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A. Thermodynamics of DRM and SRM reactions

Figure S1 shows the evolutions of the free enthalpies of the AG (T) reactions as a function of
temperature for DRM and SRM calculated using the FactSage 7.0 software.
- For the reaction of DRM (CH4 + CO2 — 2CO + 2H>»), the variation of the free enthalpy with
temperature is expressed by the relation: AG (T) orm (kJ / mol) =-0.2835T +259.56 (Eq.17)
- The free enthalpy variation with temperature for the reaction of the SRM (CHa4 + H20 — CO + 3H>)
is given below: AG (T) srm (k] / mol) = -0.2517T + 224.3 (Eq.18)
- The AG (T) measurements indicates that the DRM reaction is possible starting at 916K and that of
the SRM at 891K (AG=0) and upwards.
- It should be noted that throughout the temperature range studied, DRM and SRM have positive AH
(T) enthalpies values. This indicates that such reactions are endothermic: an external supply of heat

is therefore necessary.
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Figure S1. Evolution of free enthalpies (AG (T)) of DRM and SRM reactions as a function of temperature
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The conversions of CHs and CO: as well as the compositions of gaseous mixtures (Hz, CO, H20,
CHs4 and CO2) and graphitic carbon C, calculated at thermodynamic equilibrium between 973K and
1273K, are given in Figure S2 for the DRM reaction. Figure S3shows the evolution of the H2/CO ratio
at thermodynamic equilibrium for DRM. The values indicated correspond to the molar composition
of the mixture obtained from one mole of CH4 and one mole of COs.
At thermodynamic equilibrium, starting at 1123K, the DRM reaction shows a molar ratio of Ho/CO =
1 and conversion rates of CHs and CO:2 of 97% and 95%. However, it is only at or above 1223K that

there is no more formation of carbon.
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Figure S2. CH: and COz conversions and composition of gas mixtures and graphitic carbon at thermodynamic
equilibrium for the DRM reaction
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Figure S3. Thermodynamic equilibrium H2/CO ratio for the DRM reaction

For the SRM reaction, conversion rates of CHs4 and H2O as well as compositions of gaseous

mixtures (Hz, CO, CO;, CH4 and H:0) and graphitic carbon C, calculated at thermodynamic
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equilibrium between 973K and 1273K, are given in Figure S4. Additionally, Figure S5 shows the
evolution of the Hz/CO ratio at thermodynamic equilibrium for the SRM. The values indicated
correspond to the molar composition of the mixture obtained from one mole of CH4 and one mole of
H0.

At thermodynamic equilibrium, at or above 1123K, the SRM reaction shows a molar ratio of
H>/CO =3 and CH4 and H>O conversion rates of 94% and 95% respectively. It should be noted that at

or above this temperature (1123K), carbon formation no longer occurs.
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Figure S4. CH: and COz conversions and composition of gas mixtures and graphitic carbon at thermodynamic
equilibrium for the SRM reaction
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Figure S5. Thermodynamic equilibrium H2/CO ratio for the SRM reaction
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B. Results

Influence of the active phase content on the catalytic activity

Figure S6 shows the evolution of CO: conversions and Figure S7 and Figure S8 show the Hz yield
and the Hz/CO ratio, respectively, along the reforming tests.
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Figure S6. Effect of Ni content: evolution of CO2 conversion as a function of time at 842°C, CO2/CHs=1.25
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Figure S7. Effect of Ni content: evolution of Hz yield as a function of time at 842°C, CO2/CHs=1.25
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Figure S8. Effect of Ni content: evolution of H2/CO ratio as a function of time at 842°C, CO2/CHs=1.25

Mapping study as function of Ni-loading: in all cases a good dispersion of the Ni
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Figure S9. Mapping study as function of Ni-loading
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Influence of catalyst calcination time
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Figure S10. XRD catalysts calcined at 900°C for 1h, 3h and 12h
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Figure S11. XRD of the two lots of UGSO compared to that of the UGSO L1 calcined at 900°C/12h
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Figure S12. XRD of the of UGSO-L2 compared to that of the UGSO-L3 calcined at 900°C/12h
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Figure 513. XRD of Ni-UGSO catalysts from 2 lots calcined at 900°C for 1h

Ni-UGSO sulfur poisoning resistance
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Figure S14. XRD of spent Ni-UGSO catalysts without and with H2S
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Ni-UGSO performance as a catalyst for steam methane reforming (SRM)
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Figure S15. XRD of Ni-UGSO used for 7 days at the SRM (H20/CHs=1.7, 900°C) compared to the fresh catalyst
Ni-UGSO BT

Ni-UGSO performance as a catalyst for mixed methane dry and steam reforming
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Figure S16. XRD of used catalyst Ni-UGSO AT (4h & 74h) (CO2/CHas = 0.97 and H2O/CHas = 0.15)
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Figure S17. SEM-EDX of used catalyst Ni-UGSO AT (4h & 74h) (CO2/CHa4 = 0.97 and H2O/CHa = 0.15)
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