heteroelement is detected. K is present in lower concentrations in the C(B_Glu_K)
sample due to its partial elimination during the washing process. Nevertheless, higher
concentrations of P and N are detected in the C(B_Glu_N) and C(B_Glu_P) samples, respec-
tively, indicating more effective doping. The mappings allow verifying that these elements
are homogeneously distributed in the synthesized solids.

For all above, it is evident that boehmite is an adequate candidate to serve as a
template for pristine or doped (N, P, K) mesoporous carbon production by nanocasting.
Boehmite is a cheap, easily available material with controlled mesoporosity. Although
boehmite is transformed at higher temperatures in transitional aluminas, our paper demon-
strates that pyrolysis temperatures up to 700 ◦C can be used without compromising the
formation of mesoporous carbons. The proposed method is simple, low cost and very
versatile, as the control and modification of the different synthetic parameters allows a
large variety of carbon materials. The mesomicroporous character of the final carbon can be
modulated by the modification of the textural properties of the starting boehmite and/or
by changing the pyrolysis conditions. It is well reported that modifications of pyrolysis
process parameters (temperature, heating ramp, number of heating steps, atmosphere flow
and nature, residence time, etc.) and biomass activation (prior pyrolysis) with different
chemical agents result in carbonaceous materials with different textural, chemical and
surface properties [51–53]. In fact, one of the main advantages of the pyrolysis procedure
is that it can be optimized according to the desired properties of the chars. Therefore,
although fixed pyrolysis conditions are used in this paper, this possibility opens the range
of properties of the obtained materials. The nature and properties of the produced carbons
can also be tailored by changing the carbon precursor and the doping agent. Here, we
used glucose as the residual biomass representative, but any carbon-containing molecule
can be employed.

Additionally, our method is effective for the production of hybrid carbonaceous mate-
rials (without template removal). Again, the control of pyrolysis conditions (temperature,
atmosphere, etc.), carbon source and dopant precursor could tailor the properties and
nature of the hybrid. The use of H3PO4 as a P source is particularly interesting with the
formation of a microporous crystalline AlPO4–C hybrid with an ordered microporous
structure with potential catalytic properties.

3. Materials and Methods
3.1. Mesoporous Boehmite Synthesis

The sol–gel process was employed to produce mesoporous boehmite [54]. Aluminum
isopropoxide, Al[(CH3)2CHO]3, dissolved in 2-propanol, was used as a precursor, and the
process was catalyzed by ammonia. A 17 g amount of Al[(CH3)2CHO]3 (Sigma-Aldrich
Merck KGaA, Darstadt, Germany), purity: >98%) was mixed drop by drop with 170 mL
of 2-propanol (Panreac Química S.L.U., Barcelona, Spain, 99.5% pure) under continuous
stirring. Then, the sample was refluxed at 105–110 ◦C for 5 h under constant stirring.
After cooling to room temperature, a solution of 1.4 mL of NH3 (Panreac Química S.L.U.,
Barcelona, Spain), 30% in 10 mL of deionized water was added dropwise to hydrolyze the
alkoxide. Under these conditions, the mixture can gel rapidly. The resulting gel was dried
in an oven at 85 ◦C for 2 d and finally calcined at 300 ◦C for 2 h [55]. The XRD diagram
(Figure S8) corroborates the formation of the boehmite structure (JCPDS: 00-049-0133), and
its mesoporous character is confirmed by the N2 isotherms (Figure S9), with a BET surface
area of 351 m2/g, a mean pore diameter of 16.6 nm and a pore volume of 1.74 cm3/g.

3.2. Mesoporous Carbons Synthesis

A 2.5 g amount of glucose (Sigma-Aldrich Merck KGaA, Darstadt, Germany, purity:
≥99.5%) was dissolved in 4 mL of deionized water and added dropwise to 2 g of tem-
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plate, taking into account the total pore volume of the starting template (approximated to
2 cm3/g). The obtained solid was dried in an oven at 100 ◦C for 16 h.

To prepare the doped samples, three more impregnations were performed following
the procedure described above, letting them dry in an oven at 100 ◦C for 1 h and adding,
dropwise, a sufficient amount per gram of the following doping agent solution to ensure
that they had a relative influence in the structure and properties of the final solid: (a) 50 mg
of potassium hydroxide (KOH, Sigma-Aldrich Merck KGaA, Darstadt, Germany) purity
≥85%) dissolved in 2 mL of deionized water; (b) 100 mg of urea (CH4N2O, Sigma-Aldrich
Merck KGaA, Darstadt, Germany)) dissolved in 2 mL of deionized water; (c) 1 mL of
phosphoric acid (H3PO4, (Panreac Química S.L.U., Barcelona, Spain), 85%) diluted in 1 mL
of deionized water. The obtained solids were dried at 100 ◦C for 16 h.

Table 6 shows the used nomenclature for the prepared samples, and Figure 13 sum-
marizes the appearance of the impregnated boehmite samples after drying. The color of
the solid reflects a certain degradation (dehydration) degree of glucose as a result of the
different compounds used in the impregnation and the thermal dryness treatment.

Table 6. Nomenclature of the synthesized samples.

Additive As prepared samples Obtained carbons

– B_Glu C(B_Glu)
KOH B_Glu_K C(B_Glu_K)
Urea B_Glu_N C(B_Glu_N)

H3PO4 B_Glu_P C(B_Glu_P)
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For pyrolysis, the impregnated templates were placed in a ceramic vessel within the
controlled temperature zone of the horizontal oven. The pyrolysis process was carried
out in two stages: (i) 5 ◦C/min until 200 ◦C, maintaining this temperature for 30 min, and
(ii) 10 ◦C/min until 700 ◦C, remaining for 1 h at this temperature. A constant N2 flow of
100 mL/min was used during the treatment.

These pyrolysis conditions under an inert atmosphere were selected in order to assure
the formation of nonactivated and nonmesoporous carbons. As reported, microporous
carbons are generally produced under such conditions [53,56]. To demonstrate the deci-
sive role of the boehmite template in producing mesoporous carbons, the utilization of
pyrolysis atmosphere and conditions not forming mesoporous carbonaceous materials are
mandatory.

3.3. Template Removal

Four consecutive dissolution steps were carried out to remove the template after pyrolysis,
the first three steps with hot 4M NaOH (NaOH Panreac Química S.L.U., Barcelona, Spain,
≥85%) and the last step with 1M NaOH at room temperature. In the hot steps, the samples
were mixed with 50 mL of solvent and left under agitation for 24, 48 and 96 h, respectively, as
it was proved that the agitation time influenced the effectiveness of the dissolution process.
After this, the mixtures were heated to 60 ◦C for 1 h and filtered while still hot. In the last
step, the mixtures were directly filtered after the agitation process. This template removal
procedure was established from our previous studies on the effect of the NaOH concentration,
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time and temperature of treatment, on the dissolution of boehmite and alumina pure solids.
Once filtered, the samples were subjected to several washings, an initial wash with a portion of
the corresponding NaOH solvent and then with water up to neutral pH. Finally, the resulting
products were dried in an oven at 100 ◦C for 2 h.

3.4. Characterization Techniques

Conventional XRD measurements were performed on an X’Pert Pro PANalytical
diffractometer (Malvern Panalytical Ltd., Malvern, UK) equipped with a Cu anode and a
graphite monochromator diffracted beam, working at 45 kV and 40 mA. Diffractograms
were obtained in a continuous scan mode from 10 to 90◦ 2θ using a 0.05◦ step size and
an acquisition time of 300 s. For each diffraction pattern, structural determination was
performed by comparison with the database PDF2 ICDD2000 (Powder Diffraction File 2
International Center for Diffraction Data, 2000), PA, USA).

From the XRD analysis, quantitative information of carbonaceous structure could be
obtained following the approach of Alexander et al. [57]. According to these authors, based
on the reduced intensity, several structural parameters are calculated: crystallite diameter
along basal planes, which is the length of the crystalline domain in the plane (100) (La);
the average stacking height or length of the crystalline domain in the plane (002) (Lc); the
interlayer spacing (d002); and the R value, defined as the ratio of the (002) peak intensity
relative to the background at the same scattering angle. This parameter is related to the
concentration of single graphene layers in a sample in such a way that the lower the R
value, the higher the concentration of single layers [58].

Bragg’s equation was applied to calculate the interlayer spacing:

d002 =
λ

2sinθ002
(1)

La and Lc parameters were calculated applying the Scherrer equation:

Lc =
Kcλ

β002cosθ002
(2)

La =
Kaλ

β100cosθ100
(3)

where λ corresponds to the X-ray wavelength used (1.18 Å, copper Kα), K is a dimensionless
shape factor (0.89 for the reflection (002), Kc, and 1.84 for the (100) one, Ka) [28], β is the
full width at half maximum (FWHM) of the considered diffraction peak and θ is the peak
position.

Finally, the average number of aromatic layers per carbon crystallite (Nave) has been
also calculated as: (Lc/d002) + 1.

The textural properties of synthesized solids were determined from the nitrogen
adsorption–desorption isotherms obtained at 77 K using Micromeritics Tristar II equip-
ment. (Micromeritics, Norcross, GA, USA). Prior to the measurement, samples were
degassed under vacuum at 350 ◦C for 12 h using a vacuum degasser system 061 VacPrep of
Micromeritics. Brunauer–Emmett–Teller (BET) method, t-plot and Barrett–Joyner–Halenda
(BJH) method were used to calculate the specific surface area, the micropore area and the
pore size distribution.

Thermogravimetric analysis was performed using TA Instruments Q600 equipment
(TA Instruments, New Castle, NC, USA). Samples were heated from room temperature to
900 ◦C with a heating rate of 10 ◦C/min under 100 mL/min flow of pure synthetic air.

Raman spectroscopy measurements were carried out on an HR800 Horiba Jobin Yvon
dispersive microscope with a 600 grooves/mm diffraction grating, using a green laser
(λ = 532.14 nm) working at 5 mW power, a 50 × objective and a confocal aperture of
1000 microns.
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TEM micrographs were acquired with a FEI Talos electron microscope (Hillsboro, OR,
USA) working at 200 kV and equipped with a field emission filament. The compositional
analyses of the samples were performed by energy dispersive X-Ray spectroscopy (EDS).
For TEM preparation, a few milligrams of each sample was deposited directly on a 300-
mesh holey carbon-coated copper TEM grid.

Infrared spectra of the samples were collected in diffuse reflectance mode (DRIFTS)
on a JASCO FT/IR-6200 6200 (JASCO International Co., Easton, MD, USA) unit to which a
PIKE reflector accessory model EASI-DIFF was attached. The spectra were acquired on the
pure samples (without dilution) in the range of 600 to 4000 cm−1 and with a resolution of 4
cm−1, accumulating 100 scans.

4. Conclusions

Boehmite is a very effective template to obtain mesoporous carbonaceous materials by
the nanocasting method. The incorporation of different doping agents during the synthetic
process is also satisfactory, resulting in a homogeneous distribution of the doping element.
Nevertheless, the K doping procedure results in a lower doping element concentration in
comparison to the rest of the doped carbons.

Doping with KOH and urea insignificantly modifies the textural properties of the
resulting carbon. However, the use of H3PO4 as a dopant leads to a chemical reaction
with the boehmite template and the formation of AlPO4, an indirect template, resulting in
solids with lower specific surface values and a higher percentage of microporosity. This
fact clearly demonstrates the significant influence of the used template on the textural
properties of the final carbon.

All doped carbons show better thermal resistance than the undoped carbons, particu-
larly the P-doped sample, with a combustion temperature 120 ◦C higher than the rest of
the samples.

The described process is an effective, easy, versatile and economical method to obtain
mesoporous carbons from renewable biomass sources.
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