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Abstract: Boric acid is recently proved to be a good substitute for conventional acidic catalytic
materials. However, few studies used boric acid as a catalyst in biomass pyrolysis. This study focused
on the catalytic effects of boric acid (BA) on pyrolysis behaviors of woody biomass. The birch wood
flour (WF) was used as feedstock and treated by impregnation of boric acid solution. Both untreated
and boric acid-treated samples (BW) were characterized by FTIR and SEM. Thermogravimetry (TG)
and pyrolysis coupled with gas chromatography and mass spectrometry (Py-GC/MS) techniques
were used for studying mass loss, composition, and distribution of evolved volatiles formed from
pyrolysis process. Additionally, a small fixed-bed pyrolyzer with an amplificated loading amount
was used to prepare liquid products, and further, GC/MS were used to analyze the composition
of these liquid products. Different pyrolysis temperatures and boric acid/wood flour mass ratios
were also studied. The main results are as follows. Boric acid infiltrated into both cell cavity and cell
wall through impregnation treatment. FTIR analysis showed that boric acid reacted with wood flour
to form B-O-C bond during the treatment. After the treatment of boric acid, the initial degradation
temperatures and residual carbon contents were increased, while the maximum weight loss rates
were decreased. Boric acid significantly altered the composition and distribution of volatile pyrolysis
products of wood flour. It significantly increased the contents of small molecule compounds such
as acetic acid and furfural but, decreased the contents of phenol derivatives with high molecular
weights. And these changes became more pronounced as the temperature increased. When mass
ratio of boric acid (BA) to wood flour (WF) was 2, the acetic acid accounted for 91.28% of the total
product in the pyrolysis liquid, which was 14 times higher than that of untreated wood flour. Boric
acid effectively catalyzed fast pyrolysis of woody biomass to selectively produce acetic acid

Keywords: woody biomass; fast pyrolysis; boric acid; acetic acid; pyrolysis characteristics

1. Introduction

Environmental pollution and energy shortage have become the main contradictions
restricting the sustainable development of economy and society. Biomass has attracted peo-
ple’s attention for its renewability, availability, carbon neutrality, less dependency on fossil
fuels, and other advantages [1–4]. Woody biomass derived from trees is a vital biomass
resource since new forests can be regenerated through afforestation and appropriate main-
tenance [5]. The construction scrap wood is almost completely utilized in construction
materials. However, only a small amount of the wood wastes generated in wood products
and paper industries, such as wood chips, lumber, and furniture mill sawdust were recycled
to produce heat and electricity in power plants [6–8]. It is very important to make full use of
the existing wood resources, especially waste wood. In fact, besides the direct combustion
(burning) to produce heat, as the only renewable carbon resource, woody biomass also can
be recycled to produce materials such as scrimber, fiberboards, and composites to produce
solid, gaseous, and liquid fuels and to produce high value-added chemicals [9–12]. Ther-
mochemical conversion processes, especially fast pyrolysis technology has been considered
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as a typical and promising method for effectively converting biomass into high-value
chemicals and bio-fuels in a short time by rapid heating [2,13,14]. However, owing to the
complexity of biomass structure and various pyrolysis reaction pathways, the bio-crude
produced from biomass pyrolysis contains a large number of oxygenated compounds such
as acids, aldehydes, ketones, dehydrated sugars and phenols, which make it difficult to
be directly used as liquid fuel or chemicals [15,16]. Frequently, in order to promote the
yield of desired chemicals, appropriate catalysts were used to adjust the composition and
distribution of pyrolysis products via selectively enhancing some specific reactions that
occur in the pyrolysis processes [9,17–20]. Inorganic salts, metal oxides, and zeolites have
been used as catalysts for this purpose [4,21–24]. HZSM-5 improves the acid and furan
yields at low temperature by promoting dehydration and retro-aldol fragmentation during
the in-bed catalytic pyrolysis of hemicellulose monosaccharide [19,25,26]. Zinc chloride
promotes the formation of furfural by catalyzing the dehydration, depolymerization, and
ring opening reactions of biomass [27].

Boric acid is recently proved to be a good substitute for conventional acidic cat-
alytic materials [28–35]. It successfully catalyzed various types of reactions such as fruc-
tose dehydration, salicylic acid esterification, and condensation between aldehyde and ke-
tone [28,29,31,32,35]. Additionally, it has been proved that boric acid can react with methanol
and polyhydroxy compounds such as D-Mannitol, D-glucose, and D-fructose to form boric
acid esters [32,33]. However, boric acid is rarely used as catalyst for biomass pyrolysis.

In fact, for several decades, boric acid, owing to its easy commercial availability and
environmentally friendly characteristics, has been primarily used as a bactericide and flame
retardant for wood biomass [5,36,37]. Boric acid could reduce the maximum degradation
temperature and increase the residual char amount of wood biomass [38,39]. It is generally
assumed that boric acid mainly plays a role in the inhibition of both heat and mass transfer
during the biomass pyrolysis processes [33]. Moreover, some researchers stated that boric
acid can act as a catalyst for some specific reactions, such as dehydration, isomerization,
etc. [28,30,31,34,35]. Wang et al. presented that boric acid not only catalyzes dehydration
and deoxidation reactions of wood at 100–300 ◦C but also catalyzes isomerization of
newly formed intermediates to finally form aromatic structure and char [33]. Zhang et al.
discovered that complexation and esterification reactions occur between wood fiber and
boric acid, which promoted the char formation [34]. However, there are few reports about
the preparation of chemicals from biomass catalyzing over boric acid.

Thus, this study aimed to catalytically convert woody biomass into chemicals such as
acetic acid and furfural via fast pyrolysis over the boric acid. Acetic acid is often used as a
solvent and raw material in agriculture, medicine, and the dyestuff industry, while furfural
is a fundamental raw material of fine chemicals and widely applied in synthetic rubber,
plastics, medicine, pesticides, and other industries [40,41]. In this study, birch wood flour
(WF) was used as the feedstock and treated by impregnation with boric acid solution. The
mass loss, composition, and distribution of evolved volatiles formed from pyrolysis process
were studied by using thermogravimetry (TG) and Py-GC/MS techniques. Additionally,
the pyrolysis liquid products were prepared by a small fixed-bed pyrolyzer and further
analyzed by a GC/MS technique. Different pyrolysis temperatures and boric acid/wood
flour mass ratios were also studied.

2. Results and Discussion
2.1. Feedstock Characterization

The feedstock used in this study was birch wood powder. The elemental analysis and
proximate analysis as well as the chemical composition of birch feedstock are presented in
Table 1.
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Table 1. The proximate, elemental and compositional analyses of the birch feedstock.

Birch

Elemental (wt. %) Proximate (wt. %)

C H O N S Volatile matter Ash Fixed carbon
44.52 6.06 45.71 3.16 0.55 79.43 4.15 16.42

Chemical composition (wt. %)

Holocellulose Lignin α-cellulose Extract
75.76 23.02 48.87 2.23

2.2. FTIR Characteristics

Figure 1a displays the FTIR spectra of the untreated wood flour (WF), boric acid (BA),
and BA/WF mixtures with different mass ratios (0.1:1, 0.5:1, 1:1, 2:1). Compared with those
untreated samples and pure boric acid, new infrared absorption peaks appeared at 3200,
1375, 1340, 1195, 945, and 815 cm−1 in the infrared spectrum of BA-treated wood flour.
This not only proved the successfully loading of BA on wood flour, but also implied some
reactions occurred after BA treatment. This is in accord with other research results showing
that boric acid could react with wood fiber to form boron complex [34].
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Figure 1. (a) FTIR spectra of wood flour (WF), boric acid (BA) and BA/WF mixtures with different ratios (0.1:1, 0.5:1, 1:1, 2:1
wt/wt); (b) Raman spectra of boric acid aqueous solution (with different concentrations).

In Raman spectra (Figure 1b), strong Raman scattering characteristic peaks can be
observed at 601, 811, 988, 1118, and 1449 cm−1. The IR peak at 3200 cm−1 was ascribed
to the stretching vibration–OH in boric acid. The IR absorption peak at 1375 cm−1 was
attributed to the unsymmetrical stretching vibration of the B-O bond in B(OH)3. The
absorption peak at 1340 cm−1 was attributed to the bridge stretching vibration of the
B-O-C bond [42], corresponding to the scattering characteristic peak at 1338 cm−1 in the
Raman spectrum. The flexural vibration of the B-O bond observed at 1195 cm−1 was in
line with the Raman scattering peak at 1183 cm−1 [42,43]. The weak infrared absorption
peak at 945 cm−1 indicated the existence of the -BO4 bond. The peak at 1118 cm−1 in
the Raman spectrum was related to the B-O symmetric stretching vibration. Polyborate
anions formed in the concentrated boric acid solution. The absorption peak at 1270 cm−1

belonged to the stretching vibration of the B-O bond in cyclic boride. It demonstrated that
boric acid polymerize in aqueous solution [43,44]. The characteristic scattering vibrations
of [B6O7(OH)6]2− can be observed at 967 cm−1. The symmetrical pulse vibration of
[B4O5(OH)4]2− appeared at 554 cm−1. The Raman scattering at 732 cm−1 was identified
as the symmetric pulse vibration of [B(OH)4]−. The scattering characteristic vibration of
[B3O3(OH)4]− appeared at 840 cm−1, and the symmetric pulse vibration of [B3O3(OH)4]−

appeared at 988 cm−1. These results suggest that self-polymerization reactions of boric
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acid occur, forming boric acid trimer, tetramer, and hexamer in the processes of boric acid
pretreatment and pyrolysis initial stage where approximated conditions existed.

2.3. Scanning Electron Microscopy

Figure 2 shows the SEM micrographs of different samples (the corresponding original
images are shown in Figure S2 in the Supplementary Materials). Compared with untreated
wood flour, the surface morphology of wood flour treated by boric acid changed signifi-
cantly. The surface of untreated wood fiber was clean (Figure 2a), and it became uneven
after treatment. In Figure 2b,c, the pits on the cell wall were blocked by boric acid, and in
Figure 2d, boric acid filler was obviously seen in ray tracheid. Boric acid exists as solid
sediments deposited in/on the cell cavity and cell wall of wood. This is in accord with
the point that inorganic modifier with a small molecular weight could infiltrate into both
cell cavity and cell wall through impregnation treatment [5]. With the increase of BA/WF
ratio, the surface depositions of boric acid particles on wood fiber were increased. A glassy
heterogeneous film of BA formed on the surface of wood fiber (Figure 2d,e). Figure 3
shows the electron energy spectrum of BW−1.0. It indicates the presence and uniform
distribution of boron element.
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2.4. Pyrolysis Characteristics of Samples

Figure 4 shows the TG-DTG profiles of boric acid and boric acid-treated and untreated
wood flour. Table 2 lists the pyrolysis characteristic parameters of all these samples. Boric
acid initially decomposes into H2O (g) and metaboric acid (HBO2) at around 160 ◦C.
Metaboric acid melts at about 236 ◦C and dehydrates to form pyroboric acid when heated
above 300 ◦C. Further heating (about 330 ◦C) leads to boron trioxide [45]. The whole
pyrolysis processes of all the samples except BA can be divided into approximately three
stages. The mass loss at the first stage (50–200 ◦C) was mainly related to removal of water,
CO2, CO, and other small molecule volatile compounds. The mass loss in the second
stage (200–400 ◦C) was ascribed to the degradation of cellulose, hemicellulose, and lignin.
Conversion of non-volatile and noncombustible parts of wood into tar or coke mainly
occurred in the third stage (400–700 ◦C).
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Figure 4. Thermogravimetry (TG) curves (a) and differential thermogravimetric (DTG) curves (b) from the thermal
decomposition of wood flour (WF), boric acid (BA), and BA/WF mixtures with different ratios (0.1:1, 0.5:1, 1:1, 2:1 wt/wt).

Table 2. Pyrolysis parameters of all samples.

Ti
(◦C)

Tmax
(◦C)

Temperature
Range of Most

Weight Loss

Residual Mass (%)

Experimental
Value

Adjust
Value

Theoretical
Value

WF 268.3 319.1 268.3–356.4 22.05 – –
BA 114.9 123.1 114.9–128.4 54.94 – –

BW-0.1 286.6 319.6 286.6–349.9 27.29 21.80 25.33
BW-0.5 287.2 320.9 287.2–365.9 38.80 20.49 33.01
BW-1.0 288.5 321.1 288.5–376.1 50.51 23.04 38.50
BW-2.0 292.5 324.6 292.5–378.1 58.09 21.46 43.97

Ti (initial degradation temperature), Tmax (the temperature corresponding to the maximum mass loss rate), and
residual mass (in %) of BA impregnated WF measured at 700 ◦C; adjusted value was obtained by proportionally
subtracting the residue mass value of boric acid from the related experimental value; theoretical value was
acquired by simple mathematical summation of respective residue masses of both wood and BA components.

Boric acid treatment affected the thermochemical properties of wood flour signifi-
cantly. The initial degradation temperatures (Ti) and the temperature corresponding to
the maximum mass loss rate (Tmax) as well as the residual carbon contents were increased,
while the maximum weight loss rate was decreased. Compared with the untreated sample,
the Ti values of the BA-treated samples (BW-0.1, BW-0.5, BW-1.0, and BW-2.0) increased
by 6.82%, 7,04%, 7.53%, and 9.02%, respectively. It proved that boric acid remarkably
improves the thermal stability of wood. The residual masses were increased by 23.76%,
83.54%, 129.07%, and 163.45%, respectively. These were consistent with Wang’s results [33].
However, it is worth mentioning that besides the coke (fix carbon) and ash that originated
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from the wood, boron trioxide that formed from BA dehydration was also included in
the pyrolysis residue. An adjusted value for the real residue mass derived from wood
was obtained by proportionally subtracting the residue mass value of boric acid from the
related experimental value (Table 2). It is based on the hypotheses that, in the BA-treated
wood samples, boric acid could dehydrate fully as it decomposes alone, generating a boron
trioxide that exists in a form of glassy nonvolatile liquid substance in the temperature
range from 450 ◦C (melting point) to 1860 ◦C (boiling point). In this case, boric acid had
little impact on the residue formation of wood. Nevertheless, when comparing the experi-
mental value of residue with its related theoretical value acquired by simple mathematical
summation of respective residue masses of both wood and BA components, the values
of all the formers were higher than those of the latters. This implied that there exists a
chemical interaction between wood and boric acid. Wood may inhibit dehydration of BA
from releasing water. In another words, some incompletely dehydrated products, such as
tetraborate and boron triborate remained in the residue. BA may catalytically change the
pyrolysis path of wood, presenting varied thermal stabilities and pyrolysis products. This
is in accord with the views that boric acid can react with alcohols to form borate esters,
especially, with polyols containing cis-vicinal diols, such as glycerol and mannitol, to form
a boron-containing chelate [32].

2.5. Py-GC/MS Analysis of Samples

Py-GC/MS was used to investigate the composition and distribution of evolved
volatiles formed from the pyrolysis process. Figure 5 shows the total ion chromatograms
of pure wood flour and boric acid/wood flour mixtures with different mass ratios (0.1:1,
0.5:1, 1:1, 2:1) obtained by Py-GC/MS at 500 ◦C for 60 s. The main pyrolysis volatile’s
compositions and distributions of these samples were shown in Figure 6. Apparently, BA
treatment simplified the product composition of the wood flour samples. Eighty-three
kinds of compounds were detected in the volatile pyrolysis products of untreated wood
powder. However, 80, 44, 28, and 9 kinds of compounds were detected for BA-treated
wood samples with varied BA/WF mass ratios from 0.1:1, 0.5:1, 1:1, and 2:1, respectively
(Figure 5). This finding indicates that boric acid selectively inhibits the formation of some
products and promotes the formation of other products. These pyrolysis products were
mainly divided into 11 categories: aldehydes, furans, ketones, acids, esters, alcohols, phe-
nols, saccharides, benzenes, hydrocarbons, and nitrogenous compounds. Compounds like
furfural, 5-hydroxymethylfurfural, methylglyoxal, and hydroxyacetaldehyde were mainly
formed from pyrolysis of glucose-based carbohydrates. This is because the glycosidic bond
in cellulose is relatively weak, and it was easy to crack under acidic or high temperature
conditions, largely generating furans and levoglucosan [4,46,47]. Additionally, furans, ke-
tones, acetic acid, and anhydrosugars were derived from hemicellulose pyrolysis [18,48,49].
Lignin is composed of phenylpropane units. The main pyrolysis products of lignin are
phenol derivatives, acetic acid, methanol, and other small molecular compounds [50].

With the increase of the BA/WF ratio, the contents of ketones and phenols were
decreased, while the contents of acids, furans and lipids were increased significantly. When
the BA/WF mass ratio was 2.0, a small number of ketones and aldehydes were detected,
while acids, furans, and esters became the main compounds in the pyrolysis products.
Especially, acetic acid was the main compound, and its content reached about 39.66%
(percentage of area). These results show that boric acid treatment varied the decomposition
paths of cellulose and hemicellulose, while it inhibited the decomposition of lignin to
form phenols.

2.6. Small Fixed-Bed Pyrolysis Study of Samples

The loading amount of sample required in the Py-GC/MS test is about 0.5 mg. It is
difficult to calculate the mass change before and after pyrolysis. In order to figure out the
mass balance, a serial of bench-scale pyrolysis experiments were carried out on a small
fixed-bed pyrolysis reactor, of which the sample amount was about 0.2 g. Table 3 lists
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the mass balance (yields of volatiles and non-volatile residues) obtained from pyrolysis
of pure wood powder and BA-treated wood powders with different mass ratios. BA-
treatment lowered the yields of volatile but improved the yields of solid products to
some extent. Additionally, with the increase of boric acid usage, this trend became even
more pronounced. As described in Section 2.3, the increasing residue yields were mainly
attributed to the mixing of the increasing pyrolysis residues of boric acid.
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Figure 6. The main classification of pyrolysis volatiles of wood flour (WF) and boric acid /wood
flour mixtures (BW) with different mass ratios (0.1:1, 0.5:1, 1:1, 2:1) obtained by Py-GC/MS at 500 ◦C
for 60 s.

Table 3. Volatile and solid product yield of all samples a.

WF BW-0.1 BW-0.5 BW-1.0 BW-2.0

w(v)% 76.4 ± 2.0 66.9 ± 1.8 63.1 ± 1.5 61.9 ± 1.7 56.3 ± 1.6
w(s)% 23.6 ± 3.0 33.1 ± 2.0 36.9 ± 2.1 38.2 ± 2.4 43.7 ± 2.6

a Experimental conditions: sample amount, 0.2 g; temperature, 500 ◦C.

Figure 7a compares the different total ion chromatograms of liquid products of un-
treated wood obtained by a small fixed-bed at varied pyrolysis temperatures of 400 ◦C,
450 ◦C, 500 ◦C, 550 ◦C, and 600 ◦C. In sequence, a similar chromatogram comparison of
BA-treated wood samples with a BA/WF mass ratio of 0.1, 0.5, 1.0, and 2.0 are shown in
Figure 7b–e. The total number of pyrolysis products of untreated wood, especially those
compounds with high relative molecular weight (refers to long retention times) increased
with the increasing of pyrolysis temperature. Whereas the relative contents of each product
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obtained at all the temperatures were very low, it implies that complex reactions occurred
in the pyrolysis processes (Figure 7a). Compared with untreated wood sample, obvious
changes were observed on the compositions and distributions of pyrolysis liquid products
of BA-treated wood samples (Figure 7a–e). Boric acid treatment significantly increased
the contents of small molecule compounds, such as acetic acid and furfural, but decreased
the contents of phenol derivatives with high molecular weights. For the sample with a
BA/WF mass ratio of 0.1, the product’s composition and distribution changed obviously,
the contents of boric acid and furfural were increased to some extent, but the composition
of their pyrolysis products was still very complex. With the further increase of the boric
acid dosage, especially when the mass ratio of boric acid/wood flour was over 0.1, the total
types of pyrolysis products were reduced. Meanwhile, the content of single compound
was increased obviously. Remarkably, acetic acid and furfural almost became the main
compounds when the mass ratio of BA/WF was 2.0. It implies that boric acid changes the
distributions and relative contents of pyrolysis products by effectively inhibiting the forma-
tion of phenol derivatives and promoting the formation of acetic acid, furfural, and other
small molecular compounds. For all the BA-treated samples, the temperatures studied
in this study (from 400 to 600 ◦C) had little effect on the distributions and compositions
of the main products. In order to acquire a high liquid product’s yield and low energy
consumption, a modest temperature (500 ◦C) was fitted and selected for further study.
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Figure 7. Gas chromatography and mass spectrometry (GC-MS) total ion chromatograms of liquid products from pyrolysis
of (a) wood flour; (b) BA/WF = 0.1; (c) BA/WF = 0.5; (d) BA/WF = 1.0; (e) BA/WF = 2.0 at 400, 450, 500, 550, and 600 ◦C;
(f) comparison of the contents of both boric acid and furfural produced by pyrolysis of untreated wood and BA-treated
wood samples with varied BA/WF ratios at 500 ◦C.

Table 4 shows the typical pyrolysis product compositions and distributions of un-
treated sample and BA-treated samples with varied BA/WF ratios at 500 ◦C. The compar-
ison of the contents of both boric acid and furfural, the main compounds among these
products are shown in Figure 7f. Apparently, boric acid treatment significantly improved
the content of acetic acid in pyrolysis products of wood sample. With the increasing of
BA/WF ratio, the content of acetic acid increased gradually. When BA/WF ratio was 2.0,
acetic acid content reached the maximum, accounting for 91.28% of the total content of all
the detected products. This value was about 14 times higher than that of untreated wood
sample. Conversely, the contents of phenol and its derivatives were decreased after boric
acid treatment. The content of furfural in the pyrolysis liquid products of untreated wood
sample was only 0.18%. After boric acid treatment, its content first rose with the increase
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of BA/WF value and reached the maximum, accounting for 16.79% of the liquid pyrolysis
products before it descended gradually when BA/WF ratio was over 0.5.

Table 4. Peak area % of the typical pyrolysis products of wood flour (WF) and boric acid /wood flour mixtures (BW) with
different mass ratios (0.1:1, 0.5:1, 1:1, 2:1) obtained by a small fixed-bed pyrolysis reactor at 500 ◦C.

Retention
Time (min)

Compounds
Peak Area (%)

WF BW-0.1 BW-0.5 BW-1.0 BW-2.0

2.25 1,2-Ethanediol - - 11.47 - -
2.97 Acetic acid 6.56 27.19 46.24 84.48 91.28
3.55 Propanoic acid 1.06 1.29 1.54 1.41 -
4.70 4-Hydroxy-3-methyl-2-butanone - - 2.39 - -
6.44 Methyl acetic acid ester - - 2.10 - -
7.01 1-Hydroxy-2-propanone 1.48 0.96 0.57 - -
7.17 3-Furaldehyde - - 0.74 - -
7.72 Furfural 0.18 4.19 16.79 10.57 2.81
7.99 2-Cyclopenten-1-one 1.43 1.48 1.75 0.64
8.38 5-Methyl-2(3H)-furanone, - 0.36 0.32 - -
8.46 1-(Acetyloxy)-2-propanone, 0.44 0.74 0.78 - -
9.00 2-Methyl-2-cyclopenten-1-one, 0.74 0.59 0.32 - -
9.09 1-(2-Furanyl)-ethanone, 0.34 1.56 2.16 - -
9.39 5,6-Dihydro-2H-pyran-2-one, - 0.52 0.33 - -
9.55 2-Cyclopentene-1,4-dione - - 0.67 - -
9.98 Phenol 12.86 8.44 4.30 2.6 2.0
10.20 5-Methyl-2-furancarboxaldehyde, - 3.55 4.12 - -
10.42 Butyrolactone 1.67 0.40 - - -
10.47 3-Methyl-2-cyclopenten-1-one, 1.14 2.0 0.25 - -
10.52 2(5H)-Furanone 1.50 3.3 0.95 - -
11.17 2,5-Dihydro-3,5-dimethyl 2-furanone, 0.33 0.23 - - -
11.25 2-Hydroxy-3-methyl-2-cyclopenten-1-one 4.44 1.33 - - -
11.42 2,3-Dimethyl-2-cyclopenten-1-one 1.73 0.57 - - -
11.72 3-Methyl-phenol, 1.22 1.15 - - -
12.05 Methyl benzoic acid ester 0.23 0.31 - - -
12.14 2-Methoxy-phenol, 4.56 2.10 0.40 0.48 -
12.24 3-(2-Furanyl)-2-propenal, - - 0.27 - -
12.55 3-Ethyl-2-hydroxy-2-cyclopenten-1-one, 0.79 1.06 - - -
12.89 3-Methyl-cyclohexanone, 0.72 0.45 0.81 - -
13.05 2,5-Dimethyl-phenol, 0.47 0.45 - - -
13.20 2,4-Dimethyl-phenol, 0.36 0.39 - - -
13.46 Levoglucosenone - 2.67 - - -
13.61 2-Methoxy-4-methyl-phenol, 2.09 1.83 - - -
13.85 Ethoxy-cyclohexane, - 2.62 - - -
14.44 2,3-Dimethoxytoluene 0.15 0.06 - - -
14.76 4-Ethyl-2-methoxy-phenol, 2.48 0.36 - - -
15.56 2-Methoxy-4-vinyl-phenol 4.80 2.36 - - -
15.87 2-Methoxy-4-propyl-phenol, 0.76 0.37 - - -
15.95 Eugenol 0.89 0.35 - - -
16.66 2,6-Dimethoxy-phenol, 9.85 1.99 - - -
17.05 4-Ethoxy-benzeneacetic acid, 0.27 - - - -
17.36 2-Methoxy-4-(1-propenyl)-phenol, 4.23 3.81 - - -
17.72 4-Hydroxy-3-methoxy-benzoic acid, 2.75 0.21 - - -
18.55 1,2,3-Trimethoxy-5-methyl-benzene, 3.17 - - - -
19.13 2-(4-Guaiacyl)-ethanol 0.68 - - - -
19.28 (E)-Stilbene 6.59 3.36 - - -
20.22 2,6-Dimethoxy-4-(2-propenyl)-phenol, 10.64 12.27 - - -
21.26 n-Hexadecanoic acid 0.55 0.99 - - -
21.74 1-(4-Hydroxy-3,5-dimethoxyphenyl)-ethanone 0.82 - - - -
22.18 1-(2,4,6-Trihydroxyphenyl)-2-pentanone 0.89 - - - -
22.92 Dibutyl phthalate 0.37 0.27 - - -
Total 96.23 98.13 99.27 99.54 96.73

“-” refers to “not detected”.
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It is worth noting that BA pre-treatment of woody samples change the morphology
and the nature of the samples (confirmed by the SEM analyses) to some extent. This
indicates that BA pre-treatment leads to some chemical transformation, for instance, partial
hydrolysis of a wood sample. In order to find out whether the catalytic effect in the
pyrolysis process or the structural change in the pretreatment process leads to the change
of the pyrolysis products, the sample treated with boric acid was pyrolyzed after removal
of boric acid, and its pyrolytic products were compared with those of untreated sample and
boric acid treated sample (Figure 8a). Figure 8 shows their product distributions (a) and
acetic acid contents (b) obtained at 500 °C. The results show that both of them had an effect
on the composition of the pyrolysis products, and that the latter was more significant. The
acetic acid content of the BA-treated sample was about 6 times that of the untreated sample,
but after removing boric acid, the value was about 2 times that of the untreated sample.
Apparently, boric acid treatment has a positive effect on the formation of acetic acid while
inhibiting the production of phenols, which were mainly derived from lignin pyrolysis.
Both catalytic effects in the pyrolysis process and structural change in the pretreatment
process are responsible for this.
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ratio 1) and BW-0 (BA-treated wood sample after removing boric acid) obtained by a small fixed-bed pyrolysis reactor at
500 ◦C.

Acetic acid is mainly produced by pyrolysis of cellulose and hemicellulose [4,51]. In
the pyrolysis process of hemicellulose, O-acetyl group was released by both fracture of the
C2-O bridged bond and ring-opening of the intermediates to produce acetic acid [52,53].
Secondary cracking of pyrolysis intermediates of cellulose may produce acetic acid too.
Besides, acetic acid may form by further cracking of the acetyl group in the aliphatic chain
of lignin components. Furfural and its derivative were the primary products of pyrolysis
of cellulose and hemicellulose. Furfural compounds may form in two ways: (1) direct
decomposition of oligosaccharides and (2) first, after oligosaccharides are converted to
levoglucosan (LG) and levoglucosenone (LGO), and then LG/LGO is converted to fur-
fural [4,54]. Additionally, the increase of furfural content may also be due to a decrease in
the crystallinity of cellulose by boric acid impregnation (Figure S1). The cellulose with low
crystallinity more easily formed furfural compounds [4]. Boric acid is a weak, monobasic
Lewis acid of boron. However, some of its behavior toward some chemical reactions
suggests it to be tribasic acid in the Brønsted sense as well. Therefore, although the detail
mechanism of boric acid on wood pyrolysis is not completely clear, it is supposed that boric
acid, like other acid catalysts, may fuction as an acid catalyst in promoting the ring-opening
and cracking of cellulose, hemicellulose, and monosaccharides, resulting in an increase
in the content of acetic acid, furfural, and other small molecule compounds. Besides, the
converse variation trends for the contents of furfural and acetic acid at the high boric acid
dosage imply that a competition exists between the formation of furfural and acetic acid.
Moreover, furfural may convert into acetic acid in some form under these conditions.
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3. Materials and Methods
3.1. Sample Preparation

White birch wood was used as raw material for woody biomass in all experiments. It
was obtained from Heilongjiang Province, China. The as-received birch wood was ground
in a high-speed rotary cutting mill (DC 3-1, Benchen Technology Co, Ltd., Shenzhen, China)
and screened to with a particle size of 180~250 µm using a standard vibrating screen
(BZS-200, CHINT, Jinan, China). The obtained sample (WF) was then dried at 105 ◦C for
48 h. Boric acid (BA), with a AR grade, purchased from Tianjin Zhiyuan Chemical Reagent
Co. Ltd. (Dongli District, Tianjin, China), was oven-dried at 103 ◦C overnight before use.

The boric acid treated wood flour samples (BW) were prepared by impregnating the
wood flour with boric acid aqueous solution. Samples with varying mass ratios of BA to
WF (0.1, 0.5, 1.0, and 2.0 were marked as BW-0.1, BW-0.5, BW-1.0, and BW-2.0 separately)
were obtained by adjusting the BA concentration. For example, first, to get BW-1.0 sample,
2.0 g of boric acid was added into a beaker that with about 100 mL of distilled water.
Secondly, the beaker was heated in a water bath pot (preheated at 50 ◦C) and stirred often
until the BA completely dissolved in the water. Third, 2.0 g of wood powder was added
into the BA aqueous solution, stirred fully with a glass rod for about 30 min. Then the
beaker was sealed with plastic wrap, kept in a dry place for 24 h to ensure that the wood
flour was fully impregnated by boric acid solution. Finally, the sample was placed in an
oven (set at 103 ± 2 ◦C) for 24–48 h until the sample’s weight remained unchanged.

3.2. Sample Characterization

The proximate analysis including volatile matter (VM %), moisture, and ash (%) of the
samples was performed in accordance with standard procedures delineated in American
Society Standard Test Method (ASTM E870-82 (2013)). The fixed carbon (FC %) was
specified through subtracting VM %, M %, and ash % from 100%. The ultimate analyses of
C, H, N, and S in the samples were done using an elemental analyzer (Vario MACRO cube,
Elementar, Hanau, Germany), and O was calculated by the difference of C, H, N, and S
results from 100%. The content of synthetic cellulose was determined according to GB/T
2677.10-1995, the content of a-cellulose was determined according to GB/T 744-1989, the
content of lignin was determined according to GB/T 2677.8-1994, and the content of extract
was determined by ethanol method.

3.3. Scanning Electron Microscopy

The sample was attached to a conductive adhesive on the sample table. The mi-
crostructures of the samples were observed through a S3400 scanning electron microscope
(SEM, Thermo Fisher Scientific, Waltham, MA, USA) after being sprayed gold. The micro-
consolidation state of boric acid and distribution in the wood was analyzed by scanning
the boron element using the energy dispersive X-ray (EDX) spectrometer combined with
the SEM.

3.4. FTIR and Raman Spectroscope

The FTIR analysis of sample was determined at room temperature by using an FTIR
instrument (Nicolet FTIR 6700, Thermo Fisher Scientific, Waltham, MA, USA). FTIR data
were collected in the region between 4000 cm−1 and 600 cm−1 with 32 scans at a spectral
resolution of 4 cm−1 via an ATR mode (Ge crystal) by using MCT detector with which
liquid nitrogen was used as a refrigerant.

Raman spectra of liquid samples were recorded in the ranges of 100–3200 cm−1 on a
Raman spectrometer (Renishaw inVia, Renishaw, London, UK) by using the following test
conditions: laser: 532 nm, exposure time: 10 s, laser power (%): 50; accumulative times: 10.
The liquid samples were kept on glass slides.
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3.5. Py-GC/MS Experiment

Py-GC/MS experiment was performed on a Pyroprobe pyrolyzer (5200 series, CDS,
USA) connected with GC/MS instrument (6890 GC/5973N MSD, Agilent, Palo alto, CA,
USA). First, a 0.40 mg ± 2 mg amount of sample was fed into the quartz tube with quartz
wool on both sides and then placed into the pyroprobe. The pyroprobe was initially set for
40 ◦C and then ramped at 20 ◦C/ms to the final temperature of 500 ◦C for 60 s. Then, the
pyrolytic volatile products were transferred to the GC system and separated on the Agilent
122-4732 DB-17MS capillary column (30.0 m × 0.25 mm × 0.25 µm film thickness). The split
ratio was 10:1 with helium carrier gas flow of 1 mL/min. The injector temperature was kept
at 250 ◦C, and the transfer line temperature was 285 ◦C to avoid condensation or adsorption
of semi-volatile products. The GC oven temperature was programmed at initial 40 ◦C for
4 min, and then increased to 270 ◦C (5 min) with a heating rate of 10 ◦C/min, finally to
280 ◦C (5 min) with the heating rate of 10 ◦C/min. MS was operated under the electron
ionization of 70 eV with a full scan mass/charge (m/z) range of 20–550. The temperatures of
MS ion source and quadrupole were 230 ◦C and 150 ◦C, respectively. Py-GC/MS analysis
for each sample was repeated twice and found with proper repeatability. The compounds
obtained through GC/MS were identified via The National Institute of Standards and
Technology (NIST) database by closet match in NIST MS Search 2.3 using identify type
searching. The relative percentage content of a product was semi-quantified by comparing
the peak area of the product with the total peak area of all detected products.

3.6. TGA Experiment

Thermogravimetric analysis, showing the loss in sample weight in response to in-
creasing reaction temperature, was conducted at heating rates of 10 ◦C / min using TGA
instrument (TG 209 F1 Libra, NETZSCH, Selb, Germany) from 30 ◦C to 700 ◦C. Small
amounts of biomass samples about 5 ± 0.2 mg) were used in alumina pans in each anal-
ysis. The scavenging air was O2, the protective air was Ar, and the airflow was 50 and
30 mL/min, respectively.

3.7. A Bench-Scale Fixed-Bed Pyrolysis Experiment

The series of bench-scale pyrolysis experiments were carried out on a small fixed-
bed pyrolysis reactor. First, an amount of sample (0.2 g) was fed into the quartz tube
with quartz wool on both sides. Then, the tube was rapidly placed into the pyroprobe
(Pyrojector II, SGE, Ringwood, Australian) and kept for 5 min to full pyrolysis of the sample
when the expected temperature (500 ◦C) in the pyrolyzing furnace was ready. Almost
simultaneously, the pyrolytic volatiles were swept out by purged gas (nitrogen), condensed,
and further collected as the liquid products. The as-received liquid products were diluted
in methanol for immediate GC-MS analysis (6890 GC/5973N MSD, Agilent, Palo alto, CA,
USA). The sample was injected into the gas injection port with a manual GC syringe needle
of 1 µL. The temperature of the injection port was 250 ◦C. The sample was separated on a
Agilent 122-4732 DB-17MS capillary column (30.0 m × 0.25 mm × 0.25 µm) using helium
(1 mL/min) as the carrier gas with the split ratio of 30:1. The GC oven temperature was
programmed at initial 40 ◦C for 4 min and then increased to 270 ◦C (5 min) with a heating
rate of 10 ◦C/min, finally to 280 ◦C (5 min) with the heating rate of 10 ◦C/min. MS was
operated under the electron ionization of 70 eV with a full scan mass/charge (m/z) range
of 20–550.

For material balance, all the input weight and coke weight were obtained by weighing
on a balance with a precision of 0.1 mg. The desired input weight (mfeed) was obtained by
weighing the tube before and after sample loading. The weight of non-volatile solid residue
(ms, including coke and tar) was acquired by weighing the pyrolysis tube (loaded with
starting material) before and then again after reaction. The weight of the pyrolysis volatiles
(mv, volatile substance includes the condensable liquid products and all non-condensable
gas and vaporized chemicals) was acquired by deducting the non-volatile coke weight
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from the input weight (amount of starting material). Based on it, the yields of volatiles
(wv%) and solid residue (ws%) are calculated by Equations (1) and (2), respectively.

ws% = ms/mfeed × 100% (1)

wv%= mv/mfeed × 100% (2)

where ms refers to the weight of non-volatile solid residue, mv refers to the weight of
pyrolysis volatiles, and mfeed refers to the input weight of the starting materials.

4. Conclusions

Via impregnation treatment, boric acid successfully infiltrated into wood cell cavity
and deposited on the cell wall evenly, helping boric acid function effectively in pyrolysis
processes. FTIR analysis not only indicated that boric acid successfully deposited on wood
flour, moreover it implied that some reactions occurred after BA treatment. TG-DTG
analysis implied that there was a chemical interaction between boric acid and wood. Boric
acid catalytically changed the pyrolysis path of wood, improving the thermal stabilities of
wood remarkably; while wood may inhibit the BA dehydration from releasing water, it
maintained some polyborate anions (incompletely dehydrated products of boric acid) in
the residues. BA treatment simplified the product compositions of the wood flour samples.
Specifically, it varied the decomposition paths of cellulose and hemicellulose to form acetic
acid as the main product, while it inhibited the decomposing of lignin to form phenols.
With the increasing of the BA/WF ratio, the content of acetic acid was increased gradually.
Conversely, the contents of phenol and its derivatives were decreased after boric acid
treatment. Converse variation trends for the contents of furfural and acetic acid at the
high boric acid dosage implied that a competitive mechanism existed between them. Boric
acid treatment significantly promoted the formation of acetic acid from biomass. It was
mainly related to the catalytic effect of boric acid during the pyrolysis process and the
partial hydrolysis of wood flour during the pretreatment process. The study provides a
promising route for the preparation of acetic acid from woody biomass.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-434
4/11/4/494/s1, Figure S1: X-ray diffraction pattern of boric acid (BA), cellulose, boric acid-treated
cellulose (BA/Cellulose = 1.0), Figure S2: The original SEM figures of (a) wood flour (WF) and BA
/WF mixtures with different mass ratios ((b) BA/WF = 0.1; (c) BA/WF = 0.5; (d) and (f) BA/WF = 1.0;
(e) BA/WF = 2.0).
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