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Abstract: In this work, the transesterification of methyl estolides (ME) extracted from the lipid com-
ponent present in the sewage scum was investigated. Methyl 10-(R)-hydroxystearate (Me-10-HSA)
and Fatty Acid Methyl Esters (FAMEs) were obtained in a single step. A three-level and four factorial
Box–Behnken experimental design were used to study the effects of methanol amounts, catalyst, tem-
perature, and reaction time on the transesterification reaction using aluminum chloride hexahydrate
(AlCl3·6H2O) or hydrochloric acid (HCl) as catalysts. AlCl3·6H2O was found quite active as well as
conventional homogeneous acid catalysts as HCl. In both cases, a complete conversion of ME into
Me-10-HSA and FAMEs was observed. The products were isolated, quantified, and fully characterized.
At the end of the process, Me-10-HSA (32.3%wt) was purified through a chromatographic separation
and analyzed by NMR. The high enantiomeric excess (ee > 92%) of the R-enantiomer isomer opens a
new scenario for the valorization of sewage scum.

Keywords: sewage scum; methyl (R)-10-hydroxystearate; FAMEs; biodiesel; estolides

1. Introduction

Hydroxy Fatty Acids (HFAs) are valuable raw materials widely used for several
industrial applications, including resins, polymers, cosmetics, biofuels, biolubricants, and
additives in coatings and paintings [1,2]. They are valuable intermediates for synthesizing
chemicals and pharmaceuticals for their antibiotic, anti-inflammatory, and anticancer
properties [3,4].

HFAs are ubiquitous as constituents of plants, seeds, insects, animals and other mi-
croorganisms [5,6]. Many of these natural sources are found as part of estolides, oligomeric
fatty acid esters formed by hydroxy acyl groups bonded together with ester bonds [7].
Estolides are being marketed as biolubricants for automotive and industrial applications for
their excellent physicochemical properties as high viscosity and flash point, good resistance
and biodegradability [8–10].

Since its first discovery, 10-(R)-Hydroxystearic acid (10-HSA) has attracted great
industrial interest. It is the natural precursor of γ-(R)-dodecalactone, a taste and aroma
component used in the flavor and fragrance industry [11–13]. Moreover, it is used in the
manufacturing of lubricants and cosmetics for its chemical properties similar to those of
Ricinoleic acid (or 12-Hydroxystearic acid) [14,15].

In recent years, different studies have been carried out for the production of 10-HSA,
based on the enzymatic hydrolysis of vegetable oils from bacteria and microorganisms, such
as Elizabethkingia meningoseptica [16], Enterococcus faecalis [17], Lactobacillus plantarum [18],
Lysinibacillus fusiformis [19], Nocardia cholesterolicum [20], Selenomonas ruminantium [21],
Stenotrophomonas nitritireducens [22], Stenotrophomonas maltophilia [23], Sphingobacterium
thalpophilum [24]. Fatty acid hydratases have shown to be efficient catalysts with a good
regio- and stereoselectivity, particularly useful to obtaining pure enantiomeric forms [25,26].
However, their applicability is not competitive with the currently existing conventional
diesel-producing technology for a series of drawbacks, including (i) the specificity of the
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substrate, which can be a problem for the conversion of some feedstocks, (ii) the instability
of the enzymes in the organic solvents, often required for the solubilization of reacting
substrate or recovery of the final product, and (iii) their excessive cost [27].

The use of edible oils for human consumption represents a non-sustainable choice
from an economic and environmental perspective. The development of new solutions to
produce 10-HSA or its derivatives, mainly if based on non-edible feedstocks, could be a
challenging goal for economic reasons and environmental and ethical concerns. Although
considered a waste, sewage scum can be used as a source of energy and resources, thus
replacing non-renewable resources with a considerable environmental impact [28–31].

Identified as CER190809, it is a floatable by-product of the wastewater treatment
plants (WWTPs) obtained from the primary and secondary settler tanks. It mainly consists
of vegetable oils and grease, animal fats, and food waste deriving from households, restau-
rants and animal product industries [32]. Due to their low density, these oily materials
float on the wastewater surface. They can be easily skimmed off at the beginning of the
treatment processes and used for energy purposes. Usually, sewage scum is processed in
the anaerobic digester to produce biogas for electricity generation in the same plant [33].
However, the separation of sewage scum is often avoided compared with that of primary
and secondary sludge, which instead accounts for about 50% of the total operating costs of
a WWTP [34,35]. More frequently, they are directly disposed of in landfills, increasing the
cost of treatment facilities and negatively impacting the environment. For these reasons,
researchers have focused on developing novel technologies for their full exploitation. The
use of sewage sludge as a lipid feedstock for biodiesel production is an alternative and
sustainable approach to sludge management and disposal challenges [36].

Biodiesel is a biodegradable and renewable fuel with chemical and physical proper-
ties similar to petroleum-based fuels [37–39]. It is a mixture of Fatty Acid Methyl Esters
(FAMEs), which can be synthesized by the reaction of different lipid fractions with methanol
in the presence of an acid, a base or an enzyme catalyst [40,41]. The main obstacle to its
marketing is the raw materials (mostly vegetable oils and animal fats), which constitute
about 70–85% of production costs [42,43]. As a result, the use of non-edible alternative oils
is constantly growing. Lipids extracted from sewage scum are mainly constituted by Free
Fatty Acids (FFAs, 45–55%wt) and calcium soaps of fatty acids (25–30%wt) [28,29]. After
the chemical activation with formic acid [44], they can be easily converted into the corre-
sponding methyl esters by direct esterification with methanol using aluminum chloride
hexahydrate (AlCl3·6H2O) as a catalyst [45]. However, besides the biodiesel production
(75–80%wt), methyl estolides (ME, 15–20%) were also isolated and characterized [28]. These
last, obtained as a result of bacteria activity in sewage sludge [46], can be further converted
into methyl-10-hydroxystearate (Me-10-HSA) and FAMEs, representing a valuable source
for 10-HSA production (Figure 1) through a transesterification reaction.
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Figure 1. Schematic process of the transesterification reaction of methyl estolides with methanol for
the synthesis of Me-10-HSA and FAMEs.

Such a process would contribute to the production of Me-10-HSA from non-edible
feedstocks and a complete valorization of the lipid fraction present in the sewage scum. In
this study, an acidic transesterification was proposed for the synthesis of Me-10-HSA and
FAMEs by direct conversion of ME isolated from sewage scum with methanol. Aluminum
chloride hexahydrate (AlCl3·6H2O) and hydrochloric acid (HCl) were used as catalysts.
The best operative conditions were determined through a response surface methodology,
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widely adopted in studies concerning the production of biodiesel for optimizing the
transesterification reaction [47–50]. Notably, a Box–Behnken factorial design of experiments
was used. The amount of methanol and catalyst, temperature and reaction time were
optimized with the aim of maximizing the conversion of ME into Me-10-HSA and FAMEs.

2. Analysis of Results
2.1. Characterization of the Lipid Component of Sewage Scum and Biodiesel Production

Biofuels are considered the leading renewable energy sources, presenting several
advantages with respect to conventional fossil fuels [51,52]. Nevertheless, the high pro-
duction costs associated with the raw materials (vegetable oils and animal fats) result in a
significant increase in their price [42,43].

Sewage scum can be considered a cheap and available feedstock to synthesize biofuels
due to its high lipid content (up to 36–50% of dry weight) [29]. The lipid fraction, very rich
in FFAs, can be easily converted into FAMEs by acid-catalyzed direct esterification [53–55].
However, the high water content in the sewage scum (TS = 10–25%wt) represents a sig-
nificant obstacle to biodiesel production at a commercial scale. The initial stages, from
the collection of the raw sludge to the dehydration and drying, are expensive processes,
which make the biodiesel production from sewage scum not economically feasible [56].
Furthermore, the subsequent extraction of the lipid fraction requires a significant amount
of organic solvent, thus increasing the manufacturing costs [57].

Lastly, the method typically known for biodiesel production from sewage scum is
based on homogeneous acid catalysts as H2SO4 [53–55]. Still, it is not competitive with
the conventional technologies from triglycerides under alkaline catalysis for a series of
drawbacks: (i) the recovery of the catalyst takes place only partially, and (ii) additional
steps are required for the purification of the final products. A new methodology was then
developed to successfully convert wastewater sewage scum into biodiesel, consisting of
four different steps [28]. The overall process is outlined in Figure 2. First, sewage scum was
heated at a temperature of 80 ◦C, with the lipid component was recovered by centrifugation
at 4000 rpm for 3 min (recoverability > 90%), without the addition of solvents or acids [29].
Subsequently, the lipid extract was activated by adding the stoichiometric amount of
formic acid (HCOOH) to calcium soaps (25–30%), thus obtaining their complete conversion
into FFAs [44]. Activated lipids (FFAs = 75–80%) were then efficiently converted into the
corresponding methyl esters by direct esterification using AlCl3·6H2O as a catalyst [45].

As a result, about 95% FFAs were converted into FAMEs with minimal reactants
under mild conditions (molar ratio FFAs:MeOH:catalyst = 1:10:0.02, 72 ◦C, 2 h). More-
over, the use of AlCl3·6H2O favored a convenient separation of products between the
two phases: the catalyst was recovered entirely, with the upper methanol phase along
with the water produced during the reaction, whereas the methyl esters were present
in the lower oily phase [45]. This resultant oily phase was recovered and pure FAMEs
(75–80%wt) were collected by vacuum distillation (Figure 2).

The proposed scheme for exploiting sewage scum for biodiesel production has proven
to be economically viable and applicable on an industrial scale. Nevertheless, the potential
of the lipid component has not yet been fully exploited. After the distillation process, a
residue was recovered (20–25%wt), which was analyzed by preparative chromatography.
The residue was mainly composed of: ME (50.3%wt), polar compounds (33.8%), FAMEs
(6.4%wt) and small quantities of Me-10-HSA (3.6%wt), Mineral oils (2.7%wt), Waxes
(1.8%wt), FFAs (1.0%wt) and Methyl-10-ketostearate (0.4%wt). ME already have a potential
market value as biolubricants [8–10]; however, to obtain a complete valorization of the
lipid component, a further improvement of the reaction by-products could help to improve
the economy of the overall process. For these reasons, the transesterification reaction of ME
with methanol for the synthesis of Me-10-HSA and FAMEs was investigated, by optimizing
the process parameters.
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2.2. Optimization of Transesterification Conditions for the Conversion of ME into Me-10-HSA
and FAMEs

The conversion of ME into Me-10-HSA and FAMEs (according to the scheme reported
in Figure 1) was optimized using AlCl3·6H2O and HCl as catalysts. According to the
Box–Behnken experimental design described in Section 3.6 experiments were conducted
on the distillation residue to find the optimal reaction conditions and study the process
parameters’ effect in the transesterification reaction. Experimental and predicted values for
ME conversion at the design points are reported in Table 1.

A quadratic regression model was used to fit the experimental data, by obtaining the fol-
lowing relationships between factors and response for the two catalysts (Equations (1) and (2)):

ME conversion AlCl3·6H2O (%) = – 45.6167 + 11.6267C + 38.4455cat + 1.75413T+
+0.410478t – 1.01146C2– 34.8958cat2– 0.00761458T2– 0.00848126t2– 2.875Ccat+

– 0.030625CT + 0.0644231Ct + 0.203125catT + 0.0865385catt – 0.00134615Tt
(1)

ME conversion HCl (%) = 57.6733 + 10.5721C + 33.0761cat– 0.0389744T+
+0.684689t – 0.404167C2–10.4948cat2+0.00192708T2– 0.000690335t2– 2.4375Ccat+

– 0.054375CT + 0.00384615Ct– 0.034375catT–0.177885catt– 0.00442308Tt
(2)

The graphs between the predicted and the experimental ME conversion (%) reported in
Figure 3 show that expected values are similar to the observed values, therefore validating
the model’s reliability in establishing the correlation between the process variables and the
ME conversion.
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Table 1. Box–Behnken design matrix for the four independent variables and the experimental ME
conversion (%) using AlCl3·6H2O and HCl as catalysts.

E
Methanol

(mL)
Catalyst
(mmol)

Temperature
(◦C)

Time
(h)

ME Conversion (%)

AlCl3·6H2O HCl

Pred. Exp. Pred. Exp.

1 0 0 −1 −1 88.2 89.0 93.1 93.3
2 1 0 −1 0 94.2 94.5 86.2 84.3
3 0 1 −1 0 87.5 89.4 93.9 95.6
4 −1 0 −1 0 89.9 90.5 96.7 96.9
5 0 −1 −1 0 81.5 80.2 98.4 98.6
6 0 0 −1 1 85.3 84.3 89.3 88.6
7 0 1 0 −1 86.3 87.7 89.7 89.6
8 1 0 0 −1 95.2 94.7 95.4 95.3
9 0 −1 0 −1 94.5 92.8 95.2 96.3

10 −1 0 0 −1 87.2 87.7 96.7 96.9
11 a 0 0 0 0 92.9 93.4 95.3 95.5
12 −1 −1 0 0 87.7 86.6 99.9 98.1
13 1 1 0 0 97.1 97.9 94.8 93.3

14 a 0 0 0 0 89.9 90.5 99.6 99.7
15 1 −1 0 0 83.0 82.6 96.9 98.1

16 a 0 0 0 0 94.2 93.9 96.7 96.4
17 −1 1 0 0 89.3 89.2 98.7 98.5
18 0 −1 0 1 77.3 76.6 98.8 98.5
19 −1 0 0 1 80.7 82.7 98.3 98.1
20 0 1 0 1 97.2 97.5 94.8 93.3
21 1 0 0 1 86.7 85.3 97.0 96.2
22 0 0 1 −1 94.2 94.1 96.8 98.7
23 0 1 1 0 87.0 87.8 97.2 97.6
24 −1 0 1 0 94.3 95.4 99.3 99.0
25 0 −1 1 0 83.6 83.5 98.9 98.2
26 1 0 1 0 97.2 97.5 95.3 95.5
27 0 0 1 1 78.5 79.9 92.9 92.8

a Denoted as central points. Pred. = predicted values, Exp. = experimental values.
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as catalysts.

Subsequently, the significance of each parameter was evaluated by the analysis of
variance (ANOVA) followed by Fisher’s statistical test (F-test) for linear, interaction, and
quadratic parameters in the second-order polynomial equations. In this work, the signif-
icance of the mathematical model adopted was associated with the p-value. A value of
0.05 was considered a suitable threshold with the corresponding significant parameters
highlighted with an asterisk. The model’s main statistics and the components of the fitting
equations are given in Tables 2 and 3.

Table 2. The ANOVA summary table for the conversion of ME into Me-10-HSA and FAMEs using
AlCl3·6H2O as catalyst.

Source Sum of Squares Df Mean Square F-Ratio p-Value

Model 731.455 14 182.864 14.02 0.0000 *
C 167.253 1 167.253 64.72 0.0000 **

cat 181.741 1 181.741 70.33 0.0000 **
T 272.653 1 272.653 105.51 0.0000 **
t 109.808 1 109.808 42.49 0.0000 **

Ccat 21.16 1 21.16 8.19 0.0143 **
CT 6.0025 1 6.0025 2.32 0.1534
Ct 11.2225 1 11.2225 4.34 0.0592

catT 10.5625 1 10.5625 4.09 0.0661
catt 0.81 1 0.81 0.31 0.5859
Tt 0.49 1 0.49 0.19 0.6710
C2 87.3001 1 87.3001 33.78 0.0001 **

cat2 166.259 1 166.259 64.34 0.0000 **
T2 49.4779 1 49.4779 19.15 0.0009 **
t2 10.957 1 10.957 4.24 0.0619

Total error 31.0092 12 2.5841
Total (corr.) 1018.31 26

R2 = 96.95% * p < 0.05 indicates model is significant. R2(adjusted for d.f.) = 93.39% ** p < 0.05 indicates model
terms are significant



Catalysts 2021, 11, 663 7 of 16

Table 3. The ANOVA summary table for the conversion of ME into Me-10-HSA and FAMEs using
HCl as catalyst.

Source Sum of Squares Df Mean Square F-Ratio p-Value

Model 236.882 14 59.2204 11.79 0.0000 *
C 82.6875 1 82.6875 35.10 0.0001 **

cat 86.4033 1 86.4033 36.67 0.0001 **
T 36.75 1 36.75 15.60 0.0019 **
t 31.0408 1 31.0408 13.17 0.0035 **

Ccat 15.21 1 15.21 6.46 0.0259 **
CT 18.9225 1 18.9225 8.03 0.0151 **
Ct 0.04 1 0.04 0.02 0.8985

catT 0.3025 1 0.3025 0.13 0.7263
catt 3.4225 1 3.4225 1.45 0.2513
Tt 5.29 1 5.29 2.25 0.1599
C2 13.9393 1 13.9393 5.92 0.0316 **

cat2 15.0379 1 15.0379 6.38 0.0266 **
T2 3.16898 1 3.16898 1.35 0.2687
t2 0.0725926 1 0.0725926 0.03 0.8636

Total error 28.2725 12 2.35604
Total (corr.) 347.365 26

R2 = 93.32% * p < 0.05 indicates model is significant. R2(adjusted for d.f.) = 90.46% ** p < 0.05 indicates model
terms are significant.

The p-associated values for the models adopted were less than 0.05, indicating that the
model used to describe the transesterification reaction of ME with methanol was statistically
significant. All linear parameters were substantial in the transesterification process. In
particular, it was noted that there was a considerable difference in the relationship between
the independent variables and their effects on the response variable (ME conversion) for
the two catalysts. Using AlCl3·6H2O as a catalyst, temperature showed the most significant
impact in the transesterification reaction followed by the amount of the catalyst, methanol
and reaction time (Table 2). Instead, in the case of HCl, the amount of catalyst and methanol
were the most significant variables with respect to temperature and reaction time (Table 3).
As for the other terms (interaction and quadratic parameters), only Ccat (the interaction
between the amount of methanol and catalyst), C2 (the quadratic term associated with the
methanol amount) and cat2 (the quadratic term related to the amount of catalyst) were
significant for both catalysts. Then, the goodness of fit of the models was checked by the
coefficient of determination R2. The value obtained of 0.9339 and 0.9046, respectively, for
AlCl3·6H2O and HCl in its adjusted form, confirmed the efficacy of the model adopted.

Finally, response surface plots were generated to investigate the influence of the process
parameters in the conversion of ME and identify the optimal experimental conditions
required for both catalysts. Figure 4a shows the combined effect of methanol and catalyst,
at a fixed temperature of 100 ◦C and a reaction time of 17 h. By increasing the amount
of methanol and catalyst, an increase of conversion of ME was observed: 95 and 100%,
were respectively obtained for AlCl3·6H2O and HCl with 5 mL of methanol and 1 mmol of
catalyst. In Figure 4b, the effect of the temperature with the reaction time was investigated
(methanol = 3 mL, catalyst = 0.6 mmol). In this case, the key role played by temperature in the
transesterification reaction for the two systems studied is clear. At 120 ◦C, for AlCl3·6H2O,
the transesterification process’s kinetic was particularly slow and long reaction times (30 h)
were required for the full conversion of ME. In contrast, the reaction was complete after
a few hours (4–6 h) using HCl. Figure 4c,d show the combined effect of temperature and
catalyst (methanol = 3 mL, time = 17 h) and reaction time and methanol (catalyst = 0.6 mmol,
temperature = 100 ◦C), respectively. These combinations of factors positively influenced the
conversion of ME, obtaining a value close to 100%.
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Based on these results, the optimal conditions were determined and directly applied
in the transesterification of ME with methanol. The results obtained are reported in Table 4.
Predicted responses are found to be in good agreement with the experimental results. In
detail, using AlCl3·6H2O as a catalyst (0.76 mmol), a ME conversion of 99.6% was obtained
at 115 ◦C after 30 h of reaction and 3.9 mL of methanol. Instead, the reaction catalyzed by
HCl (1 mmol) was much faster: a ME conversion of 99.8% was achieved at 120 ◦C with a
reduced amount of methanol (2.1 mL) after 4 h. In the absence of the catalyst, using the
highest amount of methanol (5 mL) at 120 ◦C, a ME conversion of only 3% was obtained,
confirming the efficiency of both catalysts.

Table 4. Results of the model validation under optimum conditions using AlCl3·6H2O and HCl
as catalysts.

Catalysts Methanol
(mL)

Amount
(mmol)

Temperature
(◦C)

Time
(h)

ME Conversion (%)

Pred. Exp.

AlCl3·6H2O 3.9 0.76 115 30 99.4 99.6
HCl 2.1 1 120 4 100 99.8

Pred. = predicted values, Exp. = experimental values.
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The transesterification in methanol of stearyl stearate was also evaluated to compare the
different reactivity between HCl and AlCl3·6H2O vs. a fatty ester less congested sterically.

As can be seen from Table 5, for both the catalysts, a total conversion of stearyl stearate
in methyl stearate was obtained at 100 ◦C after 24 h. In the case of HCl catalysis, the
conversion is high even after 2 h at 70 ◦C (80%), showing a higher reaction rate than that
of AlCl3·6H2O, for which the conversion was only about 20%. Furthermore, regarding
AlCl3·6H2O, the results obtained clearly show that the amounts of methanol and catalyst
greatly influence the transformation of stearyl stearate. This different behavior could be
ascribed to the different strength of acidity among these two catalysts and the higher
steric hindrance related to the hexa-aquo complex of aluminum chloride [45]. In fact,
it was already demonstrated that the partial substitution of water coordinated to the
aluminum center in AlCl3·6H2O produces a mixed-aquo-alcohol complex, which acts as a
Brønsted acid.

Table 5. Stearyl stearate conversions under HCl and AlCl3·6H2O catalysis.

HCl AlCl3·6H2O

70 ◦C, 2 h 100 ◦C, 24 h 70 ◦C, 2 h 100 ◦C, 24 h

Conversion (%) 80 100 20 100

2.3. Analysis of the Reaction Products

Once identified the optimal experimental conditions required for the complete con-
version of ME, the organic phase was processed by column chromatography [28] and the
products obtained were isolated, analyzed and quantified (Figures S1–S8). Based on 100 g
of distillation residue, 28.2 g FAMEs and 32.3 g Me-10-HSA were respectively achieved. A
detailed analysis of the fatty acids (FAs) profile was carried out by comparing the chemical
composition of the methyl esters obtained with that of biodiesel previously recovered from
FAME distillation. The results are reported in Figure 5.
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ME contained predominately oleic acid (C18:1) and linoleic acid (C18:2), totaling
73.9% of fatty acids present (AMW FAs = 276.8 g/mole). Instead, the distilled biodiesel
from sewage scum (Figure 2) showed nearly equal amounts of saturated fatty acid and
unsaturated fatty acid (AMW FAs = 266.8 g/mole) (Figure S9). This difference in FAs
profile can be attributed to a possible origin of estolides as reaction products between
10-HSA (obtained from the enantioselective microbial hydration of oleic acid [25]) the
subsequent esterification and/or transesterification with the oils and fats present in the
stream. Considering only the market value of biodiesel produced (EUR 0.8 kg−1 [58]), a
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potential gain of EUR 225 could be obtained for each ton of the sample treated, leading to a
further enhancement of sewage sludge to produce biofuels and biochemicals. However,
the greatest profits would be obtained from Me-10-HSA produced during the process.

A high enantiomeric excess (ee > 92%) of R-enantiomeric form was observed (Figure S10),
compound employed as the precursor to produce biochemicals, namely γ-(R)-dodecalactone.
Since its current market value ranges from EUR 800 to 3000 kg−1 [59], the economy of the
whole process would be greatly improved. As described above, the synthesis of 10-HSA
generally requires the use of enzymes. The use of HCl or AlCl3·6H2O as a catalyst not only
is significantly cheaper (EUR 0.8 kg−1 [60]), but in the case of AlCl3·6H2O at the end of its
use, it could potentially be used in WWTPs as a coagulant, further contributing to the overall
economy of the process.

3. Materials and Methods
3.1. Reagents and Instruments

All chemical reagents used in this work were of analytical grade and were used
directly without further purification or treatment. Hexane (C6H14, 99%), toluene (C6H6,
99%), methanol (CH3OH, 99.8%) and methyl heptadecanoate (C18H36O2, ≥99%) were
purchased from Sigma-Aldrich. Aluminum chloride hexahydrate (AlCl3·6H2O, 99%) was
obtained as pure-grade reagent from Baker. Ethanol (C2H5OH, ≥99.8%), diethyl ether
((C2H5)2O, 99%), formic acid (HCOOH, 99%), sulfuric acid (H2SO4, 98%), hydrochloric
acid (HCl, 37%) and potassium hydroxide (KOH, 85%) were purchased from Carlo Erba.

A Rotofix 32 Hettich Centrifuge was used for the centrifugation experiments.
Identification of ME, Me-10-HSA and FAMEs was carried out by gas chromatography-

mass spectroscopy (GC-MS) using a Perking Elmer Clarus 500 equipped with a Clarus
spectrometer. Quantitative determinations were performed using a Varian 3800 GC-FID.
Helium was used as a carrier gas with a flow of 1.3 mL min−1. Both instruments were
configured for cold on-column injections with a HP-5MS capillary column (30 m; Ø 0.32 mm;
0.25 µm film). The same temperature program was employed for the injector and the oven.
The initial temperature was set to 60 ◦C and kept constant for 2 min. Then, it increased to
300 ◦C with a 15 ◦C min−1 ramp and kept constant for other 20 min. The temperature of
detector (FID) was set to 300 ◦C. For GC-MS, the ion source was set to 70 eV and maintained
at 250 ◦C.

FTIR spectra were recorded by a Perkin Elmer FTIR Spectrum BX instrument using
KBr cells (neat compounds).

1H NMR spectra were recorded on a Bruker AV-400 spectrometer using the residual
solvent peak as a reference [61].

3.2. Sewage Scum

Sewage scum was collected from WWTPs of Bari West (240,000 Population Equivalent,
PE), located in South of Italy. Samples were immediately processed to avoid long storage
time (within two days, 4 ◦C) and characterized in terms of total solids, lipids, proteins,
cellulose, lignin and ashes [29].

3.3. Experimental Procedure for Lipids Characterization
3.3.1. Determination of FFAs and Soaps

FFAs were determined by titration of the acidity present with a 0.1 N KOH solution
and phenolphthalein (≥99%, Sigma-Aldrich) as an indicator. A total of 1 g of the sample
collected was previously dissolved into 150 mL of a 1:1 v/v diethyl ether:ethanol mix-
ture. Using the same experimental conditions, soaps were determined by titration with a
0.1 N HCl solution and methyl red (99%, Sigma-Aldrich) as an indicator.

3.3.2. Determination of Fatty Acids Profile and Average Molecular Weight

In a glass Pyrex reactor of 5 mL, 0.02 g of sample were dissolved with 2 mL of a
2:2:0.01 v/v/v toluene:methanol:concentrated H2SO4 solution. The system was closed
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and placed into an ultrasonic bath at 70 ◦C for 5 h. Then, 1 mL of methyl heptadecanoate
toluene solution (1000 ppm) was added as internal standard and the resulting solution gas-
chromatographically analyzed (1 µL). Average molecular weight (AMW) was determined
according to the following equation (Equation (3)):

AMW =
∑ AiMWi

∑ Ai
(3)

where Ai and MWi are the area and molecular weight of FFAs identified, respectively.
Then, FAMEs content (%wt.) was calculated respect to methyl heptadecanoate as follows
(Equation (4)):

FAMEs content =∑ Ai

Asdt
× msdt

msample
× 100 (4)

where Asdt and msdt are the area and the mass of standard (methyl heptadecanoate),
respectively, and msample is the amount of sample analyzed.

3.4. Extraction of Lipid Fraction from Sewage Scum and Chemical Activation

In a glass Pyrex reactor of 250 mL, 100 g of sewage scum were placed and closed.
The system was heated in an oven at 80 ◦C. After this thermal treatment, the sample was
rapidly centrifuged at 4000 rpm for 3 min by obtaining a three-phasic system consisting
of: (i) an upper organic brown oily phase, (ii) a lower phase of wet residual solid, and (iii)
an aqueous intermediate phase. The oily phase was recovered and stored at 4 ◦C for the
subsequent operations. The isolated product was mainly constituted by FFAs (51.7%wt)
and calcium soaps of fatty acids (30.4%wt). Then, the stoichiometric amount of HCOOH
respect to the calcium soaps was added (4.8 g for 100 g of raw lipids) and the activated
lipids recovered as clear oil, after centrifugation (4000 rpm, 1 min) at 80 ◦C [44].

3.5. Conversion of Activated Lipids into Methyl Esters of Recovery of Biodiesel Produced by
Distillation Process

Activated lipids extracted from sewage scum were converted into the corresponding
methyl esters, by direct esterification with methanol using AlCl3·6H2O as a catalyst [45]. The
reaction was carried out at 72 ◦C for 2 h with a molar ratio FFAs:MeOH:catalyst = 1:10:0.02.
At the end of the process, the reagent mixture was cooled to room temperature with the
formation of bi-phasic system consisting of: (i) a light methanol layer (in which the catalyst
was present) and (ii) a lower oily layer composed of methyl esters. The oily phase was
recovered, and the residual methanol removed under vacuum (60 ◦C, 700 mmHg). Finally,
biodiesel (75–80%wt, purity > 99%) was collected by subsequently vacuum distillation
(160–180 ◦C, 50 mm Hg). The distillation residue (20–25%wt) was instead recovered, dried
under nitrogen flow and analyzed by column chromatography [29], obtaining the chemical
composition reported in Table 6.

Table 6. Chemical composition of the distillation residue obtained after direct esterification of the
lipid fraction with methanol and recovery of biodiesel produced by distillation process.

Chemical Species Composition (%wt.)

Mineral oil 2.7
Waxes 1.8
FAMEs 6.4

Me-10-HAS 3.6
Methyl-10-ketostearate 0.4

Methyl estolides 50.3
Acids 1.0

Other polar compounds 33.8
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3.6. Transesterification Reaction of Methyl Estolides (or Stearyl Stearate) with Methanol

In a typical reaction, 0.1 g of sample (the distillation residue recovered in the previous
step, ME content = 50.3% or stearyl stearate) were placed with methanol (1 mL) and 0.2 mmol
of catalyst (HCl or AlCl3·6H2O) in a glass Pyrex reactor of 15 mL. The system was closed and
placed into a thermostatic bath at 80 ◦C for 4 h under agitation (250 rpm), using a magnetic
stirring. Then, it was cooled to room temperature and the residual methanol was removed
under nitrogen flow. Where it was possible, the catalyst was recovered by centrifugation
and the organic phase was analyzed by gas chromatography for the determination of
FAMEs content. Following the same procedure, Me-10-HSA and ME were also determined
with the calibration curves obtained from the pure product, previously isolated by column
chromatography [28].

Optimization of Transesterification Conditions

A three-step approach was used to investigate the effects of the process variables
in the conversion of ME into Me-10-HSA and FAMEs and maximize their yield [44].
Methanol (C) and catalyst (cat) amount, temperature (T) and reaction time (t) were selected
as independent variables (factors), while methyl estolides (ME) conversion was set as
dependent variable (response). The experimental range of the levels and the independent
variables considered in this study are presented in Table 7.

Table 7. Experimental range and levels of independent variables.

Variables Symbol
Range and Levels

Lower Level (−1) Center Level (0) Upper Level (+1) ∆Xi
a

Methanol (mL) C 1 3 5 2
Catalyst (mmol) cat 0.2 0.6 1 0.4

Temperature (◦C) T 80 100 120 20
Time (h) t 4 17 30 13

a Step change values.

A total of 27 experiments (including three replicates for the center point), were used
for fitting a second-order response surface. The effects of factors on the response were
analyzed according to the following quadratic function (Equation (5)):

Y =β0 +
n

∑
i=1

βiXi +
n

∑
i=1

βiiX2
i +

n

∑
i=1

n

∑
i<j

βijXiXj (5)

where Y represents the ME conversion (%), Xi and XJ are the independent variables, β0, βi,
βij and βii are the offset term, linear, interaction, and quadratic parameters, respectively.
Statgraphycs® Centurion XVI was used for the regression analysis and the plot response
surface. Then, to verify the validation of the overall fit of the developed regression model,
the data obtained were processed by the analysis of variance (ANOVA). The adequacy
of the polynomial model to fit experimental data were expressed as R2 (coefficient of
determination) and in its adjusted form. The statistical significance of R2 was checked by
the F-test at a confidence level of 95%.

Finally, the optimization of reaction conditions was carried out using response sur-
face methodology (RSM) combined with the desirability function approach to form the
desirability optimization methodology (DOM) [45].

4. Conclusions

In this work, for the first time, an efficient method was proposed for the synthesis
of Me-10-HSA and FAMEs by direct conversion of methyl estolides isolated from sewage
scum. A response surface methodology was applied to investigate the effect of the process
variables on the methyl estolides conversion and maximize the final yield. AlCl3·6H2O
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and HCl were used as effective catalysts in promoting transesterification with methanol.
HCl is more active in promoting the transesterification of methyl estolides to produce
FAMEs and Me-(R)-10-HSA: a total conversion was in fact obtained already after 4 h. In
the case of AlCl3·6H2O, under similar reactive conditions, 20 h were necessary to achieve a
conversion of 99.4%. On the other side, AlCl3·6H2O is a solid catalyst, easy to manage and
less corrosive than mineral conventional acids [62]. AlCl3·6H2O-catalyzed reaction resulted
principally affected by temperature, whereas in the case of HCl, the amount of catalyst
and methanol were the most significant variables. The obtainment of Me-(R)-10-HSA,
in its (almost) pure enantiomeric form, increases the potential of sewage scum. For the
specific case of AlCl3·6H2O, the possible final use of the relevant residues in WWTPs as a
coagulant results in a new scheme of valorization of a special waste, namely sewage scum,
in which no secondary waste was generated. The transesterification of methyl estolides
could actually implement the scenario of the full valorization of sewage scum towards a
multi-products biorefinery. With the use of a limited number of reagents namely MeOH
and AlCl3·6H2O, and an integrated network of processes, biodiesel, methyl estolides, and
Me-(R)-10-HSA would be effectively obtained from sewage scum in a sustainable way.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/catal11060663/s1, Figure S1: GC-chromatogram of methyl estolides isolated by distilla-
tion process, Figure S2: FTIR spectra of methyl estolides, Figure S3: GC-MS chromatogram of
10-(palmitoyloxy)-stearic methyl ester, Figure S4: GC-MS chromatogram of 10-(stearoyloxy)-stearic
methyl ester, Figure S5: GC-chromatogram of methyl 10-(R)-hydroxystearate isolated, Figure S6:
FTIR spectra of methyl 10-(R)-hydroxystearate, Figure S7: GC-MS chromatogram of methyl 10-
(R)-hydroxystearate, Figure S8: 1H NMR of isolated methyl 10-(R)-hydroxystearate, Figure S9:
Comparison of chromatographic profiles of FAs obtained from methyl estolides and lipids extracted
from sewage scum, Figure S10: Chemical structures of derivatizing agents (D1, D2 and D3) used for
the determination of the absolute configuration of the Methyl 10-Hydroxy stearic acid (M10-HSA)
isolated from sewage scum.
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Abbreviations

Roman Letters
Ai Gas-chromatographic area of fatty acids detected
AlCl3·6H2O Aluminum Chloride Hexahydrate
Astd Area of standard (methyl heptadecanoate)
C Amount of Methanol
Cat Amount of catalyst (AlCl3·6H2O or HCl)
C2H5OH Ethanol
C18H36O2 Methyl heptadecanoate
CH3OH Methanol
(C2H5)2O Diethyl ether
C6H14 Hexane
C7H8 Toluene
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FAMEs Fatty Acid Methyl Esters
FAs Fatty Acids
FFAs Free Fatty Acids
HCOOH Formic acid
HCl Hydrochloric Acid
HFAs Hydroxy Fatty Acids
10-HAS 10-(R)-Hydroxystearic acid
H2SO4 Sulfuric acid
KOH Potassium hydroxide
msample Mass of sample analyzed
mstd Mass of standard (methyl heptadecanoate)
ME Methyl Estolides
Me-10-HAS Methyl 10-(R)-Hydroxystearate
MWi Molecular weight of fatty acids detected
T Temperature
TS Total Solids
T Time
Xi, Xj Independent variables
Y Dependent variable
Greek Letters
β0 Offset term
βi, βij, βii Linear, interaction, and quadratic parameters
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