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Abstract: Copper oxide (CuO) nanoparticles (NPs) were decorated on reduced graphene oxide (rGO)
through the effective synthetic route method. Powder X-ray diffraction, Fourier transform infrared,
ultraviolet-visible absorption, and scanning electron microscopy techniques were used to analyze the
chemical structure, functional groups, absorbance, and morphology. Under visible light illumination,
the CuO/rGO nanocomposites have higher catalytic activity compared to the bare CuO NPs which
were suitable for degradation of methylene blue (MB) and Congo red (CR) dyes. According to
the findings, the CuO/rGO nanocomposites possess excellent photocatalytic efficiency. Thus, the
synthesized CuO/rGO nanocomposite is a promising photocatalyst for the deterioration of organic
pollutants in water and wastewater treatment.

Keywords: reduced graphene oxide; CuO; methylene blue (MB); Congo red (CR); photocatalytic
degradation

1. Introduction

Copper oxides have received a lot of consideration due to their special properties such
as stability, suitability for the environment, low production cost, and abundant availability.
They have been incorporated in many practical uses such as in solar cells, photocatalysts,
and gas sensor applications [1–4]. Due to their cheap cost, high oxidizing characteristics
and lack of toxicity, TiO2 and ZnO-based catalysts are frequently utilized in photocatalytic
applications to remove organic contaminants from water [5–7]. The photocatalytic efficacy
of catalysts is low, due to the large bandgap (>3.2 eV), necessitating significant UV absorp-
tion energy. Copper (II) oxide or cupric oxide (CuO) is a well-known intrinsically p-type
semiconductor with a bandgap of 1.2 eV [8–10]. In the photocatalytic process, this can be a
significant benefit over broad bandgap for the semiconducting materials, as sunlight can be
fully exploited. Despite this, the photocatalytic efficacy of copper oxide is poor due to the
extraordinarily high recombination rate of the photogenerated electron hole (e−/h+) pairs.
As a result, by mixing electron-accepting materials with copper oxide, the recombination
of e−/h+ pairs must be reduced. Due to the exceptional thermal and mechanical stability,
great surface area, and ease of surface modification, graphene has recently gained a lot
of attention as a supporting material [11,12]. The advantages of loading copper oxide
on graphene would be used to increase photocatalytic efficacy. Though graphene-based
copper oxide is a promising option for a photocatalyst, only a few examples are available
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in photocatalytic applications, and the full structural characterization of CuO-graphene
has yet to be published [13–16]. This study tested CuO/rGO nanocomposites in the photo-
catalytic activities of two organic dyes, methylene blue (MB) and Congo red (CR), under
visible light irradiation. While MB is cationic thiazine dye, CR is anionic azo dye, contain-
ing the azo (-N=N-) functional group in its structure. Both dyes are extensively used in the
textile industry and could cause health problems if they are discharged to the environment
without prior treatment. Table 1 provides the structural formula and toxicity of these dyes.

Table 1. Structural formula, maximum UV-vis absorption (λmax), and toxicity of CR and MB dyes.

Dye The Structural Formula (Molecular Mass (g/mol), Ionicity) λmax (nm) Toxicity Ref.
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The main aim of this work is to (a) develop a simple and easy way to synthesize
CuO/rGO nanocomposites, (b) examine its morphological and chemical structures using
Powder X-ray diffraction (XRD), Fourier transform infrared (FTIR) scanning electron
microscopy (SEM) and Energy Dispersive X-Ray Analysis (EDAX) techniques, and (c) assess
and compare their photocatalytic degradation efficiency for MB and CR dyes and learn
about the link between structural characteristics and photocatalytic performance.

2. Results and Discussion
2.1. Physicochemical Properties

Figure 1 depicts copper oxide (CuO) development on reduced graphene oxide (rGO)
using XRD analysis. GO exhibits a distinct XRD diffraction peak centered at 42.6◦. The
inclusion of various oxygen functional groups (hydroxyl, epoxy, carbonyl groups, etc.) on
either side of the graphene layers has credited to the peak at 10.9◦, whereas the peak at
42.6◦ corresponds to the (100) plane of the hexagonal structure of carbon [20,21]. Additional
diffraction peaks arise at 2θ = 35.6◦ and 38.8◦ when the copper-precursor impregnates
GO, which can be connected with the (111) and (111) planes of the monoclinic structured
CuO [13,22]. Figure 1 displays an XRD pattern of CuO/rGO in which the diffraction peaks
are closely aligned with the monoclinic phase of CuO. Monoclinic structured CuO peaks
corresponding to the planes (110), (111), (111), (202), (020), (202), and (311) are well-matched
with the standard diffraction peaks (JCPDS 48-1548) [21–24]. The crystallite size (D) was
calculated to be in the range of 45–50 nm for the prepared rGO/CuO nanocomposites
using Scherrer formula given by D = κλ/βcosθ from the XRD most intense peak.

Here, k is a constant equal to 0.9, λ is the wavelength of X-ray radiation (λ = 0.15406 nm),
β represents the peak width at half maximum intensity of the peak selected, and θ is the
Bragg’s angle.
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Figure 1. XRD pattern of as-synthesized rGO-CuO nanocomposites.

Figure 2a–d depicts the surface morphology and chemical composition of rGO/CuO
nanocomposites. From the analysis of SEM images for rGO/CuO nanocomposite, the
nanostructure is found to be in the form of flakes due to the presence of GO. This decoration
of CuO on GO occurs due to the enhanced interfaces between CuO and the functional
group existing in the molecular mixing phase on the GO surface [25]. The EDAX analysis
shows the elemental mapping of the rGO-CuO nanocomposite, along with FESEM, and
the generated results are given in Figure 3. It defines that the elemental mapping of the
rGO-CuO sample has 39% Cu, 49% O, and 12% C. This confirms the occurrence of rGO in
the rGO-CuO sample, i.e., the CuO particles are uniformly distributed onto the graphene
layers. Additionally, it can be observed that the amount of C is very low (therefore it
could not be detected in the XRD) and this shows the decrease in the C distribution in
the nanocomposite. It is partially due to the quenching of the GO to graphene. From the
overall analysis of FESEM, EDAX, and EDS, the rGO-CuO nanocomposites are successfully
synthesized without any impurities.

FTIR spectroscopy helps in identifying the existence of the vibrational frequencies in
the synthesized rGO/CuO nanocomposite as shown in Figure 4. The peak at 1117 cm−1

attributes to C–O stretching vibrations, and the characteristic peak at 1566 cm−1 shows the
presence of C=C in a graphene oxide sheet [26]. The wavenumber at 3389 cm−1 corresponds
to O–H stretching vibration, which gets significantly reduced in the rGO [27]. The peak
at 882 cm−1 is due to the Cu–OH vibration, confirming the effective preparation of the
rGO/CuO nanocomposite [28]. The absorption peak at 432 cm−1 corresponds to Cu–O
stretching vibrations denoting that CuO has completely decorated on the rGO sheet [25].

UV–vis absorption spectrum has been recorded for the prepared rGO-CuO nanocom-
posites and is shown in Figure 5. The rGO-CuO nanocomposites correspond to n–π* and
π–π* transitions, and these transitions are due to the presence of aromatic carbon–carbon
bond and carbonyl group [29]. The absorption spectrum indicates the reduction in GO and
the replacement of the OH and COOH group with CuO. The absorption peak at 300 nm
shows the complete disappearance and confirms the reduction in GO and the fixing of
CuO on the GO sheet [30,31].
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2.2. Photocatalytic Activity of CuO/rGO Nanocomposites

The photocatalytic activity of CuO/rGO composites was tested for MB and CR dyes,
and it can be seen from Figure 6 that the hypochromic shift in absorbance with time for
both dyes imply their degradation in a period of 1 h, Figure 6a,b. As shown in Figure 6c,d,
the resulting percent of degradation (D (%)), given by Equation (1), is achieved as 95.6%
for CR and 77.5% for MB under visible light illumination for 1 h.

D (%) =

(
1− At

A0

)
× 100 (1)

where, A0 and At represent the initial absorbance before radiation exposure and after
exposure time t, respectively.
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under visible light utilizing rGO-CuO nanocomposites as a catalyst.
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Moreover, the experimental degradation reactions can be described with satisfactory
values of correlation coefficients (R2), Figure 6e,f using pseudo-first-order reaction rate
constant (kapp), Equation (2). From the plots, the respective reaction rate constants for the
degradation of CR and MB dyes are 0.0459 and 0.0248 min−1 as tabulated in Table 2.

ln
(

Ct

C0

)
= −kappt (2)

t1/2 =
ln (2)
kapp

=
0.693
kapp

(3)

Table 2. Summary of photocatalytic parameters for the degradation of CR and MB dyes using
rGO/CuO nanocomposites.

S/N Dye D (%) t (min.) κapp(min.−1) t1/2 (min.) R2

1 CR 95.6 60 0.0459 15.1 0.91

2 MB 77.7 60 0.0248 27.9 0.998

3 MB 92.8 90 0.0275 25.2 0.98

The photocatalytic activity of pure CuO nanoparticles for the degradation of methy-
lene blue was tested under similar experimental conditions. It was found that MB was
decomposed by 26% under visible light irradiation for 1 h, a difference of about 52% as
compared to the decomposition achieved using rGO-CuO as a photocatalyst. The similar
enhanced photoactivity of rGO-CuO nanocomposites compared to the individual pure
phases of CuO or rGO catalysts for the degradation of MB under visible light for 1 h was
reported by Dutta et al. [27]. In their work, they found that MB was degraded by nearly 99%
using the composites in the presence of H2O2 oxidant under visible light irradiation, which
was superior to that achieved by the pure CuO or rGO phase catalysts, with their respective
degradation percentages being 70 and 77% under similar experimental condition.

In another study, Kumar et al. [32] found an increase in photocatalytic activity of
rGO/CuO nanocomposites for the degradation of MB under sunlight irradiation for 1 h by
10% as compared to the efficiency achieved by bare CuO NPs under similar experimental
parameters. According to the authors, the enhanced activity of the rGO/CuO composites is
due to the facilitated charge transfer created as a result of the synergistic effect between CuO
crystal structures and π-conjugated structures in rGO, which prolong the recombination
rate of charge carriers and increase the degradation rate.

Table 3 provides additional examples of reports for the degradation performance of
rGO-CuO nanocomposites for different organic pollutants at the indicated experimental
conditions. Therefore, the synthesized rGO-CuO composites are photoactive towards the
degradation of MB and CR dyes. Photocatalytic degradation of dyes could occur via direct
routes or indirect routes. In the direct route, decomposition occurs after photosensitization
of the dyes by photon absorption and subsequent injection of photoexcited electrons
into the conduction band of the semiconductor catalyst, reducing dissolved oxygen into
superoxide radical ion (O−.

2 ) (Equations (9) and (10)), and then into more reactive hydroxyl
radical (HO.) through subsequent steps (Equations (7) and (8)). These two radicals are
primary responsible for inducing the degradation reactions. In particular, the HO. Radical,
with an oxidation potential of +2.8V vs. NHE, is the most powerful oxidizing radicals,
which non-selectively degrades organic pollutant molecules via H abstraction, in addition
to the unsaturated bond, and electron transfer mechanisms [33].
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Table 3. Comparison of photocatalytic degradation performance of rGO-CuO nanocomposites for different organic
pollutants with result in this work.

Catalyst Pollutant Conditions D (%) Ref.

CuO/rGO 2-Nitrophenol 2-Nitrophenol conc. = 10 ppm, catalyst dose = 30 mg, 400 W
metal halide lamp, t = 3 h 100 [34]

rGO/CuO 4-Nitrophenol 4-Nitrophenol conc. = 0.253 ppm, catalyst dose = 10 mg,
t = 240 min. under UV light 81 [35]

50%rGO/CuO Methylene blue MB conc. = 10 ppm, catalyst dose = 20 mg, 150 W Xe lamp,
20 mL H2O2 added, t = 1 h 99 [27]

ZnO/rGO Congo red Congo red conc. = 10 ppm, Dye volume = 100 mL, catalyst
dose = 50 mg, under visible light for 1 h 92 [36]

Cu/rGO Methylene blue Dye Conc. = 40 ppm, catalyst dose = 20 mg, t = 50 min., 94 [37]

CuO-rGO

Methylene blue MB conc. = 2.23 × 10−5 M, V = 50 mL, Catalyst dose = 10 mg
using 100 W Xe lamp irradiating for 90 min.

77.7

Present work
Congo red CR conc. = 2.23 × 10−5 M, V = 50 mL, Catalyst dose = 10 mg

using 100 W Xe lamp irradiating for 90 min.
95.6

In the indirect route, decomposition is initiated by the in-situ generation of electron–
hole pairs. When the semiconductor catalyst particles are irradiated with radiation of
energy (hν), they are found to be (Eg), that is hν ≥ Eg. After that, the CB electrons reduce
electron-accepting species such as dissolved O2 in solution to O−.

2 , and VB holes cause the
oxidation of electron-donating species such as H2O into HO. radicals (Equations (5) and
(6)). These then begin the decomposition process, producing intermediate steps initially,
and finally converting them into environmentally benign products of CO2, H2O, and few
mineral acids (Equation (12)). Of the two possible decomposition routes, it has been found
that the indirect route is kinetically faster, as well as the predominant route leading to the
decomposition of organic pollutants [38]. The overall steps involved during the destruction
process of the dyes are outlined in Equations (4)–(12).

rGO− CuO + hν→ rGO− CuO
(
e− + h+

)
(4)

e− + O2 → O−.
2 (5)

H2O + h+ → HO. + H+ (6)

O−.
2 + H+ → HOO. (7)

2HOO. → H2O2 + O2 (8)

H2O2 → 2HO. (9)

MB + hν→ MB+. + e− + O2 → MB+. + O−.
2 (10)

CR + hν→ CR+. + e− + O2 → CR+. + O−.
2 (11)

MB + CR + HO. + O−.
2 → Degraded products (12)

In addition to the nature of the catalyst and its morphological properties, several
operational parameters including initial pollutant dose, catalyst dose, energy and intensity
of radiation, stirring rate, temperature, and reaction time are affected by the degradation
efficiency of photocatalyst for organic pollutants [17].

Here, the effect of extending the reaction time for the next 30 min for the photocatalytic
degradation of MB dye using the rGO-CuO catalyst has been studied. When the reaction
time was prolonged for 90 min for the degradation of the dye, the removal efficiency is
increased to 92.8%, Figure 7c. The corresponding bathochromic shift in the intensity of
the dye with time, Figure 7a,b as well as the pseudo-first-order reaction kinetics model
parameters extracted from Figure 7d are also shown and results are tabulated in Table 2.
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Figure 7. Change of absorbance with time (a,b), degradation achieved (c), and pseudo-first-order kinetics plot (d) for the
degradation of MB under visible light for 90 min. using the synthesized rGO-CuO catalyst.

As discussed previously, the photocatalytic activity of rGO-CuO composites towards
the degradation of MB and CR dyes are greater than bare CuO NPs. This could be attributed
to the following possible reasons:

The charge transfer mechanism in rGO-CuO nanocomposites catalysts during the
degradation process is illustrated in Figure 8. One possible reason for the enhanced activity
of the nanocomposites are due to the electron-accepting property of rGO, which facilitates
the efficient separation of e−/h+ pairs, resulting in more generations of radicals and an
enhanced decomposition rate [39,40]. In addition, the enhanced degradation of MB could
occur due to its high adsorption on the surface of the composite’s particles, as the cationic
dye molecules could easily form strong conjugation with the oxygen functional groups
and the aromatic portion of the 2-D planar sheets in reduced GO, according to the studies
reported earlier [41–43].

Another possible reason for rGO-CuO’s catalytic effectiveness for the photocatalytic
degradation of MB being more efficient than bare CuO could be due to sufficient electron
transport between CuO and MB molecules. The electrons can then be transmitted by the
conjugated graphene to the adsorbed MB molecules, causing the redox decomposition
reaction. As MB can easily bind to rGO, the concentration of adsorbed MB molecules near
CuO NPs in CuO/rGO composite will be larger than the concentration of bare CuO NPs,
resulting in a faster catalytic breakdown rate.

Furthermore, during the excitation process, e−/h+ pairs are formed, the holes can
be trapped by water or surface hydroxyls (single bond OH) to create the hydroxyl radical
(HO.), which is a powerful oxidizing agent for the breakdown of organic contaminants
in wastewater [27]. Another likely enhancement of degradation of the dyes using the
composites particles, as compared to bare CuO NPs, could be related to particle size [44,45].
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Electrons can be transferred to the surface of the NPs, which then migrates to graphene.
Thus, the recombination rate of e−/h+ pairs could be reduced as the size of the NPs
lowers. The transport of electrons from graphene to molecules of methylene blue increased
photocatalytic activity. Generally, the high catalytic activity of rGO/CuO nanocomposites
for the degradation of MB could be attributed to a synergistic effect of methylene blue
molecules’ absorptivity on rGO, surface hydroxyl to produce HO., the photocatalytic
properties of CuO NPs, lower bandgap, and smaller particle size, all of which were achieved
in a single synthetic process.
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3. Experimental Section
3.1. Materials and Methods

All the chemicals used in this work were of analytical grade and used as such without
further purification. The graphite powder (99.99%) and copper (II) nitrate trihydrate (Cu
(NO3)2.3H2O, 99.9%), and 2-propanol were purchased from Sigma Aldrich.

3.2. Synthesis of CuO/rGO Nanocomposites

Exfoliation and oxidation of graphite powder were used for synthesizing GO using a
modified Hummers and Offeman’s method [11]. An impregnation approach combined
with thermal treatment was used to produce CuO/rGO nanocomposites. The synthesis
of CuO/rGO nanocomposite was carried out by Cu (NO3)2.3H2O (0.13 g) and GO (0.3 g)
were dissolved in 50 mL of 2-propanol and adjusting the pH level to 12. The resulting
suspension was then sonicated for 30 min before being agitated with reflux at 83 ◦C for
3 h. Then, the suspension was centrifuged at 8000 rpm after being filtered with distilled
water. Finally, the filtrate was freeze-dried and placed in a furnace at 400 ◦C for 30 min,
producing CuO/rGO nanocomposite as the final product.
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3.3. Instrumental Analysis

Powder X-ray diffraction (XRD) analysis was used to investigate the CuO/rGO
nanocomposite, using CuKα radiation (λ = 1.5406 Å) and a quartz monochromator source
(PANalytical X-ray diffractometer). For the functional group analysis, a single-beam
Fourier-transform infrared (FT-IR) spectrometer (Model-Agilent, Cary 630 Spectrometer,
JASCO International Co., Japan,) using the KBr pellet method was used to record the spec-
trum in the wavelength range of 4000 to 500 cm−1. A Perkin-Elmer Lambda 650 spectropho-
tometer (PerkinElmer Inc., Singapore) was used to measure UV-Vis optical absorption.
Field emission scanning electron microscope (FESEM) (JMS7500F, JEOL, Akishima, Japan)
connected to the energy dispersive X-ray (EDX) detector were employed, respectively.

3.4. Photocatalytic Activity

The photocatalytic activity of the prepared CuO/rGO nanocomposite was tested for
the degradation of MB and CR dyes taken separately. Firstly, 10 mg of CuO/rGO catalyst
was immersed in 10 mL of distilled water, and the resulting suspension was stirred for
30 min in a dark room to establish adsorption/desorption equilibrium. After that, the
suspension was added to a sealed round bottom flask containing 50 mL of 2.23 × 10−5 M
aqueous solution of MB or CR dyes, and the catalytic reactions were performed at room
temperature. The absorbance of the resulting supernatants was measured with a UV
visible spectrophotometer, and the degree of decomposition of dyes was calculated using
Equation (1).

4. Conclusions

An impregnation method, followed by a thermal treatment approach was used to
synthesize rGO/CuO nanocomposites and tested by XRD, FTIR, UV-Vis, and SEM tech-
niques. The prepared sample was analyzed for photocatalytic degradation of contaminant
dyes, that is, MB and CR dyes, individually under visible light irradiation. This results
in about 96% of decomposition for CR, while MB was degraded by nearly 78% in 1 h of
illumination. The kinetics of the decomposition reactions can be satisfactorily described by
a pseudo-first-order reaction model with reaction rate constants of 0.0459 and 0.0248 min−1,
respectively. The removal percentage of MB was further improved by prolonging the reac-
tion time, and degradation of 93% was achieved in 90 min of irradiation. Additionally, the
enhanced catalytic activity of rGO/CuO composites for the degradation of the dyes could
be attributed to the good electron-accepting property of rGO in the composites, thereby
promoting the efficiency of e−/h+ pairs separation and increasing rate of the degradation
process. Further, the enhanced activity of the composites to the degradation of MB could
be due to the better absorption of dye molecules on catalyst particles owing to the strong
conjugation of an aromatic portion of the 2-D sheets and oxygen functional groups in rGO
with dye molecules. Therefore, the synthesized rGO/CuO nanocomposites can be used in
the dye degradation of organic pollutants in wastewater remediation.
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