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Abstract: This study processed the water vapor entrained in the NaBH4 hydrogen production
reaction inside the primary hydrogen production tank through the secondary hydrogen production
tank, in order to increase total hydrogen production. γ-Al2O3 was used as the carrier for the
hydrolytic hydrogen production reaction in the primary hydrogen production tank. The reaction
was chelated with metal catalyst Co2+ at different concentrations to produce the catalyst. Next, the
adopted catalyst concentration and different catalyst bed temperatures were tested. The secondary
hydrogen production tank was tested using NaBH4 powder and multiple NaBH4+ Co2+ mixed
powders at different ratios. The powder was refined by ball milling with different steel ball ratios to
enlarge the contact area between the water vapor and powder. The ball milling results from carriers
at different concentrations, different catalyst bed temperatures, NaBH4+ Co2+ mixed powders in
different ratios and different steel ball ratios were discussed as the hydrogen production rate and
hydrogen production in relation to the hydrolytic hydrogen production reaction. The experimental
results show that the hydrolytic hydrogen production reaction is good when 45 wt% Co2+/γ-Al2O3

catalyst is placed in the primary hydrogen production tank at a catalyst bed temperature of 55 ◦C.
When the NaBH4+ Co2+ mixed powder in a ratio of 7:3 and steel balls in a ratio of 1:4 were placed in
the secondary hydrogen production tank for 2 h of ball milling, the hydrogen production increased
favorably. The hydrogen storage can be increased effectively without wasting the water vapor
entrained in the hydrolytic hydrogen production reaction, and the water vapor effect on back-end
storage can be reduced.

Keywords: sodium borohydride; catalyst; hydrogen; ball milling

1. Introduction

The demand for energy has increased and the dependence on fossil energy is high,
however, as fossil fuels decrease, green energy has gradually become the trend. Hydrogen
is a potential clean energy that can replace fossil fuels [1,2]. As hydrogen-oxygen fuel cells
have risen rapidly in recent years, many scholars have concentrated on hydrogen storage.
There are six main classes of hydrogen storage techniques including compression hydrogen
storage, liquefaction hydrogen storage, metal hydrogen storage, chemical hydrogen stor-
age, recombination hydrogen storage, and carbon nanotubes [3]. In comparison to other
hydrogen storage techniques, the chemical hydrogen storage technique is characterized by
high volume energy density and high weight energy density. The hydrogen production
rate can be adjusted using high conversion efficiency catalysts [4]. Sarkar et al. [5] found
that the chemical hydrogen storage had better hydrogen production than liquefaction
hydrogen storage and compression hydrogen storage. In chemical hydrogen storage, the
NaBH4 is highly attractive because its hydrogen content is as high as 10.8 wt%, and is
characterized by inflammability, stabilization in alkaline solution, controllable hydrolytic
reaction, renewability, and environmental friendliness [6]. Table 1 shows the hydrogen
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mass and density in the catalyst hydrolytic hydrogen production reaction. It can be seen
that the NaBH4 is less than LiBH4, but its byproduct is relatively simple [7]. With the
appropriate catalyst, NaBH4 is converted into hydrogen and NaBO2. The equation is
expressed as follows [8]:

NaBH4 + 2H2O
catalyst→ 4H2 + NaBO2 + 217 kJ/mol (1)

Table 1. Candidate hydride reactions and hydrogen storage properties [7].

Hydride and Reaction Fraction H H2 Specific Mass
(kg H2/kg)

H2 Density
(kg H2/L)

LiH + H2O→ LiOH + H2 0.126 0.252 0.122
NaH + H2O→ NaOH + H2 0.042 0.083 0.106
CaH2 + 2H2O→ Ca(OH)2 + 2H2 0.048 0.095 0.121
MgH2 → Mg + H2 0.076 0.076 0.110
LiAlH4 + H2O→ LiOH + Al + 2.5H2 0.105 0.132 0.121
TiH2 → Ti + H2 0.040 0.040 0.152
LiBH4 + H2O→ LiOH + HBO2 + 4H2 0.184 0.367 0.235
NaBH4 + 2H2O→ NaBO2 + 4H2 0.105 0.211 0.226
Millennium Cell 35% Solution
NaBH4 + 4H2O→ NaBO2 + 4H2 + 2H2O 0.077 0.077

The hydrolytic hydrogen production reaction is divided into aqueous solution hy-
drolysis and vapor hydrolysis. Figure 1 [9] shows the proportional relationship between
the operating temperature range and aqueous solution hydrolysis and vapor hydrolysis
byproduct when NaBH4 is in the hydrolytic hydrogen production reaction.

1 

 

 
Figure 1. Proportional relation between the operating temperature range and byproduct of NaBH4 hydrolysis [9].

The NaBH4 hydrolytic hydrogen production reaction rate is correlated with the pre-
pared aqueous NaBH4 solution and various metal catalysts used. Balba et al. [10] found
that the NaBH4 concentration and temperature, hydrochloric acid, and acetic acid would
change the hydrolytic hydrogen production reaction rate, where the hydrogen production
rate increased with the acid concentration. Saka et al. [11] found that the phosphoric acid
and KBH4 concentration and temperature influenced the hydrolytic hydrogen production
reaction. The addition of 0.25 M or 1 M phosphoric acid could increase the hydrolytic
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hydrogen production reaction rate, with the total conversion 100% if the volume ratio to
KBH4 was 1:1. Wang et al. [12] found that when the NaOH concentration in the blended
NaBH4 and NaOH solution was changed, the hydrogen production rate was influenced,
with 0.25 M NaOH having the best hydrogen production rate.

Metal chlorides such as Fe, Co, Ni, Ru, Rh, and Pd are usually used in metal catalysts.
The aqueous solution of some metal chlorides reduces the hydrolytic hydrogen production
reaction rate [13]. Ke et al. [14] found that when the CoeB catalyst was modified by Mo,
the hydrolytic hydrogen production reaction rate was 4200 mL/min, and indicated that
the NaBH4 content adsorbed on the catalyst surface influenced the hydrolytic hydrogen
production reaction rate. Vinokuov et al. [15] used hallo site nanotubes as the carrier,
carrying metal catalyst Co2+ as the catalyst for hydrolytic hydrogen production reaction,
where the best Co2+ concentration was 16 wt%, and the maximum hydrogen production
rate was 3 L/min g cat. Ye et al. [16] found that the Co2+ catalyst was carried by α-Al2O3,
due to the special structure, and the Co/β-α-Al2O3 containing 9% catalyst by weight at
ambient temperature of 303 K could obtain the HG rate of 220 mL/min-1 g-1 catalyst and
about 100% hydrogen production rate.

Furthermore, the aforesaid aqueous solution hydrolysis for NaBH4 hydrolytic hydro-
gen production reaction, using water vapor and NaBH4 for hydrogen production reaction
is another method. Kong et al. [17] found that using liquid water for hydrogen production
could obtain quantitative hydrogen production, but the hydrogen production rate was
beyond their control. They used water vapor and limited the air input to react with hydride
to control the hydrogen production rate. Marrero-Alfonso et al. [18] used vapor for the
hydrolytic reaction, where the hydrogen production rate could reach 80% of the theoretical
value without a catalyst. If acetic acid was applied, the time could be shortened, and the
hydrogen production rate was 95%. R Aiello et al. [19] found that in the vapor hydroly-
sis hydrogen production process, the temperature and flow velocity could influence the
reaction process, but the main influencing factor was the vapor temperature.

In terms of observations on byproducts, Beaird et al. [20] found that Equation (2)
was formed through gradual dehydration; if the temperature rose from 249 ◦C to 280 ◦C,
solidification formed, expressed as Equation (3).

3NaB(OH)4
83 ◦C to 155 ◦C→ Na3[B3O5(OH)2] + 5H2O (2)

Na3[B3O5(OH)2]
249 ◦C to 280 ◦C→ Na3B3O6 + H2O (3)

Marrero-Alfonso et al. [21] found when the primary product NaBO2 of vapor hydrol-
ysis was dried at 350 ◦C, anhydrous metaborate of NaBO2·2H2O was formed, and the
anhydrous metaborate of NaBO2·4H2O was formed at 400 ◦C.

To increase the hydrogen production in systems, this paper refers to the process de-
signs and production methods proposed in previous studies. The two hydrogen production
tanks in this paper will carry different catalysts. Baytar et al. [22] used the Co–Cu–B/Al2O3
synthesized by Co–Cu–B and chemical impregnation as the catalyst for NaBH4 hydrolytic
hydrogen production. The experimental results showed that the hydrogen production
rate was 2519 mL/min g when Co–Cu–B was used as the catalyst while the hydrogen
production rate of Co–Cu–B/Al2O3 as the catalyst was 8962 mL/min g, therefore, Co–Cu–
B/Al2O3 as the catalyst had better efficiency. Kyunghwan et al. [23] used γ-Al2O3 as the
carrier, immersed in CoCl2 solution carrying the Co catalyst, and baked at 350 ◦C for 3 h
and reduced to make the catalyst Co/Al2O3, which reacted with the NaBH4 solution fed
in at 3 mL/min, and the hydrogen production efficiency was about 1071 mL/min. Kao
et al. [24] used mechanical lapping equipment to grind NaBH4 powder and the Co catalyst
for 30 min, the powder particles were 5 µm, and dispersed uniformly. They indicated that
the mixed powder was filled into the catalyst bed, and when the catalyst bed temperature
increased, the hydrogen production rate was better. Wang et al. [25] mixed Co–B alloy
and NaBH4 powder using mechanical lapping to enlarge the contact surface area in the
hydrolytic hydrogen production reaction. The surface area was 202.4 m 2/g, and the HGR



Catalysts 2021, 11, 528 4 of 14

for hydrolysis was 8.26 L/min g. Wang et al. [26] performed ball milling of NaBH4 and
ZnCl2 at 250 rpm in a ball/powder ratio of 20:1 for 0.5~10 h, and performed hydrolytic
hydrogen production, where the best hydrogen production was 1933 mL/g when the ball
milling time was 2 h. According to the references, the Co2+/Al2O3 catalyst is used in the
primary hydrogen production tank, and the NaBH4 + Co catalyst is used in the secondary
hydrogen production tank.

2. Results

2.1. Comparison of Co2+/Al2O3 Catalyst Chelate Concentrations at Normal Temperature of 25 ◦C

The hydrogen productions of 10 wt% to 50 wt% catalysts were compared. The catalyst
was placed in the primary hydrogen production tank, and 1.5 g 10 wt% NaBH4 + 1 wt%
NaOH aqueous solution was injected into the primary hydrogen production tank. The
hydrogen production rates from the catalyst bed at a normal temperature of 25 ◦C were
compared. According to the experiment, the 45 wt% catalyst had the best hydrogen
production rate, as shown in Figure 2. The hydrogen production of the 45 wt% catalyst was
2.01 L (Liter), and Figure 2 shows that the 45 wt% catalyst had a better chelation degree.
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Figure 2. Comparison of the hydrogen production rates of the Co2+/Al2O3 catalyst chelate concen-
trations at a normal temperature of 25 ◦C.

2.2. Comparison of Hydrogen Production Rates of 45 wt% Co2+/Al2O3 Catalyst at
Different Temperatures

The 45 wt% Co2+/Al2O3 catalyst was selected for the catalyst bed temperature of
the primary hydrogen production tank for testing. The temperature range was 25 ◦C to
70 ◦C for the hydrolytic hydrogen production test, and 1.5 g 10 wt%. NaBH4 + 1 wt%
NaOH aqueous solution was injected into the primary hydrogen production tank. The
experimental results showed that the optimum hydrogen production was 4.71 L when the
catalyst bed temperature of primary hydrogen production tank was 55 ◦C, as shown in
Figure 3.
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Figure 3. Comparison of the hydrogen production rates of the 45 wt% Co2+/Al2O3 catalyst at
different temperatures of catalyst bed of the primary hydrogen production tank.

2.3. Comparison of Ball Milling Hydrogen Production Rates of NaBH4+Co in Different Ratios

The secondary hydrogen production tank carries the NaBH4+ Co2+ catalyst. Ball
milling was performed with steel ball size ratio of 1:4 and catalyst ratio of 9:1 to 6:4 for 2 h.
The 45 wt% catalyst was placed in the primary hydrogen production tank. The primary
catalyst bed temperature was 55 ◦C, and the secondary catalyst bed temperature was 80 ◦C,
and 5.56 g 10 wt% NaBH4 + 1 wt% NaOH aqueous solution was injected into the primary
hydrogen production tank for the hydrogen production test. According to the experimental
results, the hydrogen production of the NaBH4 + Co2+ catalyst in the ratio of 7:3 was
17.4 L, better than the NaBH4 + Co2+ catalyst in the other ratios, as shown in Figure 4. The
hydrogen production of the secondary hydrogen production tank with the molecular sieve
was 14.03 L.
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2.4. Comparison of Hydrogen Production Rates of Ball Milling Steel Ball in Different Ratios

Different steel ball size ratios can influence the powder milling result. The steel ball size
ratio changed from 1:1 to 1:6 to mill NaBH4 + Co2+ catalyst powder in the ratio of 7:3 for 2 h.
The hydrogen production was tested under identical conditions for the primary hydrogen
production tank and secondary hydrogen production tank in Section 2.3. According to the
experiment, the hydrogen production of the milling steel ball size ratio of 1:4 for 2 h was
better than the other steel ball size ratios, as shown in Figure 5.
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2.5. Comparison of Hydrogen Production Rates of Different Ball Milling Times

The length of ball milling time influences the powder particle size, so the ball milling
time was set as 1 h to 4 h for ball milling in this paper, and the hydrogen production was
tested under the experimental conditions in Section 2.4. The experimental results showed
that the hydrogen production of 2 h ball milling was 18.38 L, better than the hydrogen
production of the other milling times, as shown in Figure 6.
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2.6. Comparison of Hydrogen Production Rates at Different Temperatures of Catalyst Bed of
Secondary Hydrogen Production Tank

The catalyst bed temperature of the secondary hydrogen production tank maintains
the water vapor entrained in the hydrolytic hydrogen production reaction of primary
hydrogen production tank. The catalyst bed temperature of the secondary hydrogen
production tank was set as 80 ◦C to 100 ◦C for the hydrogen production test, and the other
conditions were identical with the experimental conditions in Section 2.5. According to the
experimental results, the hydrogen production of the secondary hydrogen production tank
catalyst bed at 80 ◦C was better than the other temperatures, as shown in Figure 7.



Catalysts 2021, 11, 528 7 of 14Catalysts 2021, 11, x FOR PEER REVIEW 7 of 14 
 

 

 

Figure 7. Comparison of hydrogen production rates at different catalyst bed temperatures for the 

secondary hydrogen production tank. 

3. Discussion 

The Co2+/Al2O3 catalyst and NaBH4 + Co2+ catalyst were loaded into two hydrogen 

production tanks, respectively, and the NaBH4 hydrolytic hydrogen production reaction 

process was performed under different conditions. The experimental aqueous solution 

concentration condition was fixed at 10 wt%. NaBH4 + 1 wt% NaOH was injected into the 

hydrogen production tank to react with the catalyst to generate hydrogen. According to 

the hydrogen production efficiency experimental results, in the primary hydrogen pro-

duction tank, the Co2+/Al2O3 catalyst at 45 wt% concentration was used. The primary hy-

drogen production tank catalyst bed was heated to 55 °C with the secondary hydrogen 

production tank process. NaBH4 + Co2+ catalyst ball milling in the ratio of 7:3 was per-

formed using the steel ball size ratio of 1:4 for 2 h. The secondary hydrogen production 

tank catalyst bed was heated to 80 °C. The maximum hydrogen production of the overall 

experimental system was 18.38 L. In comparison to the 14.03 L hydrogen production with-

out catalyst inside the secondary hydrogen production tank, the hydrogen production 

was increased by 4.35 L. It was found in the experimental process that the byproduct 

NaBO2 in NaBH4 hydrolytic hydrogen production reaction could be dried and solidified 

by heating the secondary hydrogen production tank. The NH3 can be dissolved in a pure 

water filter flask, and a molecular sieve filter flask can be used for prevention, so it can be 

removed to reduce partial space and cost. 

4. Materials and Methods 

4.1. Co2+/Al2O3 Catalyst Process 

This study prepared 10~50 wt% samples of the Co2+/Al2O3 catalyst. The γ-Al2O3 was 

cleaned with ionized water in advance, and baked in a vacuum drying oven at 120 °C for 

4 h to remove moisture content. The dried γ-Al2O3 was soaked in 10~50 wt% CoCl2 solu-

tion for 12 h, so that the Co2+ in the solution fully adhered to γ-Al2O3. Afterward, the CoCl2 

solution was filtered out, and the soaked γ-Al2O3 was baked in the vacuum drying oven 

at 120 °C for 6 h. The catalyst Co2+/Al2O3 was prepared, as shown in Figure 8. 
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3. Discussion

The Co2+/Al2O3 catalyst and NaBH4 + Co2+ catalyst were loaded into two hydrogen
production tanks, respectively, and the NaBH4 hydrolytic hydrogen production reaction
process was performed under different conditions. The experimental aqueous solution
concentration condition was fixed at 10 wt%. NaBH4 + 1 wt% NaOH was injected into the
hydrogen production tank to react with the catalyst to generate hydrogen. According to the
hydrogen production efficiency experimental results, in the primary hydrogen production
tank, the Co2+/Al2O3 catalyst at 45 wt% concentration was used. The primary hydrogen
production tank catalyst bed was heated to 55 ◦C with the secondary hydrogen production
tank process. NaBH4 + Co2+ catalyst ball milling in the ratio of 7:3 was performed using
the steel ball size ratio of 1:4 for 2 h. The secondary hydrogen production tank catalyst
bed was heated to 80 ◦C. The maximum hydrogen production of the overall experimental
system was 18.38 L. In comparison to the 14.03 L hydrogen production without catalyst
inside the secondary hydrogen production tank, the hydrogen production was increased
by 4.35 L. It was found in the experimental process that the byproduct NaBO2 in NaBH4
hydrolytic hydrogen production reaction could be dried and solidified by heating the
secondary hydrogen production tank. The NH3 can be dissolved in a pure water filter
flask, and a molecular sieve filter flask can be used for prevention, so it can be removed to
reduce partial space and cost.

4. Materials and Methods

4.1. Co2+/Al2O3 Catalyst Process

This study prepared 10~50 wt% samples of the Co2+/Al2O3 catalyst. The γ-Al2O3
was cleaned with ionized water in advance, and baked in a vacuum drying oven at 120 ◦C
for 4 h to remove moisture content. The dried γ-Al2O3 was soaked in 10~50 wt% CoCl2
solution for 12 h, so that the Co2+ in the solution fully adhered to γ-Al2O3. Afterward, the
CoCl2 solution was filtered out, and the soaked γ-Al2O3 was baked in the vacuum drying
oven at 120 ◦C for 6 h. The catalyst Co2+/Al2O3 was prepared, as shown in Figure 8.

The bearing of metal Co2+ of the prepared Co2+/Al2O3 catalyst was observed through
SEM. Figure 9 shows the preliminary sting and situation, while Figure 10 used the mapping
material analysis system to analyze the distribution of cobalt. From this, it can be judged
that the sting and effect of 45 wt% were better than the others.
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Take 10 pellets out from each sample and measure the weight. The average value of
3~5 groups were measured before observation. Table 2 shows that the value display at
45 wt% was the best.



Catalysts 2021, 11, 528 9 of 14

Table 2. Each concentration of Co2+/Al2O3 takes the weight of 10 particles.

No. 1 No. 2 No. 3 No. 4 No. 5 Average

original 0.02 0.019 0.021 0.022 0.019 0.0202
10 wt% 0.022 0.022 0.022 0.022 0.025 0.0226
20 wt% 0.023 0.02 0.021 0.022 0.022 0.0216
30 wt% 0.021 0.024 0.023 0.024 0.023 0.023
35 wt% 0.021 0.021 0.023 0.021 0.023 0.0218
40 wt% 0.021 0.021 0.022 0.023 0.025 0.0224
45 wt% 0.025 0.025 0.022 0.024 0.024 0.024
50 wt% 0.023 0.021 0.022 0.022 0.024 0.0224

(Unit: grams).

4.2. NaBH4 + Co2+ Catalyst Process

The NaBH4, Co2+, and steel balls at different ratios were used for ball milling. The
ball milling steel ball sizes were 4.75 mm and 3 mm. The NaBH4–Co2+ ratio was 9:1 to 6:4,
and the steel ball size ratio of 1:4 was used for 2-h ball milling. The steel ball size ratio
was changed from 1:1 to 1:6 for 2-h ball milling. Finally, the ball milling time was changed
from 1 h to 4 h for testing. The prepared catalyst is shown in Figure 11. Demirci et al. [27]
observed the mixed Co2+ and NaBH4, and it was found that the Co–B formed a thin film
on the surface. This thin film crystallized into a black solid. It was proven that the milling
color in Figure 11 is a normal phenomenon.
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Figure 11. Schematic diagram of the NaBH4 + Co2+ catalyst after ball milling.

The ball milling NaBH4 + Co2+ catalyst in the changed steel ball size ratio was observed
through SEM, as shown in Figure 12. The ball milling powder particles from the steel ball
size ratio of 1:4 were better than the other ratios. The minimum powder particle size was
131 µm.

The NaBH4+ Co2+ catalyst powder of different ball milling times was investigated
by SEM. The ball milling particles became finer as the ball milling time increased, but
the water vapor in the environment was adsorbed more rapidly, and was likely to induce
agglomeration. The SEM image of 2 h of ball milling is shown in Figure 13. The powder
particles were relatively even.
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Figure 12. SEM images of different steel ball size ratios. (a) Ball milled powder with steel balls ratio 1:1; (b) ball milled
powder with steel balls ratio 1:2; (c) ball milled powder with steel balls ratio 1:3; (d) ball milled powder with steel balls ratio
1:4; (e) ball milled powder with steel balls ratio 1:5; (f) ball milled powder with steel balls ratio 1:6.
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Figure 13. SEM images of different ball milling times. (a) Ball milled the powder for 1 h with a steel
balls ratio of 1:4; (b) ball milled the powder for 2 h with a steel balls ratio of 1:4; (c) ball milled the
powder for 3 h with a steel balls ratio of 1:4; (d) ball milled the powder for 4 h with a steel balls ratio
of 1:4.

4.3. Experimental Setup
4.3.1. Hydrogen Production System

The experimental setup is shown in Figure 14. The Co2+/Al2O3 catalyst was placed
in the primary hydrogen production tank. The secondary hydrogen production tank
was filled with the NaBH4 + Co2+ catalyst. The NaBH4 + NaOH solution was injected
into the primary hydrogen production tank through the injection opening to produce
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hydrogen. The water vapor entrained in hydrogen reacted with NaBH4 + Co2+ catalyst
in the secondary hydrogen production tank, and the hydrogen volume was increased. It
was then filtered using a pure water filter flask and a molecular sieve filter flask. Finally,
the total hydrogen yield was read and recorded using a hydrogen flow meter. When the
hydrogen flow meter reading was zero, the recording was stopped, and the experiment
was finished.
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4.3.2. Primary Hydrogen Production Tank

The primary hydrogen production tank was the main hydrogen production chamber
body. The catalyst bed was heated by the lower heater, and the Co2+/Al2O3 catalyst
was placed in it. The NaBH4 solution was injected for hydrogen production reaction.
Kim et al. [28] found that the NaBH4 and NaOH concentration and solution flow rate in-
fluenced the hydrogen production reaction. They used a pump to control the solution flow
velocity, and the blended solution concentration of 20 wt% NaBH4 + 1 wt% NaOH resulted
in about 6 L/min of hydrogen production at the optimum flow velocity of 17.5 mL/min.
Amendola et al. [29] found the NaBH4 and NaOH blended solution concentration in the
hydrogen production reaction. Figure 15 shows that the 10 wt% NaBH4 + 1 wt% NaOH
solution had a better hydrogen production rate. Afterward, the hydrogen in the hydrogen
production reaction process entrained water vapor into the secondary hydrogen production
tank, entering the back-end hydrogen production process. In J. L. Lai et al. [30], they used a
sodium borohydride solution of 10 wt% NaBH4 + 1 wt% NaOH and a Co2+/Al2O3 catalyst
with a chelating concentration of 30 wt% to produce hydrogen at a catalyst bed temper-
ature of 70 ◦C. Although it had the highest hydrogen production rate at 5300 mL/min
g cat. The hydrogen production efficiency was only 82.92%. However, in the hydrogen
production efficiency test results, it is known that the Co2+/Al2O3 catalyst with a chelating
concentration of 20 wt% can be produced at a catalyst bed temperature of 65 ◦C. The hy-
drogen efficiency was as high as 99.13%. The experimental results confirmed that different
Co2+/Al2O3 catalyst solution concentrations and catalyst bed temperatures all affected
hydrogen production.

4.3.3. Secondary Hydrogen Production Tank

The NaBH4 + Co2+ catalyst was loaded into the secondary hydrogen production
tank. A heating coil and PID controller were provided outside to maintain the catalyst
bed temperature. The tank was covered with fiberglass for warmth retention. The heat
dissipation was mitigated, as shown in Figure 16. The purpose of heating is to maintain
the water vapor entrained after hydrolytic hydrogen production reaction in the primary
hydrogen production tank. Akkus et al. [31] indicated that hydrogen generation could
be increased by performing the NaBH4 hydrolytic hydrogen production reaction in a
high temperature catalyst bed and the reaction of byproducts was reduced to generate
purified hydrogen.
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Figure 16. Secondary hydrogen production tank set-up diagram.

4.3.4. Pure Water Filter Flask

Aside from hydrogen, the NaBH4 hydrolytic hydrogen production reaction generates
NaBO2 and a small amount of NH3. These alkaline byproducts are soluble in water, making
the aqueous solution strongly alkaline. If the hydrogen carrying alkaline water enters the
fuel cell system through reaction, the entrained material condenses as the temperature
drops. Therefore, the hydrogen mass and the efficiency and fuel cell life are influenced.
Therefore, a pure water filter flask was provided at the front end to filter the water soluble
material in advance for prevention.

4.3.5. Molecular Sieve Filter Flask

Molecular sieves can purify dry air, hydrogen, oxygen, and nitrogen. The molecular
sieve filter flask was arranged at the back end of a pure water filter flask to purify hydrogen,
but also prevent the water vapor in the pure water filter flask from evaporating. The water
vapor is absorbed to obtain more purified hydrogen.
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