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Abstract: Phosphorylation is a reversible, enzyme-controlled posttranslational process affecting
approximately one-third of all proteins in eukaryotic cells at any given time. Any deviation in the
degree and/or site of phosphorylation leads to an abnormal conformation of proteins, resulting in a
decline or loss of their function. Knowledge of phosphorylation-related pathways is essential for
understanding the understanding of the disease pathogenesis and for the design of new therapeutic
strategies. Recent availability of various kinases at an affordable price differs in activity, specificity,
and stability and provides the opportunity of studying and modulating this reaction in vitro. We
can exploit this knowledge for other applications. There is an enormous potential to produce fully
decorated and active recombinant proteins, either for biomedical or cosmetic applications. Closely
related is the possibility to exploit current achievements and develop new safe and efficacious
vaccines, drugs, and immunomodulators. In this review, we outlined the current enzyme-based
possibilities for in vitro phosphorylation of peptides and recombinant proteins and the added value
that immobilized kinases provide.

Keywords: (multi)phosphorylation; immobilized kinases; recombinant peptides/proteins

1. Introduction

In the past, it has been repeatedly proven that the most common posttranslational
modifications (PTM)—such as glycosylation, phosphorylation, and acylation—significantly
affect the folding process, the final native structure, and consequently the biological activity
of protein molecules [1]. Polypeptide chains as a product of translation must undergo
various posttranslational modifications to be assembled properly to reach a final three-
dimensional conformation. Phosphorylation is also considered a key protein regulatory
modification, often leading to substantial structural changes, which directly turn protein ac-
tivity on or off, causing changes in its interacting molecules or subcellular localization [2–5].

Phosphorylation is a reversible and rapid mechanism under the control of kinases,
whereas dephosphorylation is controlled by phosphatases. Most phosphorylation proceeds
in a highly site-specific manner, with the addition of the phosphate group (PO4), preferably
occurring at the side chains (R groups) of the three amino acids: serine, threonine, and
tyrosine. We note that phosphorylation in different R groups can cause different outcomes.
Nonphysiological and out-of-control changes in phosphorylation often lead to fundamental
alterations in biological regulation. Imbalanced expression of kinases means an imbalance
in signaling pathways. Protein kinase dysfunction leads to abnormal signaling network
activity, resulting in altered cellular functions in tumor cells [6].

It follows from the above that phosphorylation of the polypeptide chain is vital to
attain a three-dimensional conformation associated with proper biochemical and biological
nature and reactivity. A strategy based on the chemical synthesis of short polypeptide
chains that contain amino acids bearing posttranslational modifications was shown to be
suitable, especially for peptides and small proteins up to a maximum of 50 amino acids in
length [7]. Because the importance of protein phosphorylation for the proper functioning
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of cells and tissues is estimated, there is growing interest in in vitro phosphorylation. One
of the challenges facing the biotechnology process of recombinant proteins today is to
prepare a product identical to a native protein of eukaryotic origin using a cheaper and
more extensive bacterial protein expression system.

Proper folding of polypeptide chains is an important prerequisite to obtain a protein
in its native structure [3,8]. The key to the successful production of pharmaceutical-grade
recombinant proteins is to identify host cells with maximum efficiency in the expression of
candidate proteins that are safe and effective at a reasonable cost [9]. However, in many
cases, the lower cost and less demanding production of eukaryotic-derived recombinant
proteins in bacterial cells is not suitable [10]. Although the baculovirus expression vector
system offers PTMs similar to proteins of mammalian origin, low protein yield finally
results in a higher cost of production. Fortunately, plant, viral, or eukaryotic expression
systems [11–13] are possible alternatives even if they are more demanding financially, and
labor-intensive. For large proteins and proteins that require glycosylation or phosphory-
lation, mammalian cell lines (e.g., Chinese hamster ovary), yeasts such as Saccharomyces
cerevisiae and Pichia pastoris, or transgenic plants such as Arabidopsis thaliana are suitable
production organisms routinely used in practice. Compared to bacterial production cells
(Escherichia coli) and without going into detail, this eukaryotic cell-based approach is more
expensive and laborious or can lead to qualitative changes in protein structure [11,14–16].

However, results published in the last 10 to 15 years showed that large-scale phos-
phorylation of recombinant proteins in vitro is not a routine matter [10,17–19]. There are
major drawbacks complicating extensive production: (i) kinases are enzymes that are very
sensitive to gentle changes in the environment, and their catalytic activity and stability are
difficult to regulate; (ii) the activity of kinases is also controlled by site-specific phospho-
rylation/dephosphorylation; (iii) the soluble form of kinases added to the recombinant
protein solution contaminates the final product, and another purification step is needed.
The strategy that is logically offered is based on the immobilization of the kinase molecule
in the solid phase, which can easily and mostly quantitatively be removed from the fi-
nal product. In terms of industrial production, the possibility of repeated use is also an
indispensable advantage. In vitro phosphorylation using enzyme reactors emerges as a
promising strategy.

A better understanding of the protein phosphorylation process is required to fully
understand the mechanisms of cell signaling and to evaluate the relationship between
changes in key protein phosphorylation and some diseases of civilization [2,20–25]. That
is the reason why we need standard proteins and peptides with proper phosphorylation,
e.g., hyperphosphorylated tau protein in its pathological form, to reveal the causes of
neurodegeneration [17,26–28]. In particular, mutations causing dysregulation of kinase or
phosphatase activity play an important role in many other diseases (see Figure 1) [21,29–32].

Recombinant (phospho)proteins are a suitable tool not only for the cell regulation
study, as we have already mentioned. They are also widely applied as the main component
of new generation vaccines [33,34] or for the production of specific monoclonal antibodies
that recognize specific antigens, phosphoproteins, or site-specific amino acid phosphoryla-
tion [35], clearly reviewed by [6]. A typical example is the work of Freivalds et al. (2011),
in which the authors described the production of phosphorylated yeast-derived hepatitis
B core protein to carry foreign peptides [16]. Zakhartchouk et al. (2005), reported on the
SARS-CoV N protein expressed and phosphorylated in a replication-defective human
adenovirus 5 vector. Vaccination with this phosphorylated form of the N protein gener-
ated protective humoral and T cell-mediated immune responses mediated by SARS-CoV
compared to a vaccine prepared with proteins lacking adequate phosphorylation [5].
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Figure 1. Diagram illustrating events that can contribute to neuronal dysfunction in AD and/or fron-
totemporal dementia and parkinsonism related to tauopathies of tauopathies of tauopathies of chro-
mosome 17 (FTDP-17), and the crucial role played by alterations in tau protein phosphorylation. 
Reproduced with permission from [32]; published by Elsevier, 2005. 
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based mainly on chemical solid-phase peptide synthesis (SPPS). Fmoc SPSS with modified 
peptides is the method of choice for peptide synthesis. Phosphopeptides are produced by 
the specific incorporation of protected phospho-amino acids, the so-called building block 
approach [7,36]. However, this method is limited to peptides with a maximum of three 
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Figure 1. Diagram illustrating events that can contribute to neuronal dysfunction in AD and/or
frontotemporal dementia and parkinsonism related to tauopathies of tauopathies of tauopathies of
chromosome 17 (FTDP-17), and the crucial role played by alterations in tau protein phosphorylation.
Reproduced with permission from [32]; published by Elsevier, 2005.

2. In Vitro Phosphorylation of Recombinant Proteins: Various
Methodological Approaches

There are currently several options for the manufacturing of (multi)phosphorylated
peptides and proteins of synthetic respective recombinant origin:

• Fmoc SPSS using modified peptides
• SPSS combined with microwave radiation
• Protein semisynthesis
• Protein synthesis and biotechnology combination
• Enzyme-based phosphorylation approach

However, approaches for preparing phosphorylated peptides or large proteins differ
fundamentally. Production of phosphopeptides with a length of up to 70 amino acids is
based mainly on chemical solid-phase peptide synthesis (SPPS). Fmoc SPSS with modified
peptides is the method of choice for peptide synthesis. Phosphopeptides are produced by
the specific incorporation of protected phospho-amino acids, the so-called building block
approach [7,36]. However, this method is limited to peptides with a maximum of three
phosphorylation sites [37,38]. SPSS with microwave radiation increases the efficiency of
synthesis and allows the synthesis of phosphopeptides and multiphosphopeptides [39,40].

The semisynthetic approach offers phosphorylated polypeptides and proteins over
the commonly synthesized length of 50 amino acids on a large scale by combining synthetic
and recombinant prepared fragments. In 2020, Thompson and Muir published an extensive
review of protein semisynthesis methods, including chemical and biological methods, in
which they also reported the semisynthesis of phosphopeptides/proteins α-synuclein, tau
protein, and huntingtin [41].

Another possibility combines protein synthesis and a biotechnological approach, as
described in [42,43]. This approach used a cell-free protein synthesis (CFPS) platform
employing crude Escherichia coli extracts (see Figure 2). The platform was enriched with
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the components of the orthogonal translational system (phosphoseryl-tRNA synthetase,
tRNASep, and the elongation factor EF-Sep), which used the so-called co-translational
incorporation of phosphoserine into the protein.
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Figure 2. Phosphoprotein production by the combination of protein synthesis and a biotechnological
approach: cell-free protein synthesis adapted for phosphoprotein biosynthesis in the presence of
L-phosphoserine (Sep). The orthogonal translational system for phosphoprotein synthesis consists of
phosphoseryl-tRNA synthetase, tRNASep, and the elongation factor. tRNASep is aminoacylated with
Sep-Sep tRNA synthetase (SepRS). EF-Sep then delivers Sep-tRNASep to the ribosome. Reprinted
with permission from [43]. Copyright 2015 Springer Nature.

The enzyme-based phosphorylation approach has several possible configurations.
If the target peptides/proteins and kinase(s) are in soluble form, then in the majority
cases a preparative liquid chromatography must follow (Figure 3a) [4]. From the point of
view of the purity of the final product, another option seems to be more advantageous: a
process in which one of the components is bound to a solid phase, the enzyme or the target
molecules to be phosphorylated (see Figure 3b) [44]. If the recombinant (poly)peptide
product has an affinity tag (e.g., protein A and lacZ, polyHis, glutathione S-transferase
(GST), or maltose binding protein) this tag fixes the (poly)peptide on a solid support,
and specific in vitro phosphorylation by soluble kinases follows on. After washing, the
release of the phosphorylated product occurs by specific anchor cleavage [45–48]. A similar
mechanism serves to covalently immobilize recombinant proteins that have affinity and
phosphorylatable anchors after their in vitro phosphorylation (see Figure 4) [45,49].

One should not forget one other in vitro phosphorylation technique which exploits
the full spectrum of kinase substrates and phosphorylation activity in eukaryotic cell
extracts or the next alternative technique, where site-specific mutations that incorporate
aspartate/glutamate amino acids mimic phosphorylated amino acids such as phosphoser-
ine/phosphothreonine [50,51].
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The selection of suitable kinase(s) for in vitro phosphorylation is strictly determined
by the presence or absence of consensus sequences in the polypeptide chains to be phos-
phorylated [52–55]. Acquisition of active purified kinases or phosphatases may seem to be
an obstacle, but several companies provide recombinant enzymes of the required quality at
a reasonable price. The use of kinases extracted and purified from stimulated mammalian
cells for in vitro phosphorylation poses additional risks. Contaminating co-purified ki-
nases can compete with artificially added kinases, leading to variations in phosphorylation,
affecting the properties of the resulting protein [56].

One of the challenges for in vitro phosphorylation is the fact that many proteins and
peptides are naturally multiphosphorylated. The spectrum of phosphorylated amino acids
within the polypeptide chain is the result of the synergistic catalysis of several kinases that
complement each other. It is also common that final protein phosphorylation is processed
by the prephosphorylation step. The general protocol for multiple in vitro phosphorylation
involves a sequential cascade of different soluble [57,58] or immobilized kinases (see
Figure 5) [59,60]. There are several possibilities: kinases can be gradually added to the
polypeptide(s) solution. However, there is a risk that some kinases will interact with each
other and alter the resulting activity. A similar effect is visible when working with kinases
from the crude extracts, as mentioned above. In the case of sequential phosphorylation,
we must not forget that sophisticated control of each phosphorylation step is required [59].
In cases where kinases do not interact with each other, multiphosphorylation at once is
recommended [46,61].
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lized active kinases. The prephosphorylation of the tau protein was provided by immobilized ERK2,
followed by phosphorylation by immobilized GSK-3β [59].

3. Overview of Protein Kinases and Phosphatases Suitable for In Vitro
Phosphorylation

Protein kinases transfer a phosphoric acid residue from ATP to a substrate. The
phosphorylation process is located at the catalytic site of the enzyme, allowing binding
of ATP or GTP and specific protein substrate. It should be noted that kinase activity
itself is often controlled by phosphorylation and dephosphorylation of the kinase domain
activation loop [62]. Based on the sequence similarity of the catalytic domains, more than
500 kinases are divided into nine groups; each group is then divided into families and often
subfamilies with respect to their substrate specificity [56,63]. Protein kinases belong to a
broad group of serine/threonine kinases (STK) or tyrosine kinases (TK).

The state of protein phosphorylation varies according to the balance between the
activity of protein kinases and protein phosphatases in its vicinity. Thus, phosphatases
are actively involved in the regulation of protein phosphorylation [64,65]. Phosphatases
generally have substrate specificities broader than those of kinases. This phenomenon is
clearly described in the work of Martin et al. in 2013, where abnormal phosphorylation of
the tau protein is a result of increased kinase activity typical and compromised phosphatase
activity [66].
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In the following part, we provide a brief description of the protein kinases and
phosphatases recently used for in vitro phosphorylation.

Mitogen-activated protein kinases (MAPKs) include p38, c-Jun amino N-terminal
kinases (JNK1/2/3), and extracellular regulated kinases (ERK1/2, ERK5). These kinases
convert extracellular stimuli into a wide range of cellular responses. The first cloned and
characterized was mammalian ERK1 in the 1990s, with ERK2 sharing 83% amino acid
identity. Both isoforms are expressed in all tissues, with an emphasis on the brain and
skeletal muscle [3]. Historically, in 1992, ERK1 and ERK2 kinases purified from PC12 cells
and 3T3 cells, respectively, were used for in vitro phosphorylation of tyrosine hydroxylase,
an enzyme that plays a crucial role in catecholamine biosynthesis [23]. Both ERK1 and
ERK2 phosphorylation appeared to be selective for serine 31 tyrosine hydroxylase, and
this phosphorylation appeared to be regulated by multiple signaling pathways at the
time. In 1998, Veeranna et al. published a paper on the use of mitogen-activated protein
kinase-1 (MEK1) and ERK1/2 in vitro to map phosphorylation sites. Recombinant (mutant)
MEK1 produced in E. coli contained substitutions at the phosphorylation site S218 and
S222. This work elucidated the role of neuronal kinases, MEK1 and ERK1/2, in the
phosphorylation of purified recombinant polypeptide motifs and neurofilament proteins,
with MEK phosphorylating ERK2, which in turn was activated to phosphorylate the peptide
sequence lysine-serine-proline repeats [24]. More recent work by Lei et al., in 2018 described
a controllable in vitro phosphorylation of immobilized recombinant heavy subunit of
neurofilaments (NFH-SA) by recombinant MAPK1 (ERK2) inactivated recombinant MEK.
As a result, a biophysical view of the structure–phosphorylation relationship of this type of
protein was revealed [44].

In the 1990s, in vitro studies of the pathologic mechanisms of Alzheimer’s disease
(AD) confirmed phosphorylation of the recombinant tau protein by purified porcine brain
ERK on serine-proline and threonine-proline motifs [26]. Later, in 2013, Mendoza et al.
confirmed the successful in vitro phosphorylation of tau protein using Western blotting
with phospho-tau-specific antibodies using STK checkpoint kinases 1 and 2 (Chk1, Chk2),
and cell cycle kinases activated by DNA damage. [67].

Thakur et al. in 2007 studied c-Jun N-terminal kinase (JNK, MAPK family) phospho-
rylation and reported that JNK is activated in AD patients by oxidative stress and can
lead to defense-protective adaptations or cell apoptosis [27]. The JNK1 and JNK2 isoforms
are expressed in all mammalian tissues, while the JNK3 isoform is present mainly in the
brain, cardiac tissue, or testes. Yoshida et al. reported in 2004 for the first time the in vitro
phosphorylation of the recombinant tau protein by the JNK isoforms JNK1, JNK2, and
JNK3 [17]. Furthermore, phospho-c-Jun (serine 73) has been found to be strongly associated
with neurofibrillary tangles and granulovacuolar degeneration in neuron nuclei in the hip-
pocampal regions of the AD brain [27]. The last in vitro study here demonstrated multisite
phosphorylation of the recombinant N-terminal transcription factor c-Jun (T91/T93/T95)
by a single JNK kinase [61,68]. In other studies, JNKs were considered attractive therapeutic
targets through the development of JNK-inhibiting molecules. Ngoei et al. demonstrated
in 2013 that the novel cell-permeable 18 amino acid peptide PYC98 inhibits JNK1 activity
against c-Jun. In vitro assays revealed that in addition to inhibiting phosphorylation, c-Jun
JNK1 inhibited other substrates: a transmembrane receptor protein in a peptide derived
from the epidermal growth factor receptor (EGFR) of humans, transcription factor ATF2,
and DCX microtubular regulatory protein. JNK2 and JNK3 activities against c-Jun were
also inhibited [28].

As mentioned above, ERK1/2 and JNK kinases may imbalance physiological tau
phosphorylation with all the consequences leading to neurodegeneration. In this context,
Veeranna et al. in 2011 reported that an in vitro decrease in protein phosphatase (PP)
activity is the basis for hyperphosphorylation of age-related neurofilaments in mice. To this
end, purified PP2A or PP2B phosphatases, which successfully dephosphorylated the heavy
neurofilament subunit or its highly phosphorylated carboxyl-terminal domain in vitro,
after prior in vitro phosphorylation with recombinant ERK2 and MEK1 [69].
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Another enzyme studied and used for substrate in vitro phosphorylation is age-
related and pathological AD glycogen synthase kinase-3 (GSK3). GSK3 is an STK that
phosphorylates and inhibits glycogen synthase and, as a result, inhibits glycogen synthesis
from glucose units. GSK3 includes two mammalian isoforms termed GSK-3α and GSK-
3β. GSK3 is present in all tissues of mammals. Dysregulation of GSK-3β modulates
the production and accumulation of Aβ peptides in AD. Hyperactive GSK-3β promotes
phosphorylation and formation of toxic tau species, therefore, GSK-3β represents a good
therapeutic target against AD [70]. Another issue addressed by in vitro phosphorylation
was whether Aβ42 directly stimulates GSK-3α. Purified GSK-3α and tau in the ATP buffer
system were used in an in vitro kinase assay, and Aβ42 was found to increase GSK-3 activity
of GSK-3α threefold in terms of tau phosphorylation under the assay conditions [71].

Another kinase clearly involved in the pathological processes of tauopathies is protein
kinase R (PKR), also involved in inflammation. PKR is an interferon-induced kinase that
plays a key role in an innate immune response to defend against viral infection. PKR
is autophosphorylated after dsRNA binding and subsequently phosphorylates cellular
substrates, such as the eukaryotic translation initiation factor eIF2α [72]. Reimer et al.
reported that PKR-mediated phosphorylation actively displaces tau from microtubules in
cells. Through in vitro phosphorylation and regulation of recombinant kinase activity in
cells and acute brain tissue, they found that inflammatory-associated kinase, PKR, directly
phosphorylates numerous abnormal and disease-modifying residues in the tau protein,
independent of GSK3-β, including threonine 181, serine 199/202, threonine 231, serine 262,
396, 404, and 409 [73].

Protein kinase A (PKA) is a STK dependent on cAMP from the AGC family that is
significantly involved in the regulation of cell differentiation and proliferation, memory,
and metabolism. It occurs in all mammalian cells [74]. To confirm the role of PKA in
lipid cellular metabolism, Dong et al. in 2014 performed MS analysis of recombinant
n-terminal sterol regulatory element (SREBP-1) binding proteins by purified PKA in vitro
phosphorylation. As a result of these experiments, they identified SREBP serine 331/332
of lipid cellular metabolism in the kidneys and other tissues, being a direct target of PKA
phosphorylation [75]. In recent years, protein phosphorylation has been shown to be asso-
ciated with softness of meat and prevent proteolytic susceptibility of myofibrillar proteins
to degradation by µ-calpain during meat maturation. Such findings were confirmed by
in vitro phosphorylation and dephosphorylation of myofibrillar proteins using PKA and
ALP [76]. Regulation of reverse protein phosphorylation was studied by Sugiyama et al. in
2012 by in vitro enzyme catalysis by recombinant protein phosphatases PP1 and PP2A and
PKA. Using in vitro phosphorylation/dephosphorylation of target molecules, the authors
could confirm that phospholipase C-related (PRIP) directly interacts with the catalytic
subunits of two different phosphatases in cell signaling in a mutually exclusive manner
and that these interactions are regulated by phosphorylation [48].

Casein kinase 2 (CK-II) belongs to the CMGC group and the CK2 family and is one of
the participants studied in the in vitro process of high phosphorylation and multiphospho-
rylation of calmodulin [77]. Pan et al. described an in vitro phosphorylation method for
the accurate characterization of six specific phosphospecies of recombinant calmodulin [57].
The use of recombinant α-casein kinase II (CKIIα) in vitro was involved in the site-specific
binding of affinity proteins to the surface of a zirconium phosphonate on microarrays. The
principle was the efficient phosphorylation of a newly developed peptide tag, genetically
fused at the C-terminal of proteins. By these phosphopeptide-based probes, proteins were
quantitatively captured on the zirconated surface of the microarray platform [45,49,78].

Qin et al. in 1998 studied the association of phosphorylation discrepancies, with a
deviated level of Toxoplasma gondii protein kinase-3 (TPK3), a homolog of the shaggy/GSK3
family. Through in vitro experiments, the authors confirmed that TPK3 belongs to highly
conserved protein kinases that play an important role in cell death regulation, nuclear
signaling, and hormonal regulation. The in vitro GST-TPK3 kinase assay showed that
TPK3 autophosphorylates itself and then phosphorylates a protein phosphatase-2 inhibitor,
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a specific substrate for GSK3 kinase [79]. Another study of Toxoplasma gondii-secreted
serine/threonine kinase called ROP18 using in vitro kinase assays explained the inhibitory
mechanism of degradation of natural parasites by macrophages. Phosphorylation of
immunity-related GTPases by ROP18 kinase implicates resistance to a variety of intracellu-
lar pathogens such as Chlamydia, Mycobacteria, Listeria, and Salmonella [80].

c-Src is a well-characterized nonreceptor tyrosine kinase, which belongs to the TK
family, allowing the phosphorylation of proteins and peptides at tyrosine residues. c- c-Src
kinase is involved in the process of differentiating macrophages and SLC11A1 activity,
an integral membrane protein of the myeloid lineage, as described by Xu et al. in 2018.
In this work, the authors studied the mechanism of activation of myeloid lineage cells
in the defense immune response by administering a strong phorbol myristate acetate
(PMA) promoter. In vitro phosphorylation of the SLC11A1 protein on tyrosine 15 by
recombinant c-Src kinase occurred after PMA administration and led to differentiation of
human promyelocytic leukemia cells into macrophages [81]. Focal adhesion kinase (FAK),
the non-receptor TK, was used in in vitro experiments as a substrate for c-Src kinase. FAK
is a key regulator of cell adhesion and migration and has been found to be overexpressed
in many types of cancer diseases. Cable et al. demonstrated in 2012, by phosphorylation
in vitro with c-Src, two pH-dependent sites of tyrosine 926 and tyrosine 1008 in the focal
adhesion C-terminal targeting the FAK domain. Thus, they demonstrated the role of FAK in
the promotion of metastasis and invasion in vivo by linking the FAT domain to the MAPK
pathway through its interaction with the growth factor receptor 2 binding protein [82].

Many other authors performed peptide/protein in vitro phosphorylation with recom-
binant or native and purified STKs to monitor protein phosphorylation of target proteins, to
study signaling pathways, and to reveal the regulation mechanisms of many pathological
processes occurring in mammalian cells or tissues.

It is not easy to ensure that peptides carry several phosphate groups in close proximity,
even at a precise location. Multiphosphorylation in vitro is a challenge that is slowly
being met. There are several strategies for preparing multiphosphorylated peptides. The
review by Samarasihareaddy et al. in 2020 [83] drew attention to the critical steps in
their preparation.

Various protein kinases and phosphatases were preferentially applied for the (multi)ph-
osphorylation of the clinically interesting protein tristetraprolin (TTP) [84]. Historically,
the first in vitro phosphorylation of recombinant TTP was provided by recombinant ac-
tive MAPK by Taylor et al. in 1995 [74]. Since then, various authors have performed
recombinant TTP kinase-based phosphorylation. Phosphorylation by three enzymes of
the MAP kinase family—p42, p38, and JNK—did not appear to affect TTP activity [85,86].
Additional protein kinases were added for in vitro phosphorylation—namely, GSK3b, PKA,
PKB, PKC [18].

Erdem et al. in 2017 also demonstrated multiphosphorylation of proteins in vitro.
Kinase assays revealed that recombinant CDK5, PKC-α, PKA, p38 MAPK, CAMKIIa,
and GSK-3β mediated phosphorylation. The list of protein kinases responsible for the
phosphorylation of Kv7.2 GST fusion proteins has been revised [87].

4. In Vitro Protein Phosphorylation by Immobilized Kinases

Generally, a reaction catalyzed by enzymes in soluble form is usually associated with
drawbacks, such as enzyme instability due to reaction conditions [88]. This is based on feed-
back inhibition by the enzyme’s end product and the related reproducibility of a catalyzed
reaction [89,90]. To control the process of recombinant protein phosphorylation, stable
reaction conditions must be ensured throughout the whole catalysis, e.g., pH and molarity
of buffer, temperature, organic solvents, presence of cofactors, etc. An already proven
strategy and promising future view of enzyme-based phosphorylation is (non)covalent
immobilization of enzyme molecules in the solid phase. Enzyme molecules can be attached
by interactions ranging from reversible physical adsorption, ionic linkages, and affinity
binding, to irreversible and more stable covalent bonds [91]. No immobilization method
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should limit or affect the resulting enzyme activity and specificity. A correctly chosen
immobilization strategy enables controlling the orientation of the covalently bound en-
zyme molecules. The common criterion is to maintain the enzyme activity with the steric
accessibility of all active sites and stability, where contact with the inert matrix must not
affect its native conformation. Increased steric accessibility of active sites can be achieved
by incorporating the spacer arm. Flexible, inert, hydrophilic molecules distancing the
enzyme from the support reduce any possible steric hindrance [92,93].

The ability to easily and efficiently separate enzyme molecules from the product is an
indisputable advantage, especially in the case of large-scale production of phosphorylated
recombinant proteins. Reusability is another significant benefit, reflected mainly in the cost
per mg of the final product.

Methods with immobilized enzymes are currently commonly used and widespread
wherever enzymes are used for catalysis, not only in biotechnology. The selection of a
proper carrier is closely related to the reaction conditions and mode of operation—e.g.,
batch, column, plug-flow, or fluidized bed reactor systems. Certain physicochemical
characteristics of the support material should also be considered (available functional
groups available for covalent bonding, mechanical and chemical stability, regeneration
feasibility and nontoxicity) [94].

Currently, micro/nanoparticles, nanofibers, nanotubes, or nanocomposites [95–99]
are preferred because of their inherently large surface area, mechanical properties, and
reduced diffusion limitation [100,101]. The combination of such micro/nanostructures
with superparamagnetic activity offers other benefits that are already effectively exploited
in many large-scale biotechnological processes [102,103]. Future aspects of substrate
phosphorylation by magnetically active carriers can be found in microanalytical platforms
such as microfluidic devices shown in [103].

However, in the case of immobilized enzymes, it is necessary to draw attention to
parameters that are not associated with free enzyme catalysis: diffusion-related restrictions
and decrease in enzyme mobility. These factors could affect the mobility of substrates and
cofactors, the mass transfer of substrates and products [104]. However, the mass transfer
resistance has been shown to decrease with increased flow rates and increased stirring. The
immobilized enzyme operates under diffusion-limiting conditions. A thin diffusion layer
in the case of a solid nanostructured phase results in limited mass transfer effects [105].

Enzyme reactors with immobilized kinases and/or phosphatases were commonly
used for in vitro phosphorylation of low-molecular weight substances, such as organic
molecules, energy storage molecules, and dyes. Work on the use of immobilized kinases
for the modification of these predominantly low-molecular-weight substances appeared in
the 1980s and 1990s and has found applications in many fields [106–109]. A wide range of
immobilized enzymes with kinase activity have already been successfully used in practice,
for example, nucleoside/nucleotide kinases [110–112], flavokinase [106], polyphosphate
kinase 2 [99,113–115], polyphosphate glucokinase [116], acetate kinase [107] and/or bu-
tyrate kinase [117], hexokinase [108,118–120], glycerol kinase [95,121–125], or adenylate
kinase [98]. More recently, recombinant protein kinases have started to be used: those
that are naturally less readily available [126]. Their activity is often related to their own
phosphorylation, which limits research and its application in this area. Only with the de-
velopment of large-scale production of recombinant proteins and new knowledge gained
related to phosphorylation at the molecular level (e.g., in the study of pathological pro-
cesses such as tau protein), researchers turned to immobilized protein kinases and their
applications. However, immobilized kinases applied to the phosphorylation of proteins or
polypeptides have not yet found a wider application in practice, as shown in Table 1. In
the following paragraphs, we characterize these immobilized protein kinases. Even in the
case of immobilized kinases, several different methodological approaches can be traced,
as the examples show, these are covalent, affinity, or affinity irreversible bonds. These
examples clearly illustrate the benefits such as simple, rapid, and quantitative separation
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of the enzyme from the reaction mixture, advanced and wider stability of the enzyme to
temperature, solvents, pH, contaminants, and impurities [127].

Table 1. List of immobilized protein kinases applied for in vitro phosphorylation.

Protein Kinase Solid Support
Method of

Immobilization and
Purpose

Ref.

Biotinylated kinases NeutrAvidin surface
sensor chip

Biotin-avidin affinity
bond for

high-throughput
profiling of kinase
inhibitor selectivity

[126,128]

ITK, EGFR, BLK, and
LCK recombinant,

GST-tagged
CH-sepharose 4B beads; Site selective covalent

kinase immobilization [129,130]

GSK-3β, GST-tagged
recombinant

Glutathione beads,
magnetic;

Affinity kinase
immobilization for kinase

inhibitors screening
[60]

GSK-3β, recombinant;
ERK2/MAPK1

recombinant, active

SeraMag SpeedBeads,
carboxyl; 0.816 µm;

magnetic
BcMag, aldehyde;

magnetic

Covalent kinase
immobilization for

in vitro phosphorylation
[59]

GSK-3β His-tagged,
recombinant, MAPK2

His-tagged, recombinant

SIMAG-IDA/Co3+,
SIMAG-IDA/Ni2+

magnetic;

Affinity irreversible
kinase immobilization for
in vitro phosphorylation

[59]

The first immobilized protein kinases were biotinylated and captured on the surface
of the sensor chip by immobilization with avidin [126]. Active and stable surfaces of
captured protein kinases were applied for the measurement of molecular interactions using
surface plasmon resonance (SPR) technology. The authors evaluated the kinase activity
by measuring the affinities of ATP and ADP for each kinase and confirmed the surface
activity of all kinases except kinase C. Then, drug discovery of potential inhibitors revealed
correct uptake of kinase C, but inactive form or lack of Mn2+ instead of Mg2+ for binding
of ADP/ATP. Immobilized protein kinases are available on the market. An example of
such systems comprises biotinylated protein kinases immobilized by direct amine binding
using the SPR biosensor platform technique with the aim of studying the effect of pH on
the active state of the kinase [128]. Kinase (40 kDa) was preincubated with ATP and then
immobilized at pH 4.5, 5.0, and 5.5 acetate buffer. To prevent inactivation of protein kinase
during binding in a low ionic strength buffer and at a pH below its pI, a higher pH was
achieved by increasing the concentration of kinase in solution. The bound kinase activity
verified by the small molecule binding reaction revealed a very narrow pH value, which
ensured the active state of the kinase.

Other cases of immobilization of recombinant protein kinase on solid support were
reported via affinity tags. First, GST-tagged recombinant interleukin-2-inducible T cell
kinase (ITK) and GST-tagged recombinant epidermal growth factor receptor (EGFR) were
immobilized by irreversible and specific covalent modification of the tyrosine 111 residue
of Schistosoma japonicum GST (sjGST) tag on modified sepharose 4B beads (Figure 6). Kinase
activities were measured by a homogeneous time-resolved fluorescence (HTRF)-based
enzyme assay. Compared to the free form of sjGST-tagged kinases, the activity of the
immobilized enzyme retained 70% of the original kinase activity. The authors demonstrated
the ability to preserve kinase activity after immobilization and the applicability to site-
specific phosphorylation [129].
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In 2015, Li et al. described the preparation of a magnetic bead-based carrier with im-
mobilized recombinant glycogen synthase kinase-3β (GSK-3β). The reusability of the ki-
nase carriers examined under various reaction temperatures reported a rapid decrease in 
kinase activity to 20% of the original activity at 37 ° C in 4 cycles and to 47% of the original 
activity at 25 °C in 10 cycles. However, below 4 °C, the carrier maintained the enzyme 
activity in 10 cycles at approximately 90% [60]. 

Figure 6. Scheme of site-selective covalent immobilization of the recombinant protein kinases ITK and
EGFR with fused sjGST tags through irreversible and specific covalent modification of the tyrosine
111 residue of the sjGST tag. Immobilization involved the use of small-molecule pyrimidine-based
probes with a reactive group of sulfonyl fluoride. Reprinted with permission from [129]. Copyright
(2012) American Chemical Society.

Wang et al. [130] described the principle of click chemistry with a different type of
probe, namely, a fluorophosphonate-reactive probe (Figure 7), to maintain kinase activ-
ity. sjGST-tagged kinases, B lymphoid tyrosine kinase (BLK) and lymphocyte-specific
protein tyrosine kinase (LCK), were immobilized site-selectively and irreversibly with
fluorophosphonate compounds on the pyrimidine-based scaffold. Immobilized kinase
activities were monitored by kinase assay and Western blot analysis, using the activity of
untreated kinases as a reference. Based on these results, the immobilized kinases exhibited
apparent 84% and 75% of the original enzymatic activity for BLKs and 48% and 66% of the
original enzymatic activity for LCK loading concentrations 2 ng/µL and 4 ng/µL. Western
blot analysis with both kinases reported even higher percentage yields and confirmed
successful immobilizations [130].
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In 2015, Li et al. described the preparation of a magnetic bead-based carrier with
immobilized recombinant glycogen synthase kinase-3β (GSK-3β). The reusability of the
kinase carriers examined under various reaction temperatures reported a rapid decrease in
kinase activity to 20% of the original activity at 37 ◦ C in 4 cycles and to 47% of the original
activity at 25 ◦C in 10 cycles. However, below 4 ◦C, the carrier maintained the enzyme
activity in 10 cycles at approximately 90% [60].

Hromadkova et al. (2018) described how to prepare a carrier with covalently bound
GSK-3β and ERK2 and under what conditions to use this carrier for specific in vitro
phosphorylation of tau protein. The authors used magnetically active microparticles of
various functionalities and recombinant GSK-3β and ERK2 kinases that were covalently
immobilized. They studied the extent to which the immobilization strategy affected
the parameters associated with enzyme activity and operational and storage stability by
standard low molecular substrate phosphorylation [59]. Covalent GSK-3β loaded SeraMag
carboxyl beads were fully active after 6 weeks of storage at 4 ◦C and more than 95% activity
was maintained after 10 cycles of reuse compared to the soluble form of the enzyme. For
SeraMag beads loaded with ERK2, only 36% of free enzyme activity was detected after
the 10th repetition. The purpose of the work was sequential in vitro phosphorylation to
prepare a pathological hyperphosphorylated form of tau protein, which is not yet available
on the market [59].

5. Monitoring Kinase Activity and Quality of Peptide/Protein Phosphorylation

For monitoring the efficiency and quality of in vitro phosphorylation/dephosphorylation,
highly sensitive biochemical, and analytical methods are needed. In addition, there is a
need for a proper tool to control the course of phosphorylation and identify the sites of
phosphorylated amino acids along the polypeptide chain.

Protein phosphorylations are monitored by methods based on different principles
and their advantages and disadvantages in detection have been clearly presented in, e.g.,
Kim et al. (2010), Wu et al. (2008), and Lopéz et al. (2011) [25,131,132]. Radiolabeling
with a phosphorus isotope is primarily based on the kinase-mediated transfer of phospho-
ryl groups containing these isotopes to proteins and subsequent electrophoretic protein
separation [23]. Western blotting using phosphospecific antibodies is very sensitive, with
antibodies that recognize phosphorylated forms of serine, threonine, or tyrosine. The
modified product can be identified by the unique specificity of the antibodies, in which
the phosphorylated amino acid is clearly distinguished [61]. Other methods use metal-
chelating compounds that selectively bind to a phosphoryl group. Metal ion complexes
Zn2+, Mn2+, and Ca2+ are common materials for phosphate recognition [131]. The methods
are then used for phospho-specific coloring or visualization (some commercial products
are Stains-All TM, Pro-Q Diamond TM, Phos-tagTM, and pIMAGO TM). The gradual im-
provement of mass spectrometry (MS) techniques has led to the establishment of the field
of phosphoproteomics, which, in combination with bioinformatics, has made it possible
to obtain connections with existing molecular information [25,132]. MS techniques are
routinely combined with a preanalytical chromatographic step such as HPLC-ESI-MS [4].
Radioactive labeling of phosphoproteins using 32P, also in combination with mass spec-
trometry and Edman sequencing methods, allowed analysis and accurate determination
of phosphoprotein phosphorylation sites [133]. More recently, a method was developed
that combines the labeling of the phosphate group of phosphoproteins using the stable
isotope [γ-18O4] ATP with MS and is suitable for the specific and quantitative analysis
of phosphorylation sites without the need for radioisotopes [134]. A method used for
the specific enrichment of phosphopeptides before MS analysis can be, for example, the
following: immobilized metal affinity chromatography or electrophoresis (IMAC, resp.
IMAEP), hydrophilic interactive chromatography (HILIC), TiO2 and ZiO2 based affinity
chromatography, katex, resp. annex exchange chromatography (SCX, SAX). Despite the
variety of methods available today, the method of choice is always MS in combination with
HPLC or ultra-HPLC. This is a method which, in a single analysis, provides all data on the
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site of phosphorylation, the proportion of phosphorylated amino acids, and the method
can be sequenced in the MS/MS combination. Quantification is also possible within the
framework of other modifications.

This review set itself the task of informing about the possibilities that science and
advanced technology offer today, and it is no longer a problem to prepare in vitro bioactive
molecules together with all posttranslational modifications efficiently and with high accuracy.

6. Conclusions

Controlled phosphorylation seems to be widely used, and standard procedures, condi-
tions, and approaches need to be implemented. Postsynthetic enzymatic phosphorylation
of peptides and proteins, which is not limited by the length of the polypeptide chain,
is suitable for native, synthetic, and recombinant proteins. Kinases and protein kinases
immobilized on solid supports have demonstrated a coordinated and reliable result in the
form of phosphorylated proteins, especially in the postsynthetic phosphorylation of recom-
binant oligopeptides and proteins. Large-scale production of phosphorylated proteins, as
well as protein multiphosphorylation, remains a challenge. However, the properties of
immobilized enzymes, such as preserved enzyme activity and reuse, indicate a good choice.

For recombinant proteins, there will be a trend in methods that are fast, robust, and
more accurate; phosphorylation methods and conditions that will be controllable so that
the product has desirable properties and it is not necessary to purify the product after phos-
phorylation. Price will play an important role, because phosphoproteins will be produced
in bulk (for biological treatment, biotechnological applications, diagnostic methods, etc.),
so the possibility of reusing the system will be desirable, which the system with immobi-
lized kinases offers and will dominate in the future. In this way, therapy and diagnostics
will reach a higher quality level, be more accurate, more targeted, and more subtle. The
possibility of therapies (immunomodulation, substitution of missing proteins, enzymes,
etc.) will be more targeted. The application of a milligram amount of phosphoprotein in
biologic therapy will not be as significant during therapy, the intervention can be expected
to have minor side effects and reduce immunoreactivity, which is a big problem today.

Author Contributions: M.S. and Z.B. prepared and reviewed the manuscript. Both authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by OP RDE project OP VVV “IT4 Neuro(degeneration)” number
CZ.02.1.01/0.0/0.0/18_069/0010054.

Acknowledgments: The authors thank the valuable help of Zaan Bester for her suggestions and
advices with English-writing style.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

AD Alzheimer’s disease
AGC PKA, PKG and PKC family protein group
ALP alkaline phosphatase
BLK B lymphoid tyrosine kinase
CAMK the Ca2+/calmodulin-dependent protein kinase group
CDK cyclin dependent kinase
CFPS cell-free protein synthesis
Chk1, Chk2 checkpoint kinases 1 and 2
CK1 casein kinase 1 group
CKIIα α-casein kinase II
CLK Cdc2-like kinase family
CMGC group of MAPK, CDK, GSK3, CLK
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EGFR epidermal growth factor receptor
ERK extracellular-regulated kinase
ESI MS electrospray ionization mass spectrometry
FAK focal adhesion kinase
GSK-3 glycogen synthase kinase-3
GST glutathione S-Transferase
HPLC high performance liquid chromatography
ITK interleukin 2-inducible T cell kinase
JNK c-Jun amino N-terminal kinase
LCK lymphocyte specific protein tyrosine kinase
MAPK mitogen-activated protein kinase
MEK, MKK mitogen-activated protein kinases kinase
MS mass spectrometry
NFH-SA neurofilament heavy subunit
PMA phorbol myristate acetate
PP protein phosphatase
PKA, PKC, PKG, PKR protein kinase A, C, G, and R
PTM posttranslational modification
SPR surface plasmon resonance
SPSS solid-phase peptide synthesis
STE yeast kinase homologues Sterile 7, Sterile 11, Sterile 20
STK serine/threonine kinases
TK tyrosine kinases
TKL tyrosine kinases like
TPK3 toxoplasma protein kinase-3
TTP tristetraprolin
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