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Abstract: Catalytic membrane reactors have been widely used in different production industries
around the world. Applying a catalytic membrane reactor (CMR) reduces waste generation from a
cleaner process perspective and reduces energy consumption in line with the process intensification
strategy. A CMR combines a chemical or biochemical reaction with a membrane separation process in
a single unit by improving the performance of the process in terms of conversion and selectivity. The
core of the CMR is the membrane which can be polymeric or inorganic depending on the operating
conditions of the catalytic process. Besides, the membrane can be inert or catalytically active. The
number of studies devoted to applying CMR with higher membrane area per unit volume in multi-
phase reactions remains very limited for both catalytic polymeric and inorganic membranes. The
various bio-based catalytic membrane system is also used in a different commercial application.
The opportunities and advantages offered by applying catalytic membrane reactors to multi-phase
systems need to be further explored. In this review, the preparation and the application of inorganic
membrane reactors in the different catalytic processes as water gas shift (WGS), Fisher Tropsch
synthesis (FTS), selective CO oxidation (CO SeLox), and so on, have been discussed.

Keywords: catalysis; membrane reactor; process intensification; inorganic catalyst; enzyme;
environmental applications

1. Inorganic Membrane Reactor
1.1. Introduction to Catalytic Inorganic Membrane Reactors

Since the conventional methodologies of chemical processes have been successfully
applied to synthesize enormous numbers of sophisticated products, researchers worldwide
have been searching for alternative methods, which are more efficient concerning energy
consumption, space reduction, and environmental safety [1]. One of the most promising
strategies to achieve these challenging goals is utilizing catalysts. Catalysts play an essential
role in numerous environmental transformations with high reaction regioselectivity and
stereospecificity. These peculiar characteristics allow scientists to apply them in modern
chemistry and organic synthesis processes. Anyway, the rapid growth of the chemical
industries for producing different chemicals requires improving manufacturing and pro-
cessing by reducing the equipment size, energy consumption, and waste production to
achieve sustainable and cheaper technologies (process intensification strategy) [1].

Membrane reactors, a process intensification technology, combine the membrane sepa-
ration process with chemical or biochemical reactions in a single unit [2]. This combination
determines higher conversion and improved selectivity and a compact and cost-effective
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reactor design [3]. Considering these aspects, membrane reactors (MRs) represent a poten-
tial technology in different fields: pharmaceutical, biotechnology, petrochemical sectors,
energy, and environmental applications, including phase change behaviour [4].

MRs are categorized as polymeric (or organic) and inorganic depending on the chemi-
cal process operating conditions. Polymeric membranes can operate at temperatures that
do not exceed 300 ◦C [5,6]. Inorganic membranes can be used when polymeric ones fail
considering that they can operate at higher temperatures (300–800 ◦C and in some case
over 1000 ◦C) and in the aggressive chemical environment due to their high chemical resis-
tance [7]. In addition, in polymeric membranes, there is a trade-off between permeability
and selectivity. Generally, glassy polymers have high selectivity and low permeability,
while rubbery polymers show high permeability and low selectivity [8]. Considering
this disadvantage, inorganic membranes have elicited much attention due to their high
permeability and selectivity. The limits in the inorganic membrane field are the high
production cost and the brittleness [9]. Different materials have been used to fabricate
inorganic membranes as carbon, silica, alumina, titania, zirconia, zeolite, palladium, sil-
ver, and alloy [10,11]. Inorganic membranes can also be classified as dense or porous.
Porous membranes are categorized according to the IUPAC classification into macrop-
orous (pore diameter (pd) > 50 nm), mesoporous (2 nm < pd < 50 nm) and microporous
(0.5 nm < pd < 2 nm) [11]. These membranes are self-standing or supported, the support
being used to give them mechanical strength [12].

According to the role of the membrane in the reactor, three different configurations
have been identified: extractor, distributor and contactor and their; these aspects will be
deeply explained in Section 2. In addition, the inorganic membranes used in MR can be
inert or catalytically active. In the first case, the catalytic particles are separated from the
membrane or are dispersed in its pores, and these configurations are called inert membrane
reactor (IMR). In the last case, the membrane acts as both separator and catalysts, and this
configuration is called catalytic membrane reactor (CMR).

In this review, the different methods used for the preparation of inorganic mem-
branes have been presented. The application of inorganic membrane reactors in different
interesting reactions has also been discussed.

1.2. Preparation of Inorganic Membrane Reactors

The materials frequently use for ceramic membrane preparation are alumina (Al2O3),
titania (TiO2), zirconia (ZrO), glass (SiO2), and combinations of these metal oxides [10,11].
These membranes present an asymmetric structure with two or three layers characterized
by different pore sizes [13]. The first layer acts as a support, and the second one is fragile
and is responsible for the separation having a small pore size [14]. An intermediate layer is
sometimes synthesized to ensure a structural fitting between the other two; the ceramic
membrane layers are schematically illustrated in Figure 1 [14].
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The methods used for their synthesis are slip casting, extrusion, pressing, freeze-
casting, and sol-gel [15–18]. Among them, the most used is the slip-casting that includes
the following three steps: In the beginning, a paste or suspension is prepared by using
a ceramic powder. The paste is deposited on a porous support. Finally, the ceramic
membrane was subjected to a drying and heat treatment [19,20]. Tape casting and pressing
technique permit fabricating flat sheet membranes. A ceramic paste is added to a reservoir
and cast utilizing a blade adjusted at a fixed height in the tape casting. After, the membrane
is dried and sintered at high temperatures [21]. In the pressing, the paste poured into
a metal mould, and a force equivalent to 100 to 1000 bar was applied for producing
an asymmetric membrane with a flat configuration. Finally, the sintering procedure is
performed [22].

Tubular (mono and multichannel) and hollow-fibre membranes are prepared using
the extrusion method. In this process, a semi-dried past passed through an orifice with a
fixed cross-section and shape [22]. The freeze-casting process is used for the preparation of
highly porous membranes. Initially, a solid suspension is frozen. Later, the sublimation
of the frozen solvent (by operating at low pressures) allows the formation of the porous
structure [23]. In the sol-gel method, the natural compound (metal alkoxide) is dissolved in
a solvent, and then the hydrolysis permits the formation of a monomer [24]. The monomer
polymerizes, and the formed polymer is deposited on a support surface. After drying and
thermal treatment, the membrane is obtained. The high production cost hinders a broad
application of the ceramic membranes; in fact, different researchers focus their activity on
fabricating ceramic membranes by using waste with the urban or industrial origin [25].

Zeolites are aluminosilicate materials with pore size at the molecular scale and high
thermal and chemical resistance. By changing the reaction mixture’s Si/Al molar ratio the
resulting zeolites can have hydrophilic or hydrophobic character [26]. Considering these
peculiar characteristics, zeolite membranes can continuously separate a mixture of liquid
and gas species with similar sizes and shapes and different adsorption properties [27].
They can be used as membrane reactors [28]. Zeolite membranes are prepared on supports
(usually in alumina or stainless steel) to ensure their mechanical stability [29]. Two main
methods are used for their synthesis: the traditional method (called too one-step or in-
situ) [30] and the secondary growth [31]. In the first one, the support is added in an
autoclave in contact with a synthesis solution. In this case, nucleation and crystal formation
occurs in the same chemical environment [31]. Considering this last aspect, this method is
not reproducible, and the membranes are very thick. The second one is reproducible and
permits fabricating membranes fragile because the nucleation is separated from the crystal
growth [32]. In particular, it presents the seeding and growth steps. During the first step,
pre-synthesized nuclei of zeolites are seeded on the support. The zeolite layer is held on the
support through weak chemical interaction [33]. Then, the support is put in contact with a
precursor solution of the zeolite in an autoclave (under hydrothermal treatment) to ensure
the growth of crystals present on the support and stabilize the zeolite layer by forming a
chemical bond. A schema of the secondary growth method is illustrated in Figure 2.

The critical step is seeding, and the procedures used for performing it are differ-
ent, and the most used are dip-coating [34,35], rubbing [36,37], electrostatic and covalent
chemical deposition [38,39], and filtration [33,40–42]. During the dip-coating, the zeolite
crystals dribble in the suspension owing to the gravitational force. For this reason, it is
performed several times, and it is less reproducible [43]. The rubbing procedure is also less
reproducible considering that it is achieved with small brushes using a zeolite paste and
has limitations during the coverage [44]. More reproducible are the procedures where a
filtration process is involved because, being a well-known membrane process, it is possible
to obtain a uniform and thin layer by choosing appropriate operating conditions [40–42].
After the synthesis, the zeolite membranes are thermally treated (calcination process) for
the template removal, an organic chemical species used for orienting the zeolite forma-
tion [45]. During this process, defects are formed owing to the different thermal expansion
coefficients of support and zeolite. Anyway, the preparation of thin, defect-free, and high-
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reproducible, and low –cost membranes represent still challenges. Indeed, today, at an
industrial level, a few zeolite-membrane topologies are used in the dehydration of various
organic solvents [46].
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The metal materials mainly used for the membrane preparation are palladium and
alloys due to the high solubility and permeability of hydrogen [47]. These membranes
have a dense structure and are applied in the gas separation process and as membrane
reactors when H2 is a reactant or a product of the process [48–50].

Different methods are available for synthesizing Pd-based membranes, and the most
used are electroless plating (ELP) [51], chemical vapour deposition (CVD) [52], physi-
cal vapour deposition (PVD) [53] and the electroplating deposition (EPD) [54]. In this
review, the ELP method has been discussed as being mainly exploited for membrane
fabrication [55]. This method includes four steps: the cleaning/smoothing of the support
surface [56]. In the second and third ones, the activation of the support and the deposition
of the palladium is carried out, respectively. The membrane is dried and annealed for
performing the Pd activation [57]. The precursor of the metal species, dissolved in an
aqueous solution, is stabilized by using ligand (as ammonium hydroxide and ethylene-
diamine-tetra acetic acid (EDTA)) that can form a metal complex [58]. Then, the palladium
ions are reduced by an appropriate chemical reaction [59].

1.3. Inorganic Membrane Reactor Applications

Different MR configurations, classified into three groups, can be identified by varying
the membrane role in the process [60]: extractor, distributor and contactor membrane [61].
In the extractor, the membrane is used to remove a reaction product and improve the
conversion (reaction equilibrium shift according to Le Chatelier’s principle) [62]. The role
of the membrane in the extractor configuration is illustrated in Figure 3. In distributor
one, the reactant passes through the membrane and reaches the reaction environment in a
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controlled way by limiting side reactions (see Figure 3) [63]. In these two configurations, the
membrane is catalytically inert, and it is coupled with a conventional catalytic process. In
the contactor, the membrane is catalytically active, and it is used for improving the contact
between reactants and catalytic sites [64]. This last configuration is shown in Figure 3.

Figure 3. Membrane role in a membrane reactor.

The applications of inorganic membrane reactors in various chemical reactions have
been reported and discussed. Today, steam methane reforming (SMR) is the primary
process for hydrogen production [65]. A gaseous mixture, called syngas, is produced
containing hydrogen, carbon monoxide, and a low amount of carbon dioxide [64]. For
increasing the hydrogen produced by SMR, the water-gas shift (WGS) produces H2 and CO2
from carbon monoxide and steam. The WGS is limited by the thermodynamic equilibrium
at elevated temperatures [65]. A possible way to improve the CO2 conversion is to remove
a reaction product to overcome the chemical equilibrium limitation [66]. Kim et al. used
MFI zeolite membranes as membrane reactors for performing a WGS reaction at high
temperatures [67], and the catalyst used was Fe/Ce nanoparticles. The membranes showed
a reasonable hydrogen selectivity (H2/CO2 = 31 and H2/CO = 25) at 500 ◦C. In this
work, the CO conversion enhanced (98.5%), overcoming the equilibrium limit by using
the silicalite membranes and operating at high temperature (>500 ◦C) and pressure (6 bar).
In addition, Simulation studies indicated that the zeolite MRs could achieve a very high
CO conversion (≥99%) with these operating conditions: T > 500 ◦C, P = 30 atm and
RH2O/CO∼3.5 [67].

Arvanitis et al. have also obtained exciting results by using MFI zeolite membrane
reactors [68]. A complete conversion of the carbon monoxide (>99.9%) was achieved and
with a hydrogen recovery of 99.9%, operating at 500 ◦C and 20 bar. The catalyst remained
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stable for about 50 h of WGS reaction at 20 bar. However, carbon deposition on the surface
appeared, causing a CO conversion decline from 99.9% to ~96% within two days. In
addition, a low purity of hydrogen was due to the moderate H2 selectivity of the zeolite
membrane. Table 1 reports other results on H2 production by WGS by using the zeolite
membrane reactors.

Table 1. Performance of zeolite membrane reactors in the WGS process.

Zeolite Topology Temperature (◦C) CO Conversion% H2 Recovery (%) References

MFI * 350 73.6 >98.2 [69]
MFI 300 95.4 - [70]
MFI 550 81.7 18 [71]
MFI - >99 >60 [72]

* MFI = Mobil-Type Five.

Lee and coworkers produced H2 from WGS and using a Pd-Cu membrane reactor
coupled with a pressure swing adsorption (PSA) [73]. A commercial catalyst (composed
of aluminium oxide, chromium oxide, chromium trioxide and copper oxide) has been
used for carrying out the catalytic process. The experimental results evidenced raising
the steam/CO ratio from 1 to 5 the CO conversion increased from 85.4% to 94.8% and
the H2 recovery from 53.4% to 56.1% (as illustrated in Figure 4). When the CMR has
been integrated with a PSA unit (using activated carbon and zeolite), the H2 recovery has
improved by about 31.2–35.7%. The combination of a CMR with PSA could be used to
produce hydrogen rich-stream to use in a proton-exchange membrane fuel cell; in fact, this
system permitted to enhance CO conversion (almost complete CO conversion) and H2
recovery (R = 99.9991%).
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ratio [73].Tsotsis and coworkers prepared an ultra-permeable palladium membrane via ELP method,
and it was used for hydrogen production using the WGS process [74]. A commercial Cu/Zn has
been used as a catalyst. The authors found that increasing the feed pressure decreased the purity of
the hydrogen owing to an increased driving force through the membrane for all the gas species. In
addition, the membrane exhibited good stability for one month, and the change in H2 permeance was
equal to 6%. A complete CO conversion and an H2 recovery of 90% have been obtained at 300 ◦C
and 4.6 bar. Other results present in the open literature with metal membrane reactors in WGS are
presented in Table 2.
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Table 2. Metal membrane reactors are applied in WGS process.

Membrane Temperature (◦C) CO Conversion% H2 Recovery (%) References

Pd 410 85 - [75]
Pd-Ag 200 96.6 92 [76]
Pd-Ag 300 99.1 98 [76]

Pd 400 92 <80 [77]
Pd-Ag 400 99.5 <89 [77]
Pd-Ag 330 85 80 [78]
Pd-Cu 900 65 85–90 [79]

Fisher Tropsch synthesis (FTS) converts the syngas, obtained from natural gas or
biomass, into liquid hydrocarbons (see Equation (1)) and on an industrial scale, iron and
cobalt-based catalysts are used [80].

(2n + 1)H2 + nCO→ CnH2n+2 + nH2O (1)

The membrane combined with the FTS can improve the performance of the catalytic
process, exerting a function of extractor or distributor. In the first case, the membrane
is used to remove water, a reaction product, to reduce the catalyst deactivation, increase
conversion and displacing the water gas-shift equilibrium, and enhance the hydrocarbon
production [81]. When it is used as a distributor, the membrane must be selective towards
the H2 or CO. In this case, it is possible to maintain the reactants’ ratio and avoid side
reactions [82]. Different research groups studied the possibility of using hydrophilic zeolite
membranes for water removal from hydrogen and carbon monoxide using the operating
conditions typical of the FT process. In 2005, Zhou et al. [83] studied the separation of
H2O/CO, H2O/H2, and H2O/CH4 versus the temperature using NaA membranes. The
selectivities of H2O/CO, H2O/H2, and H2O/CH4 were 30, 72, and 323 at 100 ◦C. The water
quickly passes through the membrane for the high affinity with the zeolite NaA strongly
hydrophilic. Kapteijn and coworkers prepared sodalite membrane on alumina support
that exhibited very high H2O/H2 selectivity up to 200 ◦C and so it is very promising for
the water removal in FTS [84].

Recently, palladium membranes have been used to control hydrogen in a fixed-bed
catalytic reactor for the FTS [85]. In particular, three different systems have been considered:
(i) traditional fixed-bed reactor (FBR) using as catalyst CoRu/Al2O3, (ii) traditional FBR
and CoRu/Al2O3-zeolite as a catalyst and the CMR (catalyst: CoRu/Al2O3). The selectivity
of different hydrocarbon (HC) fractions versus the product distribution for the other
experiments is shown in Figure 5. The results evidenced as the CMR permits to have better
results due to the possibility to add in a controlled way the H2 avoiding the formation
of methane (side reaction). The carbon monoxide conversion was about 45% after 15 h
of catalytic test for the three experiments. FBR (catalyst: CoRu/Al2O3), FBR (catalyst:
CoRu/Al2O3-zeolite); CMR (catalyst: CoRu/Al2O3).

The distributor configuration is usually used in different reactions such as the oxida-
tion or oxy-dehydrogenation of hydrocarbons and oxidative coupling of methane. The oxy-
gen, a reactant of the responses, is provided in a controlled manner [86,87]. The oxidative
dehydrogenation of alkanes allows olefin production conveniently than dehydrogenation
and steam cracking [87]. This process shows no chemical equilibrium limitations as the
dehydrogenation and required mild temperatures than the steam cracking [88]. In 1999,
Santamaria and coworkers studied the oxidative dehydrogenation of propane by using a
macroporous alumina membrane coated with the catalyst [89]. In particular, the researchers
found that the membrane used as a distributor improved the reaction conversion [89]. The
membrane application as the distributor has also been studied by Kartell et al., employing
a theoretical study [90]. They proposed, using numerical simulations, a new membrane
reactor for the direct synthesis of propylene oxide (PO) in the liquid phase. The reactor
combines two consecutive catalytic reactor units: the hydrogen peroxide synthesis and
the reaction of H2O2 with the propylene for synthesizing PO. Pd/SiO2 is the top layer
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of the membrane (used and for H2O2 synthesis), and titanium silicalite-1 is the bottom
layer (used for promoting the reaction between H2O2 and propylene). The theoretical
results indicated as a thickness of 250 µm for Pd/SiO2 layer and 100 µm for the other
catalytic layer are required to achieve attractive conversion and selectivity [90]. Recently,
by Ermilova et al. performed the ethane oxidative dehydrogenation to ethylene by using a
catalytic membrane reactor (as a distributor) [91]. In particular, the external surface of the
asymmetric alumina membrane has been coated with a catalyst (Mo-V-Te-Nb-Ox) and used
as a distributor. Figure 6 shows how the co-current mode of the supply of the reactant to the
catalytic surface of the membrane enables a significant increase in the ethane conversion
compared to the counter-current mode. This is owing to due to the different distribution of
ethane and oxygen fluxes along the membrane. In particular, when the reactants are fed in
co-current mode arrive on the catalyst surface with a maximum concentration, ensuring an
almost complete conversion.
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Anyway, the researcher obtained better results (ethane conversion of 70% and an ethy-
lene selectivity of 95–98%) with a layer of titanium oxide deposited on the Al2O3 membrane.

The deep purification of hydrogen, produced for steam reforming, is a critical tech-
nology for producing energy by proton exchange membrane fuel cells (PEM-FCs) [92].
However, the carbon monoxide present in hydrogen-rich streams, produced by steam
reforming, poisons the anode of the PEM-FCs. Furthermore, it is necessary to reduce the
CO amount (down to 10 ppm) [93] The CO selective oxidation (SelOx) is a promising and
economical approach [93]. During the process, not only the CO oxidation but also the H2
oxidation happens; the reactions involved are:

2CO + O2 → 2CO2 (2)

2H2 + O2 → 2H2O (3)

A selective catalyst must be used to consider this aspect, and a good compromise
between cost and functionality is represented by the platinum (Pt) [93]. Bernardo et al.
used NaY zeolite membrane loaded with Pt for performing the CO SelOx [28]. The catalytic
membrane reactor acts as a catalytic contactor and permits to achieve exciting results in
C. conversion and CO2 selectivity than the traditional fixed bed reactors. A comparison
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between the results obtained with the Pt-NaY membrane reactor and the traditional ones
for the CO SelOx is illustrated in Figure 7.
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The better results obtained with the zeolite membrane reactor are due to the excellent
dispersion of the catalytic particles in the zeolite layer. Good contact between reactants
and catalytic sites is ensured [94,99]. Besides, considering that the zeolite layer is fragile a
reduced by-pass and low-pressure drop are attained [94,99]. In an actual SelOx process, the
gas stream, after the WGS, contains CO2 (20–25%) and Medrano et al. [99] demonstrated as
the CO2 causes a decrease of the conversion and the selectivity due to the presence of the
reverse water gas shift that limited the CO oxidation at elevated temperature.

Their use at an industrial scale is missing among the different works focused on
applying membrane reactors in various industrial processes. The main drawbacks are the
lack of scientific evidence about the long-term stability of the membrane reactors applied
in actual operating conditions of the processes and the very high cost for the fabrication.

2. Organic Membrane Reactors
2.1. Introduction of Organic Membrane Reactors

Industrial-scale membrane units are often based on polymers, either natural (cellulose,
rubbers and wool) or synthetic (Teflon, polyamide, polystyrene). Essentially, any kind of
polymer can suit membrane casting, but, taking into account the wide range of physical
and chemical features that they can exhibit, just a restricted part can be utilized. Choosing
a polymer for a specific membrane is centred on precise features that regard the structural
organization of the polymers themselves.

Porous or dense polymeric membranes are usually employed in processes with low
reaction temperatures or in the presence of biocatalysts. Sorption–diffusion principles can
couple catalytic reactions so that membranes such as the dense polymeric ones can act well
to separate gases and liquids from mixtures in processes where separation and reaction
act in the same step. Polymeric membranes need to be highly selective and exhibit high
permeability to convey a satisfactory separation. Also, polymeric membranes may be well
employed in catalytic reactions (liquid phase) [100].

2.2. Enzymatic Membrane Reactors: Preparation and Applications

A catalytic membrane reactor (E-MBR) offers advantages concerning conventional
reactors because of the membrane’s ability to operate simultaneously as catalyst sup-
port and selective barrier, combining a reaction with a particular mass transfer through
the membrane.

Simultaneous removal of products from the reaction site allows effective conversion,
even inhibiting or thermodynamically unfavourable reactions [101]. Researchers have
developed enzyme-catalyzed response at room temperature to reduce energy consumption
and minimize thermal degradation of the products. One of the essential characteristics
of the catalyst is activation by organic/aqueous biphasic interface (interface activation).
The membrane allows them to independently control the catalyst and substrate concentra-
tions, residence time and permeate flow; this, in turn, increases CMR productivity over a
batch reactor.

Membrane reactors can be categorized into two types: inert and catalytic reactors. The
membrane is next to the reaction bulk in the inert type, which contains the catalyst, either
suspended or packed. In contrast, in the catalytic reactors, the membrane is fixed on the
catalysts or has its catalytic activity. Often the inert types encounter inadequate compound
transport due to the locking effect of particles, even by the enzymes/NPs, on the pores.
At the same time, catalytic membrane reactors don’t suffer from these issues because of
their fixed embedding of the catalysts on the membrane itself. Metal nanoparticles seem
to be often chosen as catalysts, especially in environmental remediation scopes. They can
have very high catalytic performances; as an example Au and Pt nanoparticles are widely
used. In this context, Huang et al., as a solution for reducing 4-nitrophenol, developed a
catalytic membrane reactor embedding a film by alloy nanoparticle-loaded β-lactoglobulin
fibrils. They observed Cu nanoclusters’ formation, which stimulated the Ag0 synthesis as a
reducing agent for the 4-nitrophenol [101].
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Biofilms have widely been applied to civil water treatment before activated sludge
processes were available. In addition, biofilm reactors are used primarily in industrial
fields for their reliability and ease of use. Biofilm growth begins by molecules (e.g., lipids,
proteins) adsorption on a surface. These molecules can modify the physicochemical features
of the surface, being a nutrient source for microbes, alter the release of metal ions, and cause
the adsorption of inhibitory matters. As a general rule, biofilm reactors are consisted of:
inlet and outlet sections, a biofilm carrier, an aeration unit in case of aerobic processes or a
mixing device in case of anoxic processes. Lai et al. demonstrated how perchlorate, mainly
known as a groundwater contaminant, can undergo microbial reduction to form chloride.
The process was driven by C2H6 or C3H8 with oxygen as a limiting compound. The
research applied two membrane biofilm reactors in parallel resulting in novel applications
for groundwater remediation [102].

Anaerobic membrane bioreactor (AnMBR) is a valid technology for domestic, civil,
and wastewater treatment. This because of the high separation between hydraulic and
solid retention times (HRT and SRT), thus consenting to the growth of anaerobic bacteria; in
addition, they appear to have a low footprint and high treatment capacity while producing
high-quality effluents. AnMBR, in contrast with aerobic MRs have low energy consumption
(no aeration needed), exhibit lower solid yield and lower carbon dioxide emissions. The
main downside of AnMBRs being the fast decay of permeate flux caused by membrane
fouling. Berkessa et al. studied two formulations of AnMBRs applied on wastewater
treatment with long hydraulic retention times (47 days) and a 22 g·L−1 sludge concentration.
The long HRT leadss to biofilm reduction by Chloroflexi (heterotrophic bacteria), resulting
in large fluxes. Either the membrane resistances and the fouling rates values resulted as
low so that the study resulted in AnMBRs with excellent membrane fouling control [103].

Immobilized catalysts in Figure 8 have widespread organic synthesis, pollution control
and diagnostic purposes. It is well understood that the enzyme has some specific advan-
tages over inorganic, metal-derived or chemical catalysts. Products with high purity and
high added value can be obtained with enzymes immobilized on porous supports. More-
over, enzymes decrease the side reactions and simplify post-reaction separation problems.
Due to the considerably unstable nature of enzymes, there has been constant endeavour
to develop different efficient immobilization techniques, which can protect enzymes from
various physical and chemical stresses, such as pH, temperature, salts, solvents, inhibitors,
and poisons. Immobilization is achieved by fixing catalyst to or within solid supports,
resulting from which heterogeneous immobilized catalytic systems are obtained [102]. The
physical methods are simple and based on weak chemical interactions (van der Waal forces,
electrostatic force and hydrogen bonds) between the enzyme and the membrane [103].
Chemical immobilization is based on the formation of covalent bonds. In this case, the
enzyme is not released in the reaction environment [104]. At the same time, this problem is
usually found with the physical methods. Usually, immobilization strategy improves the
stability and also permits its re-use. However, it reduces the catalytic activity because the
catalytic sites are less accessible to the reactants.

Although the enzymes can be quite expensive, recycling the used enzyme makes the
process more economically viable. When the enzyme has been immobilized, it makes the
process simpler in terms of design and easier to control the different reaction parameters.
To reuse the enzyme, it must be active after use, and it has to be stable in the reaction media.
It is only possible when the catalyst is in immobilized conditions in porous support. Table 3
the advantages and disadvantages of different immobilization of biocatalysts, which are
mainly used in the chemical and biochemical processes industry.
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Table 3. Advantages and disadvantages of biocatalysts immobilized on porous supports.

Binding Method Binding Nature Advantages Disadvantages

Adsorption Weak bonds Simple and easy to use Desorption

Limited loss of enzyme activity Non-specific adsorption

Covalent Binding
Chemical binding between functional
groups of the enzyme and those on

the support
No diffusion barrier Matrix not regenerable

- - Stable & Short response time Coupling with toxic product

Entrapment Incorporation of the enzyme within
a gel or a polymer

No chemical reaction between the
monomer and the enzyme that

could affect the activity of enzyme

Enzyme leakage and
Diffusion barrier

- -
Several types of enzymes can be

immobilized within the
same polymer

High concentrations of
monomer and enzyme for

electropolymerization

Cross-linking Bond between enzyme/cross-linker
(e.g., glutaraldehyde)/inert molecule Simple High enzyme activity and

activity loss

Affinity
Affinity bonds between a functional
group on a support and affinity tag

on a protein sequence

Controlled and
oriented immobilization

Need of the presence of
specific groups on enzyme

Membrane bioreactors (MBR) are part of an established -developed technology found
throughout the years’ many industrial applications worldwide. To mention one of the
leading applications, many municipal and industrial wastewater is treated through MBR
systems. Still, substantial research and progress are needed in this field as technical
difficulties are still encountered, such as membrane fouling and not so low energy needs,
thus slowing down the spread of MBR plants.

Nonetheless, as membrane costs of production have been reduced in recent years,
MBR technology has gained increasing attention, mainly for constructing medium-size
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wastewater plants, corresponding to a water feed of an equivalent of up to 100,000 people.
Moreover, in the same years, a focus on process optimization led to a substantial reduction
of capital and operating expenses of new MBR plants.

Summing up all the features, it can be stated that the excellent quality of purified water
mainly drives MBR technology in water treatment applications interest, the increasing
water scarcity issues, the growing strictness of quality and discharge legislations worldwide,
the lower costs of investment, the fact that MBR technology is becoming more accepted as
a valid option over time, and the possibility to be applied as an upgrade to existing water
treatment plants [101,105,106].

MBR devices can be organized in two main configurations, in which the positioning
of the two main elements, the membrane and the reactor, varies. The first one can be seen
as a side-stream method with a membrane situated outside the reactor, as in Figure 9a.
The second one has the membrane collocated in the bulk of the reactor, so it acts while
submerged in the feed stream (Figure 9b).
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In Table 4, the two configurations are compared in terms of applications and opera-
tional features [107].

Table 4. Comparison between the two MBR configurations. Adapted from [107].

Submerged MBR Sidestream MBR

Application Municipal-scale systems Industrial systems
Solids in activated sludge Feed with high temperature

Shear by Aeration Pump

Operation Mode Dead-end filtration Cross-flow filtration

Pressure Low High

Energy Consumption Significantly low High

Fouling Low High

The membrane in an MBR system works by three main principles: size exclusion,
adsorption, electrostatic repulsion [107]. In size-exclusion, any compound larger than the
membrane’s pores’ dimension is rejected or adsorptions of chemical species are governed
by hydrophobicity and electrostatic repulsion [108]. The optimal circumstance occurs when
the two constituents have either opposite charge or just a reduced charge; besides, a low
pH usually enhances adsorption. When the membrane and the chemical species have an
identical account, the molecules are rejected [108]. This determines the biomass growth
in the reactor bulk, with the development of a phase with suspended solids and a (cake)
layer directly attached to the surface of the membrane [109]. As an addition to that, the
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cake layer growth offers additional adsorption points, this because they are composed of
microbial products and polymers that can virtually act as an adsorbent for the chemical
species, which must be rejected [110,111].

MBR technology can improve water recycling thanks to its high pathogen elimination
performance. The typically accepted limit of total suspended solids of 10 mg/L is not
reachable by standard activated sludge technology but can be easily reached by MBR
devices in deeper detail. Furthermore, MBR technology applies physical disinfection to the
treated water, so the succeeding disinfection unit reaches a higher degree of effectiveness,
thus reaching compliance with the imposed microbiological values. We can affirm that
water recycling is significant to locate water scarcity and environmental remediation
concurrently. In addition, MBRs can efficiently eliminate an extensive range of organic
pollutants, even some types that are immune to activated sludge [110].

Pharmaceutically-active compounds (PhACs) characterize an essential fraction of
organic pollutants traced in urban water environments. PhACs reach wastewater treat-
ment plants (WWTPs) after human utilization either as metabolized or unmetabolized
components. Even in PhACs remediation, MBR technology can deliver an efficient biologi-
cal action on pollutants and a physical filtration without the limits that activated sludge
(CAS) can bring. In fact, in MBR processes, biomass growth is not limited to flocculation
microorganisms, however, bacteria can mature as dispersed. More than one study reported
the successful usage of MBR technology for PhACs in urban wastewaters [112,113].

Urban and industrial wastewater streams may even contain an assortment of enteric
viruses, which take advantage of the faecal-oral routes of transmission to spread and
cause numerous severe diseases like hepatitis and gastroenteritis [114]. In municipal
sewage, the primary source of infection by enteric viruses starts with detachment from
infected people. The norovirus’s detaching (or shedding) rate surpasses 1010 particles per
gram of faeces [115]. Furthermore, waterborne viruses result in more resistance to either
environmental variables and treatments when compared to other pathogens (e.g., bacteria),
this thanks to some of their peculiar features, either physical and biological.

It is easy to state that MBR applications can expand in many other wastewater streams,
an example of greywater. Greywater is domestic sourcing wastewater (e.g., from kitchens,
laundries and hand basins). These streams contain a wide range of pollutants like preser-
vatives, emulsifiers, surfactants, softeners and solvents, and some heavy metals (Cd, Hg,
Ni, Pb) lower concentrations than in urban wastewaters.

In the most recent years, the problem of energy recovery has mostly narrowed to
methane generation by anaerobic digestion (A.D.). The steps involved in the process are
hydrolysis, acidogenesis, then acetogenesis, followed by methanogenesis. The latter is the
main critical phase because it results in the slowest of all four A.D. steps. So A.D. methane
production improvement has been studied with lots of efforts to achieve higher energy
efficiencies [116].

Anaerobic membrane bioreactors (AnMBRs) can harvest energy sourcing from wastew-
ater feeds by degradation the organic waste content. Generally speaking, anaerobic meth-
ods are preferred because of the high energy recovery rates, thus producing biogas with
some important methane content, so they resemble a well promising application route
so long. In Figure 10, a scheme of a pilot-scale AnSMBR unit for municipal wastewater
treatment is shown [117].
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Figure 10. Pilot scale AnSMBR unit for municipal wastewater treatment, as presented by D. Martinez-Sosa et al. [117].

With improved process variables optimization, AnMBR technology for methane
production is now a fully developed technology. It has been found that under thermophilic
circumstances (ranging from 50 to 0 ◦C), the growth rates of methanogenic bacteria are
better compared to mesophilic conditions. Besides, coadjutants as nanoparticles (N.P.s)
(Co, Ni, Fe oxides etc.) and modification methods as high-pressure treatments, alkaline
pre-treatments, ammonia soaking can substantially increase the production yields [118].

As a valid application worth mentioning, biohydrogen production by anaerobic
processes is in some ways preferred over methane for more than several reasons, such
as the more comprehensive flammability limits, higher energy density, and the lower
environmental impact during combustion which make hydrogen a preferable energy
source. AnMBRs for biohydrogen production have a lesser environmental effect because of
the absence of dissolved methane. Simultaneously, addressing both shows (hydrogen and
methane) can increase efficiency in an AnMBR process.

Anyway, the more significant issue in biohydrogen production resides in the storage
and transportation structure design. Storages with little densities, product losses (because
of the hydrogen boiling-off), and methane chemical embrittlement (due to the penetration
of hydrogen) are the main concerns in this field.

Nevertheless, energy production by AnMBRs still has engineering, financial, and
ecological fields issues. It has been already said that methanogenesis is the slowest of the
A.D. stages, resulting in really overall slow processes. Some treatments (either pre-or post)
can be combined to quicken the initial steps of hydrolysis and acidogenesis, but in an case
those might not increase the overall methane yield. Methane content is one of the critical
features in biogases. For AnMBR processes, the product’s composition is directly linked to
bacterial activity and substrate, starting with the feeds and process variables [119]. In an
addition to that, the main challenge in the implementation of AnMBR applications on an
industrial scale is the need for invariability of the feed composition to avoid consequent
alteration of the methane fraction in the biogas during the time.

The efficiency of AnMBR systems is furthermore affected by the effect of inhibition
on the methanogenesis step. This is due to some of the chemical compounds produced
during the intermediary stages of the A.D. In some instances, AnMBR goes through fast
hydrolysis, leading to better rates of volatile fatty acids (VFAs) generation. The VFAs can
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gather in the reactor because they are transformed by methanogens in a extended manner,
causing a severe reduction of pH and causing a level of instability in the process.

2.3. Cell Bioreactors

Microbial membrane bioreactors incorporate either a bioreactor in which biomass is
suspended and a microfiltration (or even ultrafiltration) unit. Microbial cells are continu-
ously recycled in the reactor through the retentate. Consequently, the biomass concentration
is enhanced in the reactor, resulting in efficiency and lower hydraulic residence times.

As membrane fouling is a significant disadvantage in MBR processes, alternative
MBR technologies can lead to better results. For instance, the incorporation of a post-
treatment with micro-fuel cells (MFCs) in wastewater processing leads, at the same time,
to high-quality effluents and modest bioelectricity harvesting, thus empowering the sus-
tainability of wastewater treatments. The whole system is referred to as a microbial fuel
cell–membrane bioreactor (MFC-MBR) system.

Two main types of MFCs can be distinguished: dual chamber and single chamber
type. The dual-chamber MFC is subdivided in anode and cathode chambers through a
membrane, either an ion or proton exchange membrane or even reverse osmosis or UF type.
In the anode chamber, microorganisms electrochemically degrade organic and inorganic
compounds, thus generating electrons and protons. Bacteria enable electron transfer to the
anode by a peripheral circuit, while the protons cross the membrane towards the cathode,
reacting with electrons in the cathode chamber. This process generates a current while
the contaminants are oxidized [1]. In the following Figure 11 the single chamber and the
dual-chamber MFC-MBR layouts are presented.
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The high contaminant removal of MFC-MBR units has been the focus of many studies.
To cite one, Li et al. coupled MBR and MFC and for sewage water treatment. As a result,
the COD removal was nearly 94%, near the standard MBR systems [2]. In the Table 5
below, the application of MFC-MBR systems on sewage treatment is reported and the
corresponding studies, summing the most recent trends in this research area [3].
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Table 5. MFC-MBR coupling systems for wastewater treatment.

Membrane Type Brand-Model COD Removal Rate NH3-N Removal Rate References

HOLLOW-FIBER MEMBRANE Self-preparation 95.6% 92.4% [117]
HOLLOW-FIBER MEMBRANE Self-preparation 89.6 ± 3.7% - [118]
HOLLOW-FIBER MEMBRANE Motian, China >90% 90 ± 3% [119]
HOLLOW-FIBER MEMBRANE Self-preparation 95 ± 5% 70% [120]

- - >90% - [121]
- - 97% 97% [122]

HOLLOW-FIBER MEMBRANE Self-preparation >95% - [123]
- - 92.5% 70.6% [124]

HOLLOW-FIBER MEMBRANE Self-preparation 95 ± 2.5% 85 ± 2.5% [125]
PVDF RuiBang, China 90% 80% [126]

TUBULAR MEMBRANE Motian, China 86.21% - [127]
HOLLOW-FIBER MEMBRANE Self-preparation 77 ± 7% - [128]

PVDF Koion, South Korea 89 ± 3% - [129]
PVDF Self-preparation 90% 80% [130]
PVDF Self-preparation 73.87% - [131]

3. Conclusions and Future Perspective

Catalytic membrane reactors (CMRs) represent a process intensification-based technol-
ogy that combines chemical or biochemical reactions with a membrane separation process
in a single unit. CMR promotes an increase in process efficiency and a decrease in capital
cost and energy consumption. The membranes used can be polymeric and inorganic,
depending on the operating conditions of the process. The membranes can also be inert or
catalytically active. Different catalytic processes are performed in very harsh conditions
and elevated temperatures, and so the use of the inorganic membranes is favored. The
first part is devoted to preparing and applying inorganic membrane in catalytic membrane
reactors in this review. Besides, the membrane roles in CMR have also been discussed.
They can function as an extractor, distributor, and contractor. As an extractor, removing a
reaction product is achieved with better conversion due to the possibility of overcoming
chemical equilibrium limitations when the membrane function as a distributor as a reactant
is added to the reaction environment in a controlled way by limiting the side reactions. The
membrane as a contactor ensures better interaction between reactants and catalytic particles
by determining a conversion increase. Afterwards, MR application in various catalytic
processes has also been reported and discussed. However, among the different works
focused on the CMR application on various industrial processes, their use at an industrial
scale is missing. The main disadvantages that block their application on a large scale are
the lack of scientific evidence about the CMRs’ long-term stability (when used under actual
operating conditions) and the high capital costs for their fabrication. Biocatalyst-based
processes are currently running in different parts of the world, but the application of
inorganic catalysts still needs lots more research before being applied industrially.
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