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Abstract: Organocatalysts are abundantly used for various transformations, particularly to obtain
highly enantio- and diastereomeric pure products by controlling the stereochemistry. These appli-
cations of organocatalysts have been the topic of several reviews. Organocatalysts have emerged
as one of the very essential areas of research due to their mild reaction conditions, cost-effective
nature, non-toxicity, and environmentally benign approach that obviates the need for transition
metal catalysts and other toxic reagents. Various types of organocatalysts including amine catalysts,
Brønsted acids, and Lewis bases such as N-heterocyclic carbene (NHC) catalysts, cinchona alkaloids,
4-dimethylaminopyridine (DMAP), and hydrogen bond-donating catalysts, have gained renewed
interest because of their regioselectivity. In this review, we present recent advances in regiodivergent
reactions that are governed by organocatalysts. Additionally, we briefly discuss the reaction path-
ways of achieving regiodivergent products by changes in conditions such as solvents, additives, or
the temperature.

Keywords: organocatalysts; regiodivergent; metal-free; Lewis base; NHC; amine catalyst; Brønsted
acid; hydrogen bond-donating catalysts; solvent control; temperature control

1. Introduction

Over the past two decades, reactions that rely on organocatalysts have emerged as
important catalytic systems in asymmetric and conventional synthesis [1–14]. The uti-
lization of organocatalysts has garnered interest because they are robust, inexpensive,
environmentally benign, and easily recoverable, among other advantageous characteristics.
Moreover, the use of chiral organic molecules as catalysts enables the synthesis of highly
enantio- and diastereomeric pure products, which are of great importance in medicinal
and pharmaceutical chemistry [15–18].

Controlling the selectivity of the reactions is one of the popular fields of the research
area in synthetic organic chemistry. Organocatalysts have made it possible to develop
a large number of reactions to synthesize stereoselective [19–29], regioselective [30–40], and
chemo-selective [41–48] products. Regiodivergent synthesis reactions, which enable two or
more regioisomeric products to be synthesized from the same starting material, are con-
trolled by various reaction parameters such as catalysts, additives, solvents, temperatures,
ligands, and functional groups [49,50]. Although several metal-catalyzed regiodivergent
reactions have been thoroughly studied [51–55], organocatalytic regiodivergent reactions
have not been explored [56]. This mini review of organocatalytic regiodivergent reactions
is intended to fill this void.

2. Lewis Base Catalysts

Lewis base catalysts, including various tertiary amines (1,8-diazabicyclo[5.4.0]undec-
7-ene (DBU), 4-dimethylaminopyridine (DMAP), 1,4-diazabicyclo[2.2.2]octane (DABCO),
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etc.), cinchona alkaloids, and N-heterocyclic carbene (NHC) catalysts, are widely utilized
for asymmetric transformations such as the aldol reaction, the Morita–Baylis–Hillman
reaction, and cycloaddition. One primary application of this type of catalyst is formal cy-
cloaddition reactions, in which this catalyst type combines with ketenes or alkynes to form
in situ generated zwitterion. These intermediates subsequently undergo a cycloaddition
reaction with several electrophilic moieties to yield the cyclized products. Consequently,
various types of cycloaddition reactions have been developed such as [2+2], [2+3], and
[2+4] [57–66].

2.1. Phosphine and Amine Bases

Recently, nucleophilic phosphine- and nitrogen-containing Lewis bases have emerged
as a powerful tool for constructing carbo- and heterocyclic compounds under metal-
free and mild reaction conditions. Several natural products and spirocyclic compounds
were synthesized by using these catalysts via a cycloaddition reaction with allenoates or
alkynones. In general, these reactions occur by way of cycloaddition of the allenoates with
electron-deficient olefins or imines via [3+2] and [4+2] cycloadditions [57–66].

Shi’s group developed a highly regioselective [3+2] cycloaddition reaction by using
phosphine as a Lewis base, which afforded five-membered spiro compounds (Scheme 1) [67].
The cycloaddition reaction was conducted between an α-allenic ester (1-2) and α,β-unsat-
urated diesters (1-1) which derived from isatin, in the presence of PBu3, and the reaction
proceeded smoothly by way of a [3+2] cycloaddition to yield 1-3 and 1-4 in >20:1 regiose-
lectivity. With different electron-donating groups (EDGs), or electron-withdrawing groups
(EWGs), at the fifth, sixth, or seventh positions, the reaction proceeded without compli-
cation to furnish the products in good yields. In contrast, the DMAP-catalyzed reactions
initiated [4+2] cycloadditions to yield the six-membered dihydropyranone products 1-5.
Various isatins having different EDGs and EWGs on the benzene rings and different N-
protecting groups underwent this cycloaddition reaction depending on the catalyst used to
afford the desired cyclic products in good yield with good geometric selectivities.

Scheme 1. Lewis base-catalyzed [3+2] and [4+2] cycloaddition reactions.

The proposed reaction mechanism is depicted in Scheme 2. The reaction commences
with the addition of a phosphine catalyst to the allenic ester (1-2) to produce a zwitterionic
intermediate. The intermediate serves as a dipole for the subsequent [3+2] cycloaddition,
which occurs at the C-3 position of isatin to produce intermediate C. Subsequently, 1,2-
proton transfers followed by regeneration of the catalyst afford product 1-3a. In the case of
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DMAP, a zwitterionic intermediate forms by the addition of the base DMAP to the allenic
ester, which reacts with 1-1a to produce intermediate D. Consecutive enolization, followed
by cyclization and elimination of the catalyst, delivers the six-membered dihydropyranone
1-5a products.

Scheme 2. Proposed mechanism for [3+2] and [4+2] cycloaddition reactions.

In their continuous efforts in this study, Shi et al. demonstrated different cycloaddition
reactions in which different regiodivergent spiro compounds were obtained depending
on the Lewis bases involved in the reaction (Scheme 3) [68]. In the presence of nitrogen-
containing base DABCO, isatin (2-1) reacts with butynone (2-2) to produce six-membered
spiro compounds, the pyranones (2-3). With isatins bearing either EWG or EDG sub-
stituents at various positions on the benzene ring, the reaction proceeded smoothly to
afford the products in good yield. On the other hand, the use of PPh2Me as a Lewis base
promoted the formation of the five-membered spiro compound furanone (2-4). Optimized
conditions applied with various EWG and EDG groups on the benzene ring had no influ-
ence on the reaction yields. Various protecting groups on nitrogen underwent the reaction
smoothly to yield five-membered oxygen-containing spiro compounds in moderate to good
yields. Focusing on the mechanistic study, initial deprotonation of butynone generates
an enolate intermediate in the presence of DABCO (Scheme 4). Later, nucleophilic addition
is followed by an intramolecular Michael addition of an O¯ anion to the alkynyl group, and
protonation to yield the required six-membered pyranone product (2-3). Using PPh2Me
with butynone initially generates a zwitterionic intermediate (C), which undergoes a 1,3-
hydrogen shift to form an enolate intermediate (D). Nucleophilic addition to the carbonyl
group followed by intramolecular addition of an O¯ anion (E) to the alkenyl group creates
the desired five-membered spiro products (2-4) by the liberation of the catalyst (Scheme 5).
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Scheme 3. Synthesis of spiro-cyclohexaneoxindole and spiro-cyclopenteneoxindole.

Scheme 4. Plausible mechanism for the synthesis of pyranones (2-3).

In 2019, Shi’s group further explored a phosphine-catalyzed intermolecular annula-
tion between ortho-aminoacetophenones and alkynones using two different regioselective
approaches: [4+2] or [3+2] cycloaddition reactions (Scheme 6) [69]. Switchable transforma-
tions were achieved using different phosphine catalysts and temperatures.

Reaction between ortho-aminoacetophenones (3-1) and alkynones (3-2) in toluene at
0 ◦C in the presence of a bisphosphine catalyst such as 1,4-bis(diphenylphosphino)butane
(dppb) delivered 2-alkynylquinolines (3-3) via a [4+2] cycloaddition reaction. This is
because the lower temperatures favor the addition of phosphine to the alkynone to form
zwitterionic intermediates, which then undergo an α,α-H shift, enolization, and proton
abstraction to produce the α’-carbanionic species II” (Scheme 7). This intermediate reacts
with ortho-aminoacetophenones followed by protonation, dehydration, and intramolecular
condensation to afford the quinoline products (3-3). This methodology exhibited a broad
substrate scope that efficiently proceeded with both electron-deficient and electron-rich
aromatic rings to afford the products in good yields.
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Scheme 5. Plausible mechanism for the formation of furanones (2-4).

Alternatively, using dioxane as the solvent and replacing the catalyst with P(p-FC6H4)3
at an elevated temperature of 140 ◦C, the reaction proceeded via a [3+2] cycloaddition
to provide the benzoindalizines (3-4). The optimized reaction conditions were affective,
and the electronic factors did not have any significant impact on the reaction, which
proceeded smoothly to produce the expected products in moderate yields. At a higher
temperature, the zwitterionic intermediate initially underwent an α,γ-H shift followed
by a proton shift to produce the δ-activated intermediate VII, which then reacted with
ortho-aminoacetophenones followed by intramolecular proton migration, α,β-H-shift, and
regeneration of the catalyst to afford the compound 3-5. Finally, the benzoindalizines (3-4)
were obtained from compound 3-5 via the Knorr reaction methodology (Scheme 7). Both
of the regioisomers were unambiguously confirmed by X-ray crystallography.

Scheme 6. Phosphine-catalyzed switchable [4+2] or [4+2]/[3+2] cycloaddition.

Guo and co-workers illustrated that a [3+2] annulation reaction between barbiturate-
derived alkenes (4-2) and ynone (4-1a) would offer spirobarbiturate-cyclopentanones (4-3)
in the presence of MePPh2 using phenol as an acid additive (Scheme 8) [70]. Ynones
containing alkyl, MeO, F, and Cl substituents were compatible with alkenes, producing
the expected products in good to excellent yields, with excellent E/Z stereoselectivities.
Similarly, the barbiturate-derived alkenes bearing various substituents including alkyl,
OMe, F, Cl, Br, CF3, CN, and NO2 groups afforded the products in good to excellent yields.
In addition to that, 1-naphthyl-, 2-naphthyl-, and 2-furanyl-derived barbiturates delivered
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spirobarbiturate-cyclopentanones in excellent yields. The reaction between the ynone
and barbiturate-derived alkenes in the presence of MePPh2 with an inorganic base addi-
tive, such as K2CO3, involved [4+2] annulation to deliver 1,5-dihydro-2H-pyrano[2,3-
d]pyrimidine-2,4(3H)-dione (4-4ma) as a major product along with a minor [3+2] cy-
cloadduct. In the absence of the phosphine catalyst, no [4+2] cycloaddition product was
obtained which clearly indicates that this reaction did not occur via the hetero-Diels–Alder
reaction pathway.

Scheme 7. Proposed mechanism for the intermolecular annulation reaction.

Scheme 8. Phosphine-catalyzed [3+2] and [4+2] annulation reactions.

A possible reaction mechanism is presented in Scheme 9. The phosphine catalyst ini-
tally attacks the ynone (4-1a) to produce intermediate A. In a [3+2] annulation, intermediate
A undergoes a proton shift to produce intermediate B. This is followed by a conjugate addi-
tion with a barbiturate-derived alkene followed by intramolecular nucleophilic addition of
the carbanion (intermediate C) to the double bond, which delivers the cyclic intermediate
D. The acid additive phenol promotes 1,2-proton migration followed by regeneration of
the catalyst which yields the spirobarbiturate-cyclopentanone 4-3. In a [4+2] annulation,
intermediate A is stabilized by the base K2CO3, which produces intermediate F by the con-
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jugate addition with the barbiturate-derived alkene. Intermediate F undergoes subsequent
enolization (G), intramolecular oxa-Michael addition, and elimination of the phosphine
catalyst to furnish 1,5-dihydro-2H-pyrano[2,3-d]pyrimidine-2,4(3H)-dione (4-4).

Scheme 9. Plausible mechanism for phosphine-catalyzed [3+2] and [4+2] annulation reactions.

Christmann and colleagues described the catalysis of the bromocyclization/regiodiver-
gent reaction of alkenes (5-1a-l) by chiral phosphoric acids to afford both bromohydrin
products in excellent yields and with good enantioselectivities (Scheme 10) [71]. More
specifically, the chiral phosphoric acids containing 9-anthracenyl (5-C5) delivered the best
results to produce both the regioisomers 5-2 and 5-3 in excellent yields with enantios-
electivities. A cinnamyl ester containing an EWG or EDG in the para or meta position
produced the two corresponding isomers in excellent yields with high enantioselectivities.
Derivatives with sterically bulky groups such as phenyl, and 1-naphthyl derivatives at
the ortho position smoothly reacted to afford the expected isomers in excellent yields to-
gether with good enantioselectivities. Various homoallylic esters (5-1m-o) were utilized
to produce 5-2m-o with excellent enantioselectivities, whereas 5-3m-o was obtained with
lower enantioselectivities.

Scheme 10. Enantioenriched bromohydrin synthesis by anchimeric oxygen borrowing.

A possible mechanism for this reaction is proposed as follows (Scheme 11). Initially,
the chiral phosphoric acid activates NBS for halocyclization followed by nucleophilic attack
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of water, affording an oxocarbenium ion, which results in both of the cyclic hemiorthoesters
(INT and ent-INT) having excellent diastereoselectivity. At this stage, chiral phosphoric acid
then collapses these intermediates for regiodivergent RRM (reaction of a racemic mixture)
to afford both constitutional isomers. The authors expected that the catalyst would activate
different oxygen atoms to form the respective enantiomers. INT may collapse via pathway
C which results in ent-5-3, which may be the reason for the lower enantioselectivity of
the 5-3 isomer.

Scheme 11. Proposed mechanism for the synthesis of enantioenriched bromohydrins.

In 2016, Lu’s group reported phosphine-catalyzed regiodivergent C-2- and C-4-
selective γ-additions of oxazolones to 2,3-butadienoates (Scheme 12) [72]. Grafting suitable
substituents on the oxazolones enabled the asymmetric C-2- and C-4-selective γ-additions
of oxazolones to 2,3-butadienoates to be accomplished with excellent yields of 81 to 99%
and with admirable enantioselectivities (as high as 96%) for a broad range of substrates.
The C-4-selective γ-addition of oxazolones produced (6-3) in a highly enantioselective
manner when 2-aryl-4-alkyloxazol-5-(4H)-ones (6-2) were employed as pronucleophiles,
furnishing enantioenriched α,α-disubstituted α-amino acid derivatives. The employment
of the 2-alkyl-4- aryloxazol-5-(4H)-ones (6-4) as the donors resulted in the C-2-selective
γ-addition of oxazolones (6-5) in a highly enantioselective manner which led to the facile
synthesis of chiral N,O-acetals, and γ-lactols.

The proposed mechanistic pathway involves the formation of zwitterionic interme-
diate A by the addition of catalyst 6-6c to 6-1c, which then abstracts the C-4-proton of
2- phenyl-4-methyloxazol-5(4H)-one 6-2a’ (Scheme 13). Further oxazolide C1 reacts with
phosphonium B at the C-4 position of C1 via the transition state TS-C4, followed by
a hydride shift to generate addition product 6-3a’ by the elimination of the catalyst. In
contrast, the use of 2-methyl-4- phenyloxazol-5(4H)-one 6-4a generates the oxazolide C2,
which favors the C-2-selective addition to eventually lead to the formation of C-2-selective
product 6-5a, via a key transition state, TS-C2. Theoretical studies (DFT calculations)
suggested that the origin of the observed regioselectivity was the distortion energy that
resulted from the interaction between the nucleophilic oxazolones and the electrophilic
phosphonium intermediate.
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Scheme 12. Phosphine-catalyzed regiodivergent enantioselective C-2 and C-4 γ-additions.

Scheme 13. Proposed mechanism for γ-additions of oxazolone.

Recently, in 2020, Lin’s group developed a regiodivergent cascade reaction between
3-homoacylcoumarin (7-1) and the 1,3-indanedione-derived 1,6-acceptor (7-2) to construct
spirocyclohexene indane-1,3-diones (7-3) and coumarin-fused cyclopentanes (7-4) catalyzed
by bases such as DMAP or Et3N, respectively (Scheme 14) [73]. In the presence of DMAP
as the base, the reaction afforded spirocyclohexene indane-1,3-diones (7-3) via 1,6-addition
followed by a regio- and chemoselective aldol cascade reaction. Electronic factors did not
influence the yields when 3-homoacylcoumarin containing various group such as 6-Cl,
6-Br, and 6-methoxy was used, and all derivatives afforded the expected products in good
yields. In the case of the indanedione-derived acceptors, EWGs provided the products
in better yields than the methoxy group regardless of its position. Fused cyclopentanes
(7-4) were obtained via 1,6-addition followed by a regio- and chemoselective vinylogous
Michael addition by using Et3N. The presence of an EWG on coumarins ensured good
yields compared with an EDG irrespective of its position. This is because the EDG on
coumarin enhanced the electron density at the reactive site to prevent an intramolecular
Michael addition. Moreover, in the case of indanedione, sterically bulky EWGs afforded
the products in good yields, whereas no product formed in the case of an EDG (OMe).
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Scheme 14. Synthesis of spiro and fused systems via organobase-controlled cascade reaction.

Based on the experimental results, the authors proposed a plausible mechanistic
pathway (Scheme 15). Initially, in the presence of organocatalytic bases (DMAP or Et3N),
1,6-addition occurs between 3-homoacylcoumarin 7-1 and the indanedione 7-2 to provide
a common intermediate, A. The conjugate acid formed by deprotonation of intermediate
A by DMAP interacts with the dienolate to form intermediate B, which undergoes an in-
tramolecular aldol reaction to deliver the desired spirocyclic product 7-3. On the other hand,
exposure of the common intermediate A to Et3N forms the dienolate, which then coordi-
nates with the respective conjugate acid to yield intermediate C. Finally, the intramolecular
vinylogous Michael addition results in the regio- and chemoselective coumarin-fused cy-
clopentane 7-4. Although the authors did not provide mechanistic proof, the selectivity was
attributed to the different hydrogen bonding interactions complemented by the steric inter-
actions with the dienolate intermediate. These interactions give rise to different transition
states which result in the formation of divergent products.

Scheme 15. Plausible mechanism for organobase-controlled regiodivergent cascade reaction.
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Shi and co-workers developed regioselective trifluoromethylthiolation between
Morita–Baylis–Hillman (MBH) carbonates (8-2) and Zard’s trifluoromethylthiolation reagent
(8-1a) in the presence of DABCO (Scheme 16) [74]. A primary allylic trifluoromethylthiolate
(SCF3) was obtained as the favored product (8-3) when the authors used tetrahydrofuran
as the solvent at room temperature, whereas when using chloroform at 0 ◦C, this produced
a secondary allylic trifluoromethylthiolate as a major product (8-4). The optimized reaction
conditions with THF enabled the reaction to smoothly proceed with various MBH carbon-
ates containing 4-Cl, 4-CN, 4-Br, and heterocyclic compounds such as 2-thienyl, 2-furyl, and
2-pyridyl to afford the primary allylic trifluoromethylthiolation products in good yields
with good regioselectivities. Similarly, MBH carbonates containing 4-MeO, 3-Me, 4-NO2,
and 2-pyridyl produced a secondary allylic trifluoromethylthiolate in the CHCl3 solvent
with good yields and high selectivities.

Scheme 16. Solvent-controlled nucleophilic trifluoromethylthiolation of MBH carbonates.

In the mechanism depicted in Scheme 17, this reaction proceeded with an initial nucle-
ophilic addition of DABCO to 8-1a and 8-2a, forming the ammonium salt intermediates A
and B, respectively. Then, the exchange of SCF3- and tBuO- afforded the other intermedi-
ates C and D. The secondary allylic trifluoromethylthiolation product 8-4a was obtained by
an intermolecular SN2’ reaction of intermediate D. In the presence of the catalyst DABCO,
the secondary product was readily converted to the primary product in THF, whereas
the conversion in chloroform was difficult. This is attributed to electrostatic interaction
between ¯SCF3 and CHCl3, weakening the nucleophilicity of the SCF3 anion. The catalyst
DABCO was regenerated by the nucleophilic addition of water to intermediate C.

A divergent strategy was developed by Liu and Chen et al. for the modular synthesis
of various enantioenriched phenylthio-substituted lactones from the thiolation of homoal-
lylic acids via regiodivergent cyclization (Scheme 18) [75]. The authors developed Lewis
base/Brønsted acid co-catalyst-controlled regio- and enantioselective thiolactonizations of
a variety of homoallylic acid derivatives with different electrophilic SAr reagents (6-endo
vs. 5-exo). The homoallylic acid (9-1) underwent 6-endo cyclization using N-phenyl thiosac-
charin (9-2) as the sulfenylating agent, and chiral BINOL-derived selenide ((S)-9-5a) as
the Lewis base. Various styrene-based carboxylic acids afforded the products (9-3) in excel-
lent yields with high enantioselectivity, which was affected by the position of the substrate.
For instance, a fluorine substituent in the para position resulted in high enantioselectivity
compared with the meta or ortho positions. Moreover, 2-naphthyl, 2-thienyl, 3-furyl, and
various substituted ethynylbenzenes underwent this reaction to afford δ-valerolactones in
good yield with good enantioselectivity. In the presence of 1.0 equivalent of EtSO3H using
N-phenylthiotphthalimide as the sulfenylating agent, and chiral BINOL-derived selenide
as the Lewis base, homoallylic acids afforded various γ-butyrolactones (9-4). Styrene
derivatives with various functional groups, irrespective of their position, underwent 5-
exo cyclization to yield the corresponding five-membered ring products in good yields
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with high enantioselectivities. 2-Naphthyl and various unbiased alkyl-substituted alkenes
proceeded smoothly to afford the products in good yields with high enantioselectivities,
whereas an ethynylbenzene-substituted alkene afforded the product in poor yield with
moderate enantioselectivity.
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Scheme 18. Acid-controlled asymmetric thiolation of alkenes.

These researchers conducted experimental and computational studies to elucidate
the origins of the regio- and enantioselectivity. The results of kinetic control experiments to
acquire mechanistic information suggested that the 6-endo product (9-3a) could isomerize
into a thermodynamic 5-exo product (9-4a) via the configurationally stable thiiranium
intermediate under strongly acidic conditions (Scheme 19), which was further supported
by the reaction between 6-endo and 5-exo with 100 mol% of EtSO3H to afford a 5-exo product
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with retention of ee. The combination of DFT calculation results suggested that C-O and C-S
bond formation might occur simultaneously, without formation of a commonly supposed
catalyst-coordinated thiiranium ion intermediate. The potential π–π stacking between
the substrate and SPh is an important factor in the enantio-determining step.

Scheme 19. Isomerization process under acidic conditions.

In 2017, Lu et al. developed the catalyst-controlled regioselective synthesis of spiro-
cyclic benzofuranones via regiodivergent [3+2] annulations of aurones and allenoates
(Scheme 20) [76]. The use of the L-thr-D-thr-derived chiral phosphine catalyst 10-5g in
an ether in an annulation reaction produced the α-isomer 10-3 in moderate to good yield
with excellent enantioselectivities. On the other hand, the L-thr-L-thr-derived chiral phos-
phine catalyst 10-5b yielded the γ-isomer 10-4 in good yield with high enantioselectivities
(96–99%). Under the optimized reaction conditions, various substituted aurones afforded
α- or γ-selective spiro benzofuranones with excellent enantio- and regioselectivities de-
pending on the catalyst present.

Scheme 20. Catalyst-controlled synthesis of spirocyclic benzofuranones.

Mechanistic studies suggested that the phosphine catalyst attacked the allene (10-2) to
form zwitterionic intermediate B, in which the negative charge may be delocalized either
on the α-carbon or the γ-carbon (Scheme 21). Then, the aurone (10-1a) underwent [3+2]
annulation with the putative intermediates, delivering intermediates E or I. Proton transfer
followed by elimination of the phosphine catalyst furnished the α- and γ-selective products.

Cahard et al. reported the synthesis of primary and secondary allylic SCF3 compounds
in the presence of DABCO with Morita–Baylis–Hillman (MBH) carbonates (Scheme 22) [77].
The combination of CF3SiMe3/S8/KF in DMF as the solvent afforded the primary prod-
uct (11-2). Regardless of whether an EWG or EDG was present on the MBH carbonate,
the primary allylic SCF3 products formed in excellent yields. Sterically bulky groups such
as 1- and 2-naphthyls and 2-thienyl were well tolerated in this trifluoromethyl thiolation
reaction, furnishing the equivalent products in good yields. On the other hand, Zard’s
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reagent (CF3SCO2C18H37) afforded the secondary allylic SCF3 product (11-3i) when the re-
action was conducted in the THF solvent at room temperature. The authors expected that
the base DABCO would activate both Zard’s reagent and the MBH carbonate and provide
the secondary allylic trifluoromethyl thiolation product 11-3i (kinetic product) within 5 min.
Upon extension of the reaction time to 30 min, the kinetic product (secondary) was rapidly
isomerized into a thermodynamic product (11-2i, primary allylic trifluoromethyl thiolation
product), as monitored by 19F NMR.

Scheme 21. Plausible mechanism for phosphine-catalyzed [3+2] annulation of aurones with allenoates.

Scheme 22. Regio- and stereo-controlled nucleophilic trifluoromethylthiolation of MBH carbonates.

Ye’s group established sultam-fused azetidines and dihydropyrroles via two dif-
ferent cycloadditions ([2+2] and [3+2]) from cyclic sulfonamide ketimines (12-1) and al-
lenoates (1-2). These compounds are formed by involving Lewis bases in the reaction
(Scheme 23) [78]. In the toluene solvent at room temperature, PPh3, as a catalyst, under-
went a [3+2] cycloaddition to produce 12-4 as the product via α-addition. The regioselec-
tivity was switched in the case of PBu3, which led to a γ-cycloadduct (12-3). A completely
different cycloaddition product was formed with the DABCO catalyst, delivering a [2+2]
cycloadduct (12-2). Ketimines with an EWG or EDG worked well. Similarly, various
allenoates were also found to be suitable under optimized conditions.
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Scheme 23. Lewis base-catalyzed [2+2] and [3+2] cycloaddition reactions.

The authors also proposed a reaction mechanism (Scheme 24). They suggested that
the reaction was initiated by adding Lewis bases to the allenoate (1-2) to generate two
zwitterionic intermediates, A and A’, which react with the cyclicimines (12-1) to form
intermediate B or B’. The carbanion A’ was stabilized by the electron-poor nucleophile
PPh3 which then produced the thermodynamically favored α-addition intermediate B’,
and elimination of the catalyst delivered 12-4. In the case of DABCO and PBu3, which are
relatively electron-rich nucleophiles, they provided kinetically favored intermediate B via
γ-addition. Later, these intermediates underwent ring closure, followed by the release of
the catalysts, to afford the expected cycloaddition products (12-2 and 12-3).

Zhong and co-workers reported [3+2] annulation between γ-substituted allenoates
(13-1) and unsaturated pyrazolones (13-2) to furnish spirocyclopentene-pyrazolones (13-3)
when the reaction was performed in PPh3 and K2CO3 (Scheme 25) [79]. In terms of
the scope of the substrates, pyrazolones with an aryl ring bearing an EDG at the para
position afforded higher yields than those bearing EWGs. Similarly, halogens such as Cl
and Br, and 1- and 2-naphthalenes were compatible with the substrate to afford products.
Allenoates containing tert-butyl instead of ethyl delivered spirocyclopentene-pyrazolones
in lower yield owing to the steric hindrance.

On the other hand, in the presence of DBU as a base, pyrano[2,3-c]pyrazoles (13-4)
were obtained via [4+2] annulations. Pyrazolones containing F, Cl, Br, Me, iBu, tBu, 2-
naphthyl, and 2-thienyl all reacted smoothly to afford pyrano[2,3-c]pyrazoles in good to
excellent yields. With regard to the mechanism, the Lewis base catalyst attacks the al-
lenoate to afford zwitterionic intermediate I, which then α-attacks the pyrazolones to form
intermediate II via 1,4-addition (Scheme 26). The reaction can proceed along path A, in
which case an intramolecular Michael addition takes place in the presence of PPh3 and
K2CO3 to afford intermediate III. Next, proton transfer and regeneration of the catalyst
(PPh3) furnish the [3+2] annulated product spirocyclopentene-pyrazolone (13-3). Path B in-
volves elimination of the catalyst DBU to afford intermediate II” followed by an O-Michael
addition to provide intermediate IV. Subsequently, 1,3-proton transfer of intermediate IV
delivers the [4+2] annulated product pyrano[2,3-c]pyrazoles (13-4).
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Scheme 24. Plausible catalytic cycles for cycloadditions.

Scheme 25. Lewis base-controlled [3+2] and [4+2] annulation reactions.

In 2019, Sun et al. developed a regiodivergent allylation of N-acylhydrazones (NAHs,
14-1) with Morita–Baylis–Hillman (MBH) carbonates (14-2), selectively affording α (14-
4)- or γ (14-3)-allylated products (Scheme 27) [80]. The regioselectivity of the above
methodology was precisely regulated by an expedient alternation of the catalysts to afford
α- and γ-allylated N-acylhydrazone derivatives selectively in excellent yields.

The authors screened a wide range of base catalysts and identified tBuOK and DABCO
as the optimal catalysts to promote the formation of α- or γ-allylated products, respectively.
In DABCO, the optimized conditions were compatible with a broad range of MBH carbon-
ates having various EWGs and EDGs either at the ortho or para position of the phenyl ring
and were tolerated. Similarly, NAHs having various functional groups in their aryl ring
including Me, Cl, MeO, and F all afforded γ-allylated products (14-3) in good to excellent
yields. On the other hand, due to the strong electron-withdrawing nature of the nitro
group, it afforded the product, albeit in a lower yield. In a similar fashion, the substrate
scope of tBuOK-catalyzed α-allylation was explored (14-4). Various electron-donating and
withdrawing groups were incorporated in both MBH carbonates and NAHs. The electronic
effect or the bulkiness of the substituents did not affect the efficiency of the α-allylation,
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affording the products in good to excellent yields. However, an MBH carbonate derived
from aliphatic aldehydes afforded the corresponding allylated product in the DABCO base,
whereas this failed to occur in tBuOK.

Scheme 26. Possible reaction mechanism for Lewis base-controlled annulation reactions.

Scheme 27. Base-promoted regiodivergent allylation of N-acylhydrazones with MBH carbonates.

In the proposed mechanism, the regiodivergent allylation proceeds through the key
step involving deprotonation of N-acylhydrazone (14-1) by tBuO− to produce nucleophilic
intermediate II (Scheme 28). Intermediate II participates in the further reaction divergently
in the presence of different catalysts to yield either α- or γ-allylated products. In path a,
the attack of the DABCO catalyst on the α-position of the MBH carbonate (14-2) in an SN’2
fashion affords intermediate I. The tBuO− released in due course subsequently deproto-
nates 14-1, leading to intermediate II. The key intermediate II reacts with intermediate
I via the SN′2 pathway to produce the γ-allylated products (14-3). When tBuOK is used
as a catalyst, intermediate II approaches the α-position of 14-2, leading to the α-allylated
products (14-4) through the SN′2 pathway (path b).
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Scheme 28. Proposed reaction pathways for base-promoted regiodivergent allylation.

2.2. Cinchona Alkaloids

Both naturally occurring and modified cinchona alkaloids (quinine, quinidine, cin-
chonidine, cinchonine) are widely used in asymmetric synthesis. These alkaloids offer
various important features such as numerous chiral centers, structural rigidity, multiple
donors in the form of hydrogen bonds, and facile conversion into different functional
groups including chiral quaternary ammonium salts [81–90]. Apart from this, they have
various applications such as utilization in chiral ligands in the preparation of metal com-
plexes, in NMR as chiral agents, resolving agents, chiral stationary phase in HPLC, elec-
trolytic additives, and chiral solvating agents. They have been successfully used in various
important asymmetric transformations such as the Mannich reaction [91–93], Michael ad-
dition [94–96], aza-Henry reactions [97,98], and epoxidation [99,100], in order to promote
a highly enantio- and diastereoselective outcome.

Cheng et al. developed a Lewis base-catalyzed cycloaddition between allene ketones
or α-methyl allene ketones and pyrazolones to produce tetrahydropyrano[2,3-c] pyrazoles
in moderate to good yields via a [4+2] cycloaddition (Scheme 29) [101]. The annulation of
benzylidenepyrazolones (15-2) with allene ketones (15-1) proceeded smoothly via either
an α- or γ-selective pathway, and the desired products were obtained in good yields with
high regioselectivities. The use of quinine as the catalyst favored the formation of an α-
adduct (15-3) with high regioselectivity in a 99% yield. After optimizing the conditions,
the authors examined various substrates (neutral groups, EWGs, and EDGs as substituents
at the ortho, meta, or para position on benzylidene pyrazolones) and found that they are
capable of delivering the expected products in good yields with excellent regioselectivities.
Interestingly, pyrazolone containing α-naphthyl, β-naphthyl, and 2-furyl groups reacted
smoothly and furnished the anticipated product in good yield with high regioselectivity.
On the other hand, DMAP produced the γ-selective cycloaddition products as the major
regioisomers in good yield (15-4). This γ-selective [4+2] annulation of various substrates
with DMAP was then investigated. Pyrazolone with α-naphthyl-, β-naphthyl-, 2-thienyl-,
and 2-furyl-containing substrates efficiently reacted under the standard conditions to
produce the expected products in good yield with high regioselectivity.

According to the proposed reaction mechanism (Scheme 30), first, the Lewis bases
undergo addition with the allene ketones (15-1) to generate zwitterionic intermediates,
which then undergo nucleophilic addition with the unsaturated pyrazolones (15-2) to form
intermediates C and D via α- or γ-addition. An electron-poor nucleophile such as quinine
may stabilize carbanion A and lead to a thermodynamically feasible α-addition, whereas
a kinetically favored γ-addition could occur at carbanion B in the case of the electron-rich
nucleophile DMAP. Further, a proton shift and subsequent ring closure of the intermediates
via an oxygen anion or in reverse mode would then generate the cyclic adducts F and
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H, respectively. These adducts result in the formation of regiodivergent products after
elimination of the Lewis bases from the cyclic adducts.

Scheme 29. Lewis base-catalyzed regioselective [4+2] cycloaddition.

Scheme 30. Proposed reaction mechanism of cycloaddition catalyzed by Lewis bases.

A regiodivergent 1,3-dipolar cycloaddition of azomethine ylides (16-1) and 2-hydoxybe-
nzylidene indandiones (16-2) was developed by Lin et al. in 2018 (Scheme 31) [102].
The (3+2) cycloaddition, which involved the reversal of the nucleophilic site in azomethine
ylides, was controlled by choosing suitable base catalysts, DMAP and 1,1,3,3-tetramethylg-
uanidine (TMG), which subsequently resulted in two different cascade processes to gener-
ate the diverse chromenopyrrolidines 16-3 and 16-4, respectively. The azomethine ylide
was stabilized by the conjugate acids of the bases in two different conformations via hydro-
gen bonding, which afforded regiodivergent (3+2) cycloadditions. Subsequent cyclization
delivered the above products in moderate to good yields (as high as 84%) and with excellent
diastereo- and enantioselectivity (as high as 96%).
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Scheme 31. Base-controlled regiodivergent [3+2] cycloaddition.

According to the plausible mechanistic pathway (Scheme 32), initially, the iminodi-
ester (16-1a) is deprotonated in the presence of bases to form the equivalent conjugate
acids, which then subsequently participate in hydrogen bonding with the azomethine
ylide. The use of the electrophile 2-hydroxybenzylidene indan-1,3-dione (16-2a) introduces
steric hindrance and leads to two different transition states. In the presence of DMAP as
the base, a [3+2] cycloaddition followed by cascade lactonization affords the expected product,
chromeno[3,4-b]pyrrolidines (16-3a). The unanticipated chromeno[3,4-c]pyrrolidine adduct
16-4a is obtained when TMG is used as the base. This is the consequence of the opposite regios-
electivity during the initial (3+2) cycloaddition, subsequent acetalization, and lactonization.
Both the regiodivergent adducts 16-3a and 16-4a were further confirmed by X-ray diffraction
analysis. The steric hindrance on the azomethine ylide resulting from TMG exceeded that
introduced by DMAP, which led to the regioselective reversal in the (3+2) cycloaddition.
The control experiments and NMR studies of the deprotonation of the iminodiester (16-1) by
DMAP and TMG were in alignment with the proposed mechanism.

Scheme 32. Possible reaction mechanism for base-controlled regiodivergent [3+2] cycloaddition.
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2.3. NHC Catalysts

The widespread use of NHC has revealed it to be an important organocatalyst that
has been used in many synthetic strategies. Catalysts based on NHC are widely utilized
for the synthesis of various biologically important natural products as well as pharmaceu-
tical drugs. Usually, these catalysts are used in C-C and C-heteroatom bond formation
reactions and involve various cycloaddition reactions such as [2+2], [2+2+2], and [2+4].
These cycloadditions are generally achieved by the catalytic ability of NHC, which alters
the polarity of a carbonyl compound via NHC-linked intermediates such as the Breslow,
azolium enolate, acylazolium, and homoenolate intermediates (Scheme 33) [103–113].

Scheme 33. NHC-linked intermediates.

In 2014, Smith and co-workers described a regiodivergent O- to C- or N-carboxyl trans-
fer of pyrazolyl carbonates (17-1) by the choice of catalyst (Scheme 34) [114]. Specifically,
DMAP in dichloromethane delivered kinetically favored O- to N-carboxyl transfer with
good regioselectivity (as high as 99%) and low to good yields (17-2, 10–80%), whereas
triazolinylidene NHC in toluene afforded thermodynamically favored O- to C-carboxyl
transfer with good regioselectivity (as much as 99%) and low to good yields (17-3, 12–84%).
In addition to that, the chiral triazolium NHC catalyst promoted enantioselective (as high
as 92%) and regioselective (as high as 99%) O- to C-carboxyl transfer products in good to
excellent yields (17-4).

Scheme 34. Selective regiodivergent O- to C- or N-carboxyl transfer of pyrazolyl carbonates catalyzed
by Lewis bases.

Further mechanistic experiments led to the conclusion that O- to C- or N-carboxyl
transfer in pyrazolyl carbonates with DMAP was irreversible because the formation of
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the N-carboxylation product is kinetically favored. Contrary to this, N- to C-carboxyl trans-
fer is not possible with DMAP. The O- to C- or N-carboxyl transfer with triazolinylidene
NHCs is reversible because the formation of the C-carboxylation product is thermody-
namically favored, and N- to C-carboxyl transfer is also considered to be feasible. On
the other hand, O- to C- or N-carboxyl transfer is irreversible, with the chiral NHC cata-
lyst exercising good enantiocontrol, although N- to C-carboxyl transfer is allowed with
high enantiocontrol. Further, DFT studies supported the proposed mechanistic pathway
shown in Scheme 35. Initially, the catalyst attacks the O-carboxylate to form the tetrahedral
intermediate TS(IV). Then, consecutive collapse of TS(IV) produces two common interme-
diates, enolate and a carboxylated catalyst, after which the carboxylated catalyst could be
recaptured by the enolate either at C(4) or N(1) to produce (TS-VII). Finally, regeneration
of the catalyst from the tetrahedral intermediate (TS-VIII) affords the two regiodivergent
products (17-2, 17-3).

Scheme 35. Proposed reaction mechanism for O- to C- and N-carboxylation.

In 2015, Smith et al. reported regioselective carboxylation either at the γ- or α-position
depending on the Lewis base involved (Scheme 36) [115]. Treatment of a furanyl carbonate
(18-1) with the triazolinylidene NHC catalyst produced a γ-isomer with regioselectivity as
high as 99:1 (18-2). Under optimal conditions, phenyl, trichloro ethyl, and certain sterically
hindered substrates were well tolerated to afford the corresponding γ-C(5) carboxylation
product in good to high yields. In contrast, the α-isomer product was generated by
changing the catalyst to DMAP with moderate regiocontrol (60:40) to produce the α-C(3)-
carboxylate as the major product (18-3). Individual treatment of the α- and γ-isomers with
DMAP did not result in transformation, and the starting material was recovered even
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though the reaction time was prolonged. The α-carboxyl product underwent regioisomeric
exchange in the presence of the NHC catalyst to afford the α/γ products in a 16:84 ratio,
with the γ derivative as the major product. Similar results were obtained when the γ-
regioisomer was reacted in the presence of the NHC catalyst to afford a 14:86 ratio of α/γ.
These results revealed that C-carboxylation with DMAP is irreversible to preferentially
yield the α-regioisomer. However, in the case of the NHC catalyst, C-carboxylation resulted
in the formation of the γ-isomer as the major product followed by subsequent equilibration
to form a mixture of α/γ products.

Scheme 36. Lewis base-promoted O- to C-carboxyl transfer of furanyl carbonates.

Yao et al. demonstrated the regioselective synthesis of 3-pyrazolidinones via NHC-
catalyzed [3+2] annulation of α-bromoenals (19-1) with hydrazine (19-2) in the presence
of a base (Scheme 37) [116]. A regioselective methodology was devised by carefully
adjusting the NHC catalysts, i.e., the imidazolium NHC precursor produced the 1,5-
disubstituted 3-pyrazolidinone (19-3), whereas the triazolium NHC precatalyst was able
to drive the reaction to completion to furnish the 2,5- difunctionalized isomer (19-4).
Specifically, the regioselective Michael addition of the key intermediate to phenylhydrazine
followed by subsequent lactamization afforded the regiodivergent products (19-3, 19-4).
This protocol was an attractive strategy for the assembly of biologically significant 3-
pyrazolidinones in moderate to high yields (as high as 84%), under mild reaction conditions,
and with good regioselectivity.

Scheme 37. NHC-catalyzed regiodivergent synthesis of 3-pyrazolidinones.

The authors proposed a plausible mechanistic pathway to explain the formation of
product 19-3 (Scheme 38). Initially, the addition of the NHC catalyst to the α-bromoenal
forms the Breslow intermediate I, which is further debrominated into the α,β-unsaturated
acylazolium intermediate II followed by Michael addition with phenylhydrazine, produc-
ing intermediate III. This intermediate then undergoes lactamization to afford the target
compound 19-3 and the regenerated catalyst. Although the origin of the regioselectiv-
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ity aided by the tuning of the catalyst remains uncertain, the authors suggested that
a computational study on the relationship between the structure of the catalysts and
the regioselectivities would aid further understanding.

Scheme 38. Proposed catalytic cycle for the synthesis of 3-pyrazolidinones.

Glorius et al. devised a scheme for the synthesis of 1,2-diazepines (20-3) via formal
[4+3] annulation and the synthesis of pyrazoles (20-4) via formal [4+1] annulation reactions
along highly regio- and enantioselective pathways (Scheme 39) [117]. The reaction between
enals (20-1) and hydrazones (20-2) in the presence of the chiral triazolium NHC catalyst
20-5c afforded 1,2-diazepine derivatives through the homoenolate intermediate along
a [4+3] annulation pathway. Various substituted enals containing both an EWG and EDG
on the aromatic ring afforded the expected diazepine products in good yields with excellent
enantioselectivities (99% ee). Similarly, hydrazones with different substituents reacted with
enals via formal [4+3] annulation to form 1,2-diazepines in high yields with excellent
enantioselectivities (99% ee). The use of the NHC catalyst with a morpholine backbone
(20-5i) afforded the pyrazole derivatives with high regioselectivity (<1:20) via a Stetter
reaction and subsequent cyclization reaction. This reaction occurred though the acyl
anion intermediate initiated by the 20-5i NHC catalyst which suppressed the homoenolate
reactivity of enals to produce the pyrazoles.

According to the proposed reaction mechanism (Scheme 40), the chiral NHC cata-
lyst initially undergoes addition to the enal cinnamaldehyde (20-1) to form two Breslow
intermediates (II and V). The structure of the NHC is suggested to play a crucial role in
determining the reaction pathways to form either a haloenolate or acyl anion. Specifically,
N-Mes containing NHC catalyst 20-5c preferentially forms a homoenolate intermediate
(II), whereas the reaction pathway via the acyl anion (V) predominantly occurs with
the NHC-based catalyst N-2,6-(OMe)2 (NHC 20-5i). Then, the homoenolate intermediate II
undergoes conjugate addition with the in situ formed azoalkene, followed by C-C bond
formation. Subsequent N-acylation delivers [4+3] annulated product 1,2-diazepine (20-3)
after regeneration of the NHC catalyst 20-5c. On the other hand, the NHC 20-5i-bound
acyl anion intermediate V undergoes a Stetter reaction with the in situ generated azoalkene
to afford adduct VII. The release of NHC 20-5i followed by intramolecular cyclization and
dehydration affords the final [4+1] annulation pyrazole product (20-4).
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Scheme 39. NHC-catalyzed formal [4+3] and [4+1] annulations for the synthesis of 1,2-diazepines
and pyrazoles.

Scheme 40. Proposed catalytic cycle for the synthesis of 1,2-diazepines and pyrazoles.

Glorius and co-workers also reported the NHC-catalyzed regiodivergent synthesis
of pyridazino[6,1-a]isoquinoline and pyrazolo[5,1-a]isoquinolines by formal [3+3] and
[3+2] annulations via a homoenolate intermediate and an enol intermediate, respectively
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(Scheme 41) [118]. The reaction between enals (21-1) and N-iminoisoquinolinium ylides
(21-2) produced the above products in good to high yields with high enantiomeric excess.
The formation of regiodivergent products was governed by the NHC precatalyst, base,
and solvent of the reaction. Initially, the homoenolate intermediate formed by the reaction
between α,β-unsaturated aldehydes and the NHC catalyst was converted into an enol in-
termediate by subsequent protonation at the β-position. The conjugate acid of the catalytic
base was generated from the azolium salt by deprotonation, depending on whether this
was sufficiently acidic to protonate the homoenolate, to afford the [3+2] annulation product
via the formation of the enol intermediate. The authors also concluded that the addition
of a base (DBU) would limit the formation of the enol intermediate, whereas increasing
the proton concentration by the addition of an acid (acetic acid) would produce a greater
amount of 21-4 by promoting the formation of the enol intermediate. The optimized condi-
tions were compatible with various enals and N-iminoisoquinolinium ylides containing
both an EWG and EDG, which reacted to produce the formal [3+3] annulated products
in good yield with high ee when the 21-D NHC catalyst was employed. In the presence
of NHC catalyst 21-E, formation of the NHC-enolate intermediates was predominant to
afford the pyrazolo[5,1-a]isoquinoline product via formal [3+2] annulation by suppress-
ing the homoenolate intermediate. Under the optimized conditions, various enals and
N-imino-3-phenylisoquinolinium ylides delivered the expected products in good yields
with excellent ee and dr (20:1).

Scheme 41. NHC-catalyzed regiodivergent dearomatizing annulation reaction.

In the proposed reaction mechanism (Scheme 42), addition of the NHC precatalyst to
theα,β-unsaturated aldehydes (21-1) produces the common Breslow intermediate II. Under
strongly basic conditions, the Breslow intermediate reacts with N-iminoisoquinoliunium
ylide (21-2) to afford the acyl azolium V intermediate via a homoenolate intermediate.
Regeneration of the catalyst from the acyl azolium affords the [3+3] annulated product
(21-3). On the other hand, the Breslow intermediate undergoes β-protonation to form
the enol equivalent VI under weakly basic reaction conditions. The subsequent addition of
intermediate VI forms the acyl azolium VIII intermediate, which, on N-acylation, delivers
the formal [3+2] annulated product (21-4) followed by regeneration of the NHC precatalyst.
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Scheme 42. Proposed reaction mechanism for NHC-catalyzed switchable annulation reaction.

3. Amine Catalysts

In the past two decades, L-proline and its derivatives have found rapidly growing appli-
cation in various transformations to yield products with excellent ee and dr [119–126]. Remark-
able advances have been made after the seminal work of List [127,128], Córdova [129,130],
Barbas [131,132], and many other research groups. The discovery that a simple and effec-
tive catalyst such as L-proline could be put to effective use was a landmark achievement in
this century and opened a new avenue for asymmetric synthesis. Despite the development
of several modified proline catalysts, proline is still placed at the top of the list in terms of
its performance. An enormous number of chemical transformations have been conducted
by using derivatives of chiral organocatalysts including Aldol, Mannich, Michael addition,
and Diels–Alder reaction, and if required, these catalysts are able to induce remarkable
stereoselectivity. Importantly, several natural products and drugs have been synthesized
by using these L-proline-derived catalysts [133–142].

Chen et al. disclosed switchable intermolecular regioselective [6+2] and [4+2] cy-
cloadditions of α′-benzylidene-2-cyclopentenones with activated alkenes in the presence of
a chiral primary amine catalyst and co-catalyst in high yields with high enantioselectivity
(Scheme 43) [143]. The asymmetric intermolecular γ, β′-regioselective [6+2] cycload-
dition of α′-benzylidene-2-cyclopentenones (22-1) with 3-olefinic 7-azaoxindoles (22-2),
driven by the catalytic activity of the 22-C1 or 22-C3 chiral amine, with salicylic acid (A1)
as the co-catalyst, provided thermodynamically stable fused bicyclic compounds with
five contiguous stereogenic centers in toluene with excellent enantioselectivities (22-3).
The cycloaddition proceeds through the in situ generated formal 4-amino fulvene, which
served as a 6пpartner. Interestingly, the cycloaddition in the presence of the chiral amine
22-C2 and co-catalyst 2-mercapto benzoic acid (22-A2) switched to an α,γ-regioselective
[4+2] cycloaddition with the generation of a dienamine intermediate which reacted with
the alkene to afford bridged bicyclo[2.2.1]heptane derivatives (22-4). The proposed mecha-
nism (Scheme 44) whereby these cycloadditions occur involves the formation of an imine in-
termediate with α′-benzylidene-2-cyclopentenones (22-1) with the aid of the chiral primary
amine catalyst 22-C1. This iminium intermediate is then converted into a 4-aminofulvene
(cross-conjugated trienamine) intermediate. Then, a [6+2] cycloaddition with an alkene
affords the bicyclic γ,β’-regioselective product 22-3 by the elimination of the chiral amine
catalyst 22-C1. For the [4+2] cycloaddition reaction, initially, β’-regioselective sulfur ad-
dition takes place with the benzylidene-2-cyclopentenones, which then undergoes C=C
bond isomerization to produce an enone with a sulfide intermediate (22-5). Addition of
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the amine catalyst and alkene to intermediate 22-5 forms the corresponding product (22-4)
via a dienamine-mediated [4+2] cycloaddition, followed by the elimination of mercapto-
benzoic acid (22-A2).

Scheme 43. Chiral amine-catalyzed [6+2] and [4+2] cycloaddition reactions.

Scheme 44. Possible reaction mechanism for chiral amine-catalyzed asymmetric cycloadditions.

In 2018, we reported an L-proline-catalyzed, solvent-controlled regiodivergent Man-
nich reaction between cyclic imines and various ketones (Scheme 45) [144]. By utilizing this
protocol, a wide range of ketones (23-2) and benzoxazinone cyclic imines (23-1) efficiently
underwent the Mannich reaction in a highly enantio- and diastereoselective manner. Later,
a useful α-amino acid derivative was obtained after the removal of the aromatic auxiliary.
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The use of unsymmetrical ketones as nucleophilic partners, depending on the solvent,
enabled different regioselective products to be obtained. Subsequently, highly enantiose-
lective linear isomers were obtained as major products when the reaction was performed
in chloroform (23-3). This may also proceed via the formation of the a less substituted
enamine intermediate (TS1). On the other hand, we found that the polar solvent DMSO fur-
nished the branch isomer as the major product, and that this reaction was highly enantio-
and diastereoselective (23-4). The role of the solvent in the reaction remained unclear.
However, other researchers also reportedly observed a similar transition state (TS2) when
they utilized DMSO as the solvent. The XRD analysis (X-ray diffraction analysis) revealed
that the obtained branch isomer was in fact an anti-Mannich adduct, suggesting that
the enamine approaches the Re face of the benzoxazinone imine (Scheme 46).

 

 

Scheme 45: Solvent-controlled regiodivergent Mannich reaction.   

 

 

 

 

Scheme 45. Solvent-controlled regiodivergent Mannich reaction.

Scheme 46. Plausible reaction mechanism for regiodivergent Mannich reaction.

Zanardi et al. reported the divergent regio- and stereoselective synthesis of spirode-
canones and bicyclooctane derivatives via [3+2] and [4+2] cycloadditions, respectively
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(Scheme 47) [145]. The enolizable dicyanodienes (24-1) reacted with cinnamaldehyde (24-2)
in the presence of an amine/NHC catalyst in a one-pot reaction to afford the spirodecanone
(24-3) via a [3+2] cycloaddition reaction. On the other hand, the addition of 4-nitrophenol
as a co-catalyst switched the reactivity to produce bicyclooctane carbaldehydes (24-4) by
a [4+2] cycloaddition. A sequential C-ε regioselective bis-vinylogous Michael addition
in the presence of a bulky TBS protected the prolinol catalyst, followed by an NHC-
catalyzed 1,6-Stetter reaction involving C-δ [3+2] spiroannulation, producing ε,δ-bonded
spiro[4.5]decanones in the presence of potassium acetate as the base. Substrates of different
sizes (including both EWGs and EDGs on the benzene ring) were well tolerated with
complete diastereoselectivity (>20:1 dr) along with complete regioselectivity and a high
enantiomeric excess. A two-step domino reaction sequence was utilized to synthesize
bicyclo[2.2.2]octane carbaldehydes via a formal [4+2] cycloaddition reaction. Initially, γ’
enolate was formed from the enolizable dicyanodienes and the enal, activated by the proli-
nol catalyst following which the subsequent intramolecular 1,6-Michael addition at the δ
region afforded the expected product. The use of 10 mol% 4-nitrophenol as an additive
in chloroform at room temperature afforded the product in good yields with 17:1 site
selectivity along with high ee (96%) and dr (>20:1).

Scheme 47. Regioselective synthesis of enantioenriched carbocyclic compounds.

The reaction mechanism that was proposed (Scheme 48) involves the initial activa-
tion of the cinnamaldehyde (24-2) by the organocatalyst prolinol silyl ether by lowering
the LUMO. Subsequently, the hydroxide ion deprotonates the cyclohexenylidene malonon-
itriles at ε,δ’ to yield both of the enolates II and IV, respectively. Coulombic interaction
between the enal nitrogen atom and the nitrogen atoms of the cyano group initiates enan-
tioselective attack of the Si face of the enal acceptor by the bis-vinylogous enolate II.
Hydrolysis of enamine intermediate III produces 24-5 and, ultimately, the final product
24-3, and this is accompanied by the regeneration of the organocatalysts. For the [4+2]
cycloaddition reaction, the δ’-enolate is not stabilized by the enal nitrogen; instead, it is
stabilized by the addition of p-nitrophenol, which acts as a hydrogen bond donor. Under
these circumstances, the attack of IV (from its Re face) to the Si face of the enal is more
favorable, producing bicyclooctane carbaldehydes (24-4) upon hydrolysis of intermediate
VI along with the regeneration of the catalyst.
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Scheme 48. Proposed reaction mechanism for regiodivergent ε- and γ’,δ-pathways.

4. Brønsted Acid Catalysts
4.1. Phosphoric Acid Catalysts

In recent years, the activation of carbonyl compounds by utilizing chiral Brønsted
acids has received an enormous amount of attention, i.e., the activation of reactants by
way of a hydrogen bonding connection, which is one of the fastest growing research areas.
Chiral phosphoric acids have proven to be highly efficient catalysts for a wide range of
asymmetric transformations under mild reaction conditions. In general, binaphthyl is used
to synthesize chiral phosphoric acid derivatives. These catalysts have been involved in
several reactions including the Diels–Alder, Nazarov, Mukaiyama Aldol, Mannich, Henry,
Morita–Baylis–Hillman reactions, and 1,3-dipolar cycloadditions [146–154].

Tay and co-workers reported an efficient method for the regioselective synthesis of
glycosides in macrolactone (Scheme 49) [155]. Chiral phosphoric acid-catalyzed selective
glycosylation of complex phenols was achieved with excellent regiodivergence. Glycosy-
lation of 6-dEB (25-6-DEB) with 6-deoxyglucose (25-1) in the presence of BINOL-based
chiral phosphoric acids led to glycosylation at the C5 position of the macrolactone with
a high r.r. (regiomeric ratio) (99:01) in toluene. However, the use of SPINOL as a chiral
phosphoric acid in DCM resulted in glycosylation at the C3 alcohol of the macrolactone
with a 73:27 r.r. The C11 hydroxyl was also selectively glycosylated in the presence of
phenylboronic acid in toluene as the solvent. The C3 and C5 hydroxyls were present in
a 1,3-syn relationship, which was masked by the formation of the boronic acid ester to allow
formation of the glycoside at the C11 position. The hydroxyl groups at C3 and C5 were
regenerated after the boronate was cleaved during the subsequent workup with peroxide.

In 2020, Wang’s group developed aza- and oxo-[3+2] cycloadditions between α-
enaminones (26-2) and quinones (26-1) in the presence of chiral phosphoric acids and
4Å molecular sieves (M.S.), respectively (Scheme 50) [156]. In the presence of the chiral
phosphoric acid (26-(R)-CPA5), a wide range of N-substituted indoles (26-4) were obtained
as the products of a formal aza-[3+2] cycloaddition. On the other hand, in the presence
of bulky chiral phosphoric acid (26-(R)-CPA3) and 4Å molecular sieves as an additive,
the product 2,3-dihydrobenzofuran (26-3) was produced in the highest yields with excellent
enantioselectivities via an oxo-[3+2] cycloaddition. Various substituted quinones including
different esters (Me, Et, and Bn), and α-enaminones containing an EDG and EWG reacted
smoothly to produce the products in good yield with excellent enantioselectivities.
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Scheme 49. Regiodivergent glycosylation of 6-deoxy-erythronolide B.

Scheme 50. Formal oxo- and aza-[3+2] reactions of α-enaminones and quinones.

In the absence of molecular sieves, this reaction proceeded to produce N-substituted
indole derivatives in excellent yield with toluene as the solvent (26-4). Quinones containing
different ester groups as well as α-enaminones bearing an EDG or EWG at the para position
of the aryl ring were compatible under the optimized conditions and delivered the indole
derivatives in good yield.

The role of 4Å M.S. was important to obtain benzofuran derivatives. In the absence of
molecular sieves, or when they are replaced by dry MgSO4 or freshly activated 4Å M.S.
and H2O (2µL), this would slow down the formation of benzofuran derivatives (26-3) and
slightly increase the formation of indole derivatives (26-4). These above data reveal that
M.S. do not serve as a drying reagent in this reaction, and the addition of water relatively
favors the indole formation. Further, the size and format of M.S. also influence the reaction
outcome. In detail, for 3Å M.S. and 4Å M.S., their selectivity towards benzofuran and
indole is >20:1 (26-3:26-4), whereas in the case of 5Å M.S., 4Å M.S. (beads), and wet 4Å M.S.
(beads), it is about 11:1, 1:1, and 1:5.3, respectively. From 1H NMR and 31P NMR studies
of chiral phosphoric acid with and without M.S., the authors concluded that M.S. could
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affect the acidity of phosphoric acid and accelerate the interaction between the catalyst and
the substrate.

According to the proposed mechanism (Scheme 51), the enamine of the α-enaminones
(26-2) initially acts as a nucleophile to attack the Re face of the quinone (26-1) from
the Si face to afford the intermediate int-A via TS-I. O-tautomerization from the quinone
(enol/phenol) and N-tautomerization (enamine from the imine) afford int B and int C,
respectively. These intermediates (int-B, int-C) are attached to the chiral phosphoric acid,
as illustrated for TS-II and TS-III. The hydroxy group of TS-II then attacks the Si face
of the imine to afford 2,3-dihydrobenzofuran (26-3a), whereas indole (26-4a) is obtained
from TS-III via int D. Initially, the amine group attacks the Si face of the carbonyl group to
afford int D, which then undergoes dehydroxylation to produce the indole derivative. As
TS II is more polarized in nature than TS III, a polar solvent such as DCM stabilizes TS
II, and the addition of 4Å molecular sieves (4Å M.S.) accelerates the proton transfer in TS
II via absorbing/releasing a proton. Alternatively, TS-II is destabilized in the presence of
toluene, a non-polar solvent, in which case the reaction preferentially proceeds via TS-III.

Scheme 51. Proposed reaction mechanism for formal oxo- and aza-[3+2] reactions.

Recently, in 2020, the group of Li and Li reported ortho- and para-selective regiodiver-
gent C-H functionalization between 1-naphthols (27-1) and 1-azadienes (27-2) via a Michael
addition reaction (Scheme 52) [157]. The chiral squaramide catalyst afforded a product
in which an ortho-selective C-H bond was constructed, whereas para-selective C-H bond
formation occurred in the case of chiral phosphoric acid catalysts. Under the optimized
reaction conditions, with the chiral squaramide catalyst (27-SA-1), 1-naphthol with differ-
ent substituted 1-azadienes (F, Cl, Br, Me, and OMe) afforded the expected ortho-selective
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Friedel–Crafts alkylation products in good yields with high enantioselectivities (27-3).
Similar results were obtained with different substituted 1-naphthols (Br, OMe) which de-
livered the ortho-selective products in excellent yields with good ee. The use of 27-CPA-4
(1 mol%) as the catalyst resulted in regiodivergent para-selective C-H bond functionaliza-
tion (27-4). Within the scope of this substrate, 1-azadienes containing various EWGs (F, Cl,
Br) and EDGs (Me, OMe) on the aromatic ring could be well tolerated to offer para-selective
Friedel–Crafts alkylation products in good yields and with high ee. Control experiments
showed that the free hydroxy group of 1-napththol was essential to obtain the product in
this Michael addition. Both the catalysts (27-SA-1, 27-CPA-4) failed to produce the product
when 1-hydroxynaphthalene was protected with methyl (1-methoxynaphthalene, 27-1c),
which reacts with 1-azadiene (27-2a).

Scheme 52. Regiodivergent C-H functionalization of 1-naphthols with 1-azadienes.

4.2. p-Toluenesulfonic Acid Catalyst

Chen and co-workers reported the regiodivergent nucleophilic phosphorylation of
indolylmethanols (28-1) with diaryl phosphine oxide (28-2) in the presence of a Brønsted
acid catalyst (Scheme 53) [158]. The benzyl phosphorylated product (28-3) was obtained
by the utilization of 10 mol% of TsOH.H2O (p-toluenesulfonic acid monohydrate) in
nitromethane at 25 ◦C with moderate to good yield. A variety of 2-indolylmethanols
with an EDG produced comparably higher yields than those with an EWG. Similarly,
diarylphosphine oxides with an EWG at the para position produced higher yields. On
the other hand, the C-3 phosphorylation product (28-4) was obtained in good yield by
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using 20 mol% of the TfOH catalyst at 80 ◦C. Indolylmethanol containing both an EDG
and EWG was well tolerated to afford the products in moderate yields.

Scheme 53. Brønsted acid-catalyzed regiodivergent phosphorylation of 2-indolylmethanols.

In the proposed reaction mechanism (Scheme 54), the Brønsted acids generate a partial
positive charge at the benzylic position of the nitrogen atom or the C3 position of the 2-
indolylmethanols. Then, the diarylphosphine oxides attack the benzylic position to afford
the benzylic phosphorylated product 28-3. In the presence of a strong acid such as TfOH
and upon exposure to heat, the benzylic phosphorylated product may undergo a [1,3]-P
migration to afford the thermodynamically stable product (28-4) via transient intermediate
28-5. Cross-over experiments concluded that the [1,3]-P migration entailed intramolecular
migration. The acidity of the Brønsted acid was a crucial factor because the [1,3]-P migration
hardly occurred in the presence of a weak acid.

Scheme 54. Possible reaction pathway for phosphorylation of 2-indolylmethanols.

5. Hydrogen Bond-Donating Catalysts
5.1. Thiourea Catalyst

In recent decades, thiourea derivatives have been commonly used as organocatalysts
in organic and pharmaceutical chemistry. Moreover, these derivatives are also widely used
as bifunctional catalysts in combinations such as amine–thiourea and phosphine–thiourea.
Along with their catalytic activity, they are also involved as a component in various
reactions including guanylation, thioarylation, and C–S cross-coupling reactions [159–166].

The regiodivergent chlorination of electron-rich phenols (29-1) established by Gustafson
and co-workers is demonstrated in Scheme 55 [167]. Here, ortho-chlorination of the phe-
nol (29-2) with N-chlorosuccinimide is promoted by 10 mol% of Nagasawa’s bis-thiourea
catalyst (29-5). The meta-substituted phenols (F, Cl, Br, I, and t-Bu) efficiently afforded



Catalysts 2021, 11, 1013 36 of 45

good ortho-regioselectivity in the presence of Nagasawa’s catalyst. The authors also demon-
strated the augmentation of the innate para-selectivity of phenols by using BINAP-derived
phosphine sulfide as a catalyst (29-6). Phenols containing Ph, t-Bu, CN, and a halogen sub-
stituent afforded a para-selective chlorinated product as the major product (29-3). The au-
thors also investigated the reaction conditions for regioselective bromination. Catalyst
29-4 afforded mainly the para-selective brominated product as the major regioisomer
(29-9), whereas the presence of Nagasawa’s bis-thiourea catalyst overcame the innate
para-preference of the phenol to afford the ortho-brominated products (29-8) with good
selectivity. The authors concluded that the regioselectivity mainly depends on the struc-
ture of the Lewis bases, and reversal of the regioselectivity by Nagasawa’s bis-thiourea
catalyst could promote chlorination via dual activation. That is, one of the thiourea moi-
eties interacts with the phenol and the other activates NCS via a Lewis base or Brønsted
acid manifold.

Scheme 55. Catalyst-controlled regiodivergent chlorination of phenols.

5.2. Squaramide Catalyst

Chiral squaramide, a bifunctional organocatalyst, is an effective alternative for urea/th-
iourea catalysts. Chiral squaramide has been shown to successfully catalyze several
reactions including Michael additions, and the Mannich, aza-Henry, and Strecker reactions.
Moreover, these catalysts have successfully produced enantio-enriched products in single
and domino/cascade reactions in various asymmetric organic transformations [168–176].

In 2018, Xu and co-workers reported the organocatalytic, regiodivergent C-C bond
cleavage of cyclopropenones (Scheme 56) [177]. Their efficient methodology involves
a cascade cycloaddition followed by a regioselective cyclopropyl ring strain release pro-
cess catalyzed by bifunctional squaramide catalysts. Aldimines (30-1) reacted with 2,3-
diphenylcycloprop-2-enone (30-2) with 1 mol% of the catalyst to afford tetrahydrochrome-
no[4,3-b]pyrroles (30-3) as products in excellent yields with excellent ee and dr ratios (20:1).
In contrast, completely different cyclized products, tetrahydrobenzofuro[3,2-b]pyridines
(30-4), were obtained when methylphenylcyclopropenone (30-2’) was used along with
20 mol% of the catalyst. The products were obtained in excellent yields with excellent
enantioselectivities. The synergistic effect of hydrogen bonding activation and controlled
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ring strain release played a pivotal role in the generation of the two different ring sys-
tems. The “spring-loaded” intermediate with switchable C-C bond cleavages achieved by
controllable ring strain release governed the regioselectivity of the reaction (Scheme 57).
Nucleophilic addition to the hydroxy group at the carbonyl carbon (30-A) produced five-
membered products, whereas six-membered cyclic products were obtained when the ring
opening occurred at the α-site of the carbonyl carbon (30-B). This was substantiated by
DFT studies. With this protocol, the authors were able to synthesize diverse heterocyclic
frameworks with good enantioselectivity of 99% and an excellent yield (as high as 99%) for
both regioisomers.
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Scheme 57. Results of the DFT calculation of the Mulliken charge distribution for 30-A and 30-B.

6. Conclusions

This review summarized the control of regiodivergent reactions by utilizing various
organocatalysts. The use of several organocatalysts such as Lewis bases, amine bases,
Brønsted acids, and hydrogen bond-donating catalysts that were employed to deliver
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the regiodivergent products was described. The reactivity of various organocatalytic
systems, the scope of the substrates, and their mechanistic studies were briefly discussed.
The choice of the catalysts, additives, temperature, and solvents was found to play a crucial
role in determining the regioselectivity of the reaction.

Although synthetic chemists have devoted lots of efforts to developing organocatalytic
regiodivergent methods, in order to cater to the need for diverse molecules to access
the chemical space, we need more regiodivergent methods by which we can synthesize
a broad range of molecules easily.
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