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Abstract: EWG-activated and polar quaternary ammonium salt-tagged ruthenium metathesis cata-
lysts have been applied in a two-step one-pot metathesis-oxidation process leading to functionalized
α-hydroxyketones (acyloins). In this assisted tandem process, the metathesis catalyst is used first to
promote ring-closing metathesis (RCM) and cross-metathesis (CM) steps, then upon the action of
Oxone™ converts into an oxidation catalyst able to transform the newly formed olefinic product into
acyloin under mild conditions.

Keywords: olefin metathesis; oxidation; ruthenium; α-ketohydroxylation; acyloins; tandem processes;
one-pot

1. Introduction

α-Hydroxyketones (acyloins)—a class of organic compounds that possess a hydroxy
group adjacent to a ketone moiety—are not only interesting from a biological point of view
(e.g., promoting of cell–cell communication in bacteria [1], exhibiting antibacterial/antifungal
properties [2,3] as well as neuroactivity [4], and can be used in the treatment of Alzheimer’s
disease [5] and as urease inhibitors [6]) but are also useful building blocks in organic synthe-
sis [7,8]. For example, macrocyclic acyloins are convenient starting materials in the preparation
of macrocyclic musk [9,10], and in fact the first industrial synthesis of musk was based on acy-
loin condensation [11]. In addition to acyloin condensation [7,12–14]—an established method-
ology in α-hydroxyketones synthesis—other transformations like, e.g., oxidation [15,16], epox-
ide opening [17,18], the Barbier reaction [19], reduction of 1,2-diketones [20,21], asymmetric
reductive coupling of alkynes and aldehydes [22], or CO2-promoted regioselective hydration
of propargylic alcohols [23], can be used. Most of them provide the desired α-hydroxyketones
with good to excellent yields but are limited to specific substrates, which are not always easily
available. In light of the above, a two-step protocol composed of olefin metathesis (OM) and
oxidation reactions offers an interesting level of retrosynthetic orthogonality (Scheme 1a).

Scheme 1. (a) Assisted tandem or sequential catalysis involving olefin metathesis (OM) and reduction
or oxidation steps. (b) Classification of one-pot processes.
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Recently, the Nobel-Prize-winning olefin metathesis reaction catalyzed by well-defined
molybdenum- and ruthenium-based catalysts has found widespread application in a diverse
range of synthetic protocols [24,25]. Moreover, the Ru-based olefin metathesis catalysts (such
as Ru0-Ru2, Figure 1) have been found to efficiently promote numerous non-metathetical
transformations [26,27]. Interestingly, olefin metathesis can be conveniently combined with
such reactions, including reductions (Scheme 1a (I)) [28–30] and oxidations (Scheme 1a (II–III)),
conducted in a one-pot step-wise sequence, or in tandem (Scheme 1b) [28,31]. Following this
idea, a number of efficient sequential metathesis-dihydroxylation protocols has been devel-
oped by Blechert [32], Grubbs [33], and Jarosz [34] (Scheme 1a (II)). At the same time, Plietker
reported that various olefins can be oxidized to cis-diols or acyloins with the use of RuCl3.
When the reaction is performed in the presence of NaIO4, the in situ formed species “RuO4”
afforded diols in high yields, whereas treatment with Oxone™ (potassium peroxymonosul-
fate) and NaHCO3 provided α-hydroxyketones [35–38]. Based on this observation, Snapper
et al. described a tandem sequence for the preparation of cis-diols and α-hydroxyketones
from olefinic precursors, where the Grubbs’ 2nd generation metathesis catalyst Ru0 (used
in 5 to 10 mol% ammount) was—after the metathesis step was completed—used to catalyze
oxidation of the newly formed C-C double bond utilizing Oxone™ as the stoichiometric
oxidant (Scheme 1a (III)) [39].

Figure 1. Selected ruthenium olefin metathesis catalysts. Cy = cyclohexyl.

2. Results

Drawing on the availability of Ru metathesis catalysts bearing EWG-activators [40,41]
and N-heterocyclic carbene (NHC) ligands with quaternary ammonium tags [42] (Figure 1),
we decided to re-investigate the tandem metathesis/α-ketohydroxylation of dienes and
alkenes. Specifically, we hoped that with the help of modern, commercially available
activated Ru2 and polar catalysts such as AquaMet (Ru3), FixCat (Ru4), and StickyCat
(Ru5), we would be able to reduce the loading of the noble metal catalyst, simplify the
purification, and extend the scope of the reaction.

To do so, we examined the efficiency of classical Ru1–Ru2 and tagged Ru3–Ru5 Ru-
catalysts in a model tandem ring-closing metathesis (RCM)/α-ketohydroxylation sequence
of diethyl diallylmalonate (S1) (Scheme 2). On the basis of Plietker’s and Snapper’s
observations, the oxidation step was performed by Oxone™ as a stoichiometric oxidant
in a 6:6:1 v/v/v mixture of MeCN/EtOAc/H2O in the presence of NaHCO3; however,
we performed this step at room temperature (RT) and using ten- to five-times lower
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loading of the Ru catalyst (1 mol%) than it was in the original procedure. As presented
in Scheme 2, the best results were found when the tagged catalysts Ru3 and Ru5 were
employed as the ruthenium source. It is of note that these results are not worse than those
previously reported in the literature with 5 mol% of Ru0 [39]. Interestingly, a heterogeneous
system [43], based on Ru5 immobilized on mesoporous silica SBA-15, which we added to
the starters in this competition in the hope of achieving higher catalyst activity and easier
purification of the reaction mixture, gave the conversion 11 percent-points lower than the
one obtained for Ru5 under homogeneous conditions (Scheme 2).

Scheme 2. Assisted tandem process involving olefin metathesis and Oxone™ oxidation. Yield
determined by GC using durene as an internal standard. Conditions: Metathesis step: Ru-catalyst
(1 mol%), 50 ◦C. 1 h, 0.2 M in EtOAc. Oxidation step: NaHCO3 (2.5 equiv.), then Oxone™ (5 equiv.),
RT, 1 h, 0.08 M in EtOAc/MeCN/H2O (6/6/1 v/v/v). a Result in brackets is taken from ref. [39].
Conditions: Ru0 (5 mol %), RT, EtOAc, then NaHCO3, Oxone™, MeCN/H2O (6:1).

Quaternary ammonium salt tagged-NHC Ru catalysts such as Ru3–Ru5 offer an
additional practical benefit of easier purification [44,45]. When the RCM/oxidation reaction
of S1 was conducted with a polar catalyst (Ru5), we noted that both the reaction mixture
and the product P1b isolated by aqueous extraction and column chromatography on silica
were visibly less colored (Figure 2) as compared with the same reaction made with the
classical Grubbs benzylidene complex Ru0 (previously used in this transformation) [39].

Figure 2. Reaction mixture after RCM and oxidation of S1 conducted under identical conditions using (a) Grubbs Ru0 and (b)
StickyCat catalyst Ru5. Product P1b isolated by column chromatography (CC) from (c) reaction with Ru0 and (d) with Ru5.

Following the initial trial with diethyl diallylmalonate (S1), the RCM/α-ketohydroxylation
sequence was tested with other dienes (Scheme 3). Essentially, we proceeded according to the
protocol developed previously (Scheme 2); however, we made a number of small alterations.
A diene substrate was treated with 1 mol% of the corresponding Ru catalysts (Conditions A =
Ru2; Conditions B = Ru3; C–E = Ru5) in ethyl acetate at RT. The RCM was ≥95% complete
within 1 h. Next, MeCN and H2O were added and the mixture was treated with NaHCO3 and
solid Oxone™ at RT. After the oxidation step was completed (1 h), the solvents were evapo-
rated and the resultant crude product was purified by column chromatography on silica gel.
In Procedure D, an Ru scavenger SN (4.4 mol%) [46–48] was added after the metathesis step to
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fully deactivate the catalyst and see if it facilitated the purification of the reaction mixture. The
acyloins were isolated in 26–90% overall yields. In Scheme 3 only the representative conditions
individually optimized for each substrate are presented (for full set of optimization data, see
SI, Scheme S6 and Table S3). We were pleased to note that 5-, 7-, and 16-membered carbocyclic
acyloins (P1b, P2b, Pb3, P4b, P8b/8b’) were obtained in moderate to good yields. Interestingly,
two low-molecular-weight 3-pyrroline derivatives (P5b, P6b) were not formed (substrate was
not recovered), while a 2,3,6,7-tetrahydro-1H-azepine derivative (P7b) was obtained in a 61%
yield. As anticipated [39], in the case of an unsymmetrical diene, a mixture of regioisomers
(P8b and P8b’) was formed with 1.5:1 regioselectivity (for other example of macrocyclic acyloin
formation, see SI, Scheme S6 and Table S3). In this case, an additive—quinone Qn—was used
in the RCM reaction to block the C–C double bond isomerization (shift) that was previously
noted during similar RCM macrocyclizations [49] (Conditions E, Scheme 3).

Scheme 3. Scope and limitations in one-pot process involving RCM and oxidation steps. Conver-
sion in RCM step ≥90% in all cases. Conditions: A = Metathesis step: Ru2 (1 mol%), 50 ◦C, 1 h,
0.2 M in EtOAc. Oxidation step: NaHCO3 (2.5 equiv.), then Oxone™ (5 equiv.), RT, 1 h, 0.08 M in
EtOAc/MeCN/H2O (6/6/1 v/v/v). B = Metathesis step: Ru3 (1 mol%), 50 ◦C, 1 h, 0.2 M in EtOAc.
Oxidation step: NaHCO3 (2.5 equiv.), then Oxone™ (5 equiv.), RT, 1 h, 0.08 M in EtOAc/MeCN/H2O
(6/6/1 v/v/v). C = Metathesis step: Ru5 (1 mol%), 50 ◦C, 1 h, 0.2 M in EtOAc. Oxidation step:
NaHCO3 (2.5 equiv.) then Oxone™ (5 equiv.), RT, 1 h, 0.08 M in EtOAc/MeCN/H2O (6/6/1 v/v/v).
D = Metathesis step: Ru5 (1 mol%), 50 ◦C, 1 h, 0.2 M in EtOAc, then SnachCat™ (SN, 4.4 mol%).
Oxidation step: NaHCO3 (2.5 equiv.) then Oxone™ (5 equiv.), RT, 1 h, 0.08 M in EtOAc/MeCN/H2O
(6/6/1 v/v/v). E = Metathesis step: Ru5 (2 mol%), 50 ◦C, 1 h, 10 mM in EtOAc, quinone (Qn,
4 mol%), then concentration to 0.2 M. Oxidation step: NaHCO3 (2.5 equiv.) then Oxone™ (5 equiv.),
RT, 1 h, 0.08 M in EtOAc/MeCN/H2O 6/6/1 (v/v/v).

The above established conditions were also used in in situ oxidation of cross-metatheses
(CM) products. The results presented in Scheme 4 demonstrate that a variety of functional-
ized products including acyloins with aliphatic (e.g., P9b–P12b) and aromatic substituents
(e.g., P13b–P15b) and decorated by various functionalities (e.g., P10b, P11b, P12b, P15b)
can be obtained in tandem CM/oxidation (for full data please see SI: Scheme S7 and
Table S4). As previously in the case of RCM, the transformation involving CM is opera-
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tionally simple, involving EtOAc as a solvent for CM followed by admixing of two other
co-solvents leading to the formation of linear acyloins in 40–55% yields over two steps.

Scheme 4. Scope and limitations in one-pot process involving CM and oxidation. Conditions:
A = Metathesis step: Ru2 (1 mol%), Qn (4 mol%), 50 ◦C, 1 h, 0.5 M in EtOAc. Oxidation step: RT,
1 h, 0.08 M in EtOAc/MeCN/H2O (6/6/1 v/v/v), NaHCO3 (2.5 equiv.), then Oxone™ (5 equiv.).
B = Metathesis step: Ru5 (1 mol%), Qn (4 mol%), 50 ◦C, 1 h, 0.5 M in EtOAc. Oxidation step: NaHCO3

(2.5 equiv.) then Oxone™ (5 equiv.), RT, up to 1 h, 0.08 M in EtOAc/MeCN/H2O (6/6/1 v/v/v).

To show compatibility of the worked-out metathesis/α-ketohydroxylation conditions,
we decided to convert a more advanced substrate—an estrone-alkene derivative—into
substituted acyloin P16b. Despite the complexity of the steroid S16, the reaction proceeded
in a surprisingly clean manner and required only a short silica gel pad to provide an
analytically pure product P16b in a 52% yield over two steps (Scheme 5).

We next tackled an even more complex substrate S17, a derivative of Sildenafil
(Viagra™), a drug used to treat erectile dysfunction and primary pulmonary hyperten-
sion [50]. This compound, in addition to numerous functional groups, contains N,N-diallyl-
sulfonamide moiety which, when present in S5 and S6 substrates, was found to completely
suppress the oxidation step and formation of the desired acyloin. Fortunately, substrate S17
proved to be susceptible to oxidation reaction, and we were able to obtain a new Sildenafil
analogue P17b with a satisfactory yield of 47% (over two steps, Scheme 6).

Scheme 5. One-pot CM and oxidation of estrone derivative S16. Conditions A = Metathesis: Ru5 (1 mol%), 50 ◦C, 1 h, 0.5 M
in EtOAc. Oxidation: NaHCO3 (2.5 equiv.), Oxone™ (5 equiv.), RT, 0.5 h, 0.08 M in EtOAc/MeCN/H2O (6/6/1 v/v/v).
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Scheme 6. One-pot CM and oxidation of an active pharmaceutical ingredient (API) derivative S17.
Conditions B = Metathesis: Ru5 (1 mol%), 50 ◦C, 1 h, 0.2 M in EtOAc. Oxidation step: NaHCO3

(2.5 equiv.), Oxone™ (5 equiv.), RT, 1 h, 0.08 M in EtOAc/MeCN/H2O (6/6/1 v/v/v).

3. Conclusions

In summary, a ruthenium-catalyzed assisted tandem transformation for the prepara-
tion of functionalized α-hydroxyketones has been re-investigated. As the catalyst for this
transformation, the EWG-activated nitro-Hoveyda–Grubbs complex (Ru2) and the polar
ammonium tagged Ru-complexes (Ru3–Ru5) were used at room temperature without extra
additives, or in the presence of quinone and/or isocyanide metal-scavenger. Importantly,
it was possible to reduce the catalyst loading from 5 (in the case of RCM) to 10 times (in the
case of CM), still allowing the diversely functionalized acyloins, including a heterocyclic
analogue of Sildenafil, to be produced in moderate to good yields. In addition, we found
that the tandem processes involving CM of alkenes can be performed in ethyl acetate as
opposed to the original conditions [39] where this reaction was made in DCM, which was
then evaporated and replaced with EtOAc before the oxidation step. Owing to its ease of
use and retrosynthetic simplicity, together with the small optimization steps introduced by
us, we believe that the Snapper’s metathesis/α-ketohydroxylation of alkenes and dienes
will allow access to functionalized densely oxygenated products in a cost-effective and
friendly manner.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/catal11060719/s1. Scheme S1. General scheme of RCM reaction (first step in tandem
metathesis/α-ketohydroxylation); Scheme S2. General scheme of macroRCM reaction (first step
in tandem metathesis/α-ketohydroxylation); Scheme S3. General scheme of selfCM reaction (first
step in tandem metathesis/α-ketohydroxylation); Scheme S4. General scheme of oxidation reac-
tion (second step in tandem metathesis/α-ketohydroxylation); Scheme S5. Tandem metathesis/α-
ketohydroxylation of DEDAM (S1); Scheme S6. Tandem metathesis/α-ketohydroxylation of dienes;
Scheme S7. Tandem metathesis/α-ketohydroxylation of olefins; Table S1. Influence of time on the ox-
idation step in tandem metathesis/α-ketohydroxylation of DEDAM (S1) in the presence of 1 mol% of
catalyst; Table S2. Influence of time on the oxidation step in tandem metathesis/α-ketohydroxylation
of DEDAM (S1) in the presence of 0.1 mol% of catalyst; Table S3. Results of tandem RCM/α-
ketohydroxylation reactions; Table S4. Results of tandem selfCM/α-ketohydroxylation reactions.
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