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Abstract: Iron-doped titanium dioxide nanoparticles, with Fe/Ti atomic ratios from 0% to 10%,
were synthesized by flame spray pyrolysis (FSP), employing a single-step method. Ferrocene, being
nontoxic and readily soluble in liquid hydrocarbons, was used as the iron source, while titanium
tetraisopropoxide (TTIP) was used as the precursor for TiO2. The general particle characterization
and phase description were examined using ICP-OES, XRD, BET, and Raman spectroscopy, whereas
the XPS technique was used to study the surface chemistry of the synthesized particles. For particle
morphology, HRTEM with EELS and EDS analyses were used. Optical and magnetic properties
were examined using UV–vis and SQUID, respectively. Iron doping to TiO2 nanoparticles promoted
rutile phase formation, which was minor in the pure TiO2 particles. Iron-doped nanoparticles
exhibited a uniform iron distribution within the particles. XPS and UV–vis results revealed that
Fe2+ was dominant for lower iron content and Fe3+ was common for higher iron content and the
iron-containing particles had a contracted band gap of ~1 eV lower than pure TiO2 particles with
higher visible light absorption. SQUID results showed that doping TiO2 with Fe changed the material
to be paramagnetic. The generated nanoparticles showed a catalytic effect for dye-degradation under
visible light.

Keywords: flame synthesis; flame spray pyrolysis; titanium dioxide; iron-doping; dye degradation

1. Introduction

Flame spray pyrolysis (FSP) has emerged as a cost-effective method for large-scale
synthesis of nanoparticles [1] and a number of large-scale pilot projects based on FSP have
been recently demonstrated [2]. The Johnson-Matthey Company announced the use of
FSP for the exploration of next-generation materials related to catalytic applications [3].
Wegner et al. [2], demonstrated that FSP can be used to produce nanoparticles at a rate of a
few kilograms per hour at a cost below 100 EUR/kg, where chemical precursors account
for the majority of the cost. It is critical to explore research in different precursors for use
in FSP, where future innovation may occur at the juncture of combustion, material, and
aerosol engineering.

Titanium dioxide (TiO2) is widely produced using flame-based methods [4–6] for vari-
ous applications in catalysis, water-treatment, and solar cells. Doping TiO2 nanoparticles
with transition metals, such as Fe and Co, can result in better photocatalytic conversions
due to a reduction in the band-gap and the recombination rate of the electron hole pair [7–9].
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Additionally, such transition metals can be used to produce TiO2 nanoparticles with dilute
magnetic semiconductor properties [10] that are important for spintronics applications.

Wet-chemistry methods have been utilized to synthesize iron-doped titania nanopar-
ticles [11–14]. To obtain crystallized nanoparticles from such methods, many steps are
involved during the synthesis process in addition to post annealing, which may result in
phase segregation at higher iron content (Fe 3 at.% and more) [13]. Single-step produc-
tion of Fe-TiO2 nanoparticles is the main advantage in adopting gas-phase techniques of
nanoparticle synthesis. Wang et al. [13] produced iron-doped titania with iron content
from 0% to 20% using an radiofrequency (RF) plasma. Their major finding was that iron-
doping advanced the change from anatase to rutile nanoparticles. Teoh et al. [15] utilized
a flame spray pyrolysis method in generating iron-doped titania. They used titanium
tetraisopropoxide as the titanium precursor and iron naphthenate as the iron precursor.
FSP increased the iron-doping up to five times higher than conventional methods with
annealing. Increasing Fe concentration results in the transformation from anatase to rutile
phase nanoparticles. Fe-TiO2 nanoparticles were active under visible light and the rate of
oxalic acid mineralization is 6.4 times greater when compared to pure TiO2 and Degussa
P25. Magnetic properties were not reported for the FSP-made Fe-TiO2 nanoparticles.

Ferrocene has many properties, which make it a suitable source of iron for iron-doping
in titania nanoparticles such as nontoxicity, stability, and solubility in liquid hydrocar-
bons [16]. Ferrocene, as a fuel additive for soot reduction, has been broadly considered in
the combustion community [16,17]. Ferrocene, as a catalyst, has been utilized in synthesis
of carbon nanotubes [18,19] and silica nanoparticles with a controlled surface area in diffu-
sion flames [20]. Ferrocene was used in FSP as a co-precursor for the production of carbon
nano-tubes (CNTs) [21,22], boron nitride/carbon nano-tube composite (BN/CNTs) [23],
and metal oxides as Al2O3 [24], Fe2O3 [25], and thin films [26]. However, as far as the
authors’ aware, ferrocene has not been used as an iron source in generating iron-doped
titania from FSP technique.

In this work, ferrocene was utilized as an iron precursor and titanium tetraisopropox-
ide (TTIP) was utilized as a titanium precursor to synthesize iron-doped TiO2 nanoparticles.
Various characterization techniques were performed to study the phase, morphology, and
surface structure of the nanoparticles. Optical and magnetic properties were measured.
Finally, the doped-particles were used as a photocatalyst for dye-degradation experiments
under visible light.

2. Results and Discussion
2.1. General Nanoparticle Characterization

To estimate the accurate amount of iron doped in TiO2 samples, inductively-coupled
plasma-optical emission spectrometry (ICP-OES) was implemented (Table 1). Direct pro-
portionality was noticed between amounts of ferrocene added to the iron content found
in each Fe-TiO2 sample. The percentage of iron in the doped samples ranged from 0.87%
to 5.24 at.%. The specific surface area results utilizing Brunauer–Emmett–Teller (BET)
nitrogen adsorption experiments are shown in Table 1. A specific surface area (SSA) for the
iron-free TiO2 sample was the highest and had a value of 151 m2/g, while it was dropped to
118 m2/g when the Fe/Ti atomic ratio was 1%. Then it was raised monotonically with iron
content in the doped-sample. The average primary particle diameter dBET was calculated
from BET results while assuming spherical nanoparticles [27]. It was found that dBET was
around 10 nm for most samples.
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Table 1. Fe-doped TiO2 synthesis conditions and properties.

Precursor
(control)

Synthesized
(ICP) SSA (BET) dBET Anatase dXRD

Fe/Ti Fe in Fe-TiO2
% % [m2/g] [nm] % [nm]

0 0.0 151 9.9 91.8 16.2
1 0.87 118 12.6 85.8 18.8
3 1.56 137 10.9 64.2 16.3
5 2.61 139 10.4 42.1 12.2
10 5.24 140 10.2 20.9 15.9

Nanoparticle structure and crystallinity was identified using the X-ray diffraction
(XRD) technique. Figure 1 illustrates the XRD pattern for Fe-doped samples compared to
pure TiO2 nanoparticles, revealing peaks at 2θ ∼= 25.4 (for anatase 101) and 27.5 (for rutile
110) crystalline phases. The dominant phase found in the pure TiO2 nanoparticles was
anatase, which is typical for TiO2 flame synthesis under lean conditions [28], while Fe-
doping tended to promote the rutile phase percentage and reduces the anatase percentage
with increasing iron content in the sample [29]. At 10% of iron-doping, the rutile phase was
dominant. By integrating the respective XRD peak intensities, anatase content could be
calculated [30]. A calculated anatase percentage for various samples are listed in Table 1.
Fe can occupy the Ti position in the TiO2 lattice because Fe3+ and Ti4+ have similar ionic
radii [31]. These results are in agreement with previously published data for Fe-TiO2 using
gas-phase methods [13,15].
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Figure 1. XRD spectra for iron-doped samples compared to pure TiO2 nanoparticles.

Scherrer formula [32] is another method that gives a good indication of the crystallite
size dXRD by estimating the position of main anatase (101) and rutile (110) peaks. It was
observed that dXRD for all analyzed samples ranges from 12 to 19 nm, as shown in Table 1.
To emphasize the various phases existing in the synthesized TiO2 nanoparticles, Raman
spectroscopy was carried out, as shown in Figure 2. Anatase was the dominant phase for
iron-free TiO2 particles, whereas the rutile phase was the dominant phase for iron-doped
particles. The Raman data were consistent with the XRD results.



Catalysts 2021, 11, 438 4 of 16

Catalysts 2021, 11, x FOR PEER REVIEW 15 of 15 
 

 

1 0.87 118 12.6 85.8 18.8 

3 1.56 137 10.9 64.2 16.3 

5 2.61 139 10.4 42.1 12.2 

10 5.24 140 10.2 20.9 15.9 

Nanoparticle structure and crystallinity was identified using the X-ray diffraction 

(XRD) technique. Figure 1 illustrates the XRD pattern for Fe-doped samples compared to 

pure TiO2 nanoparticles, revealing peaks at 2θ ≅ 25.4 (for anatase 101) and 27.5 (for rutile 

110) crystalline phases. The dominant phase found in the pure TiO2 nanoparticles was 

anatase, which is typical for TiO2 flame synthesis under lean conditions [28], while Fe-

doping tended to promote the rutile phase percentage and reduces the anatase percentage 

with increasing iron content in the sample [29]. At 10% of iron-doping, the rutile phase 

was dominant. By integrating the respective XRD peak intensities, anatase content could 

be calculated [30]. A calculated anatase percentage for various samples are listed in Table 

1. Fe can occupy the Ti position in the TiO2 lattice because Fe3+ and Ti4+ have similar ionic 

radii [31]. These results are in agreement with previously published data for Fe-TiO2 using 

gas-phase methods [13,15]. 

 

Figure 1. XRD spectra for iron-doped samples compared to pure TiO2 nanoparticles. 

Scherrer formula [32] is another method that gives a good indication of the crystallite 

size dXRD by estimating the position of main anatase (101) and rutile (110) peaks. It was 

observed that dXRD for all analyzed samples ranges from 12 to 19 nm, as shown in Table 1. 

To emphasize the various phases existing in the synthesized TiO2 nanoparticles, Raman 

spectroscopy was carried out, as shown in Figure 2. Anatase was the dominant phase for 

iron-free TiO2 particles, whereas the rutile phase was the dominant phase for iron-doped 

particles. The Raman data were consistent with the XRD results. 

 

Figure 2. Raman spectra for Fe-doped TiO2 nanoparticles prepared by FSP with various Fe ratios 

(A, anatase. R, rutile). 
Figure 2. Raman spectra for Fe-doped TiO2 nanoparticles prepared by FSP with various Fe ratios (A,
anatase. R, rutile).

2.2. Fe-TiO2 Morphology

Bright-field TEM (BF-TEM) along with energy-dispersive X-ray spectroscopy (EDS)
analyses were carried out to examine the overall elemental composition and quality of
the iron-doped TiO2 particles. Several electron micrographs at low magnification and
EDS spectra were acquired from various locations on the grid for a good representation
of size and composition. Figure 3a–c show typical electron micrographs for pure TiO2
and Fe-TiO2 nanoparticles. Iron-free particles have an average size of 12 nm. The particle
morphology in iron-doped cases (Fe/Ti ratio of 3% and 10%) is similar to that of the
iron-free TiO2 case. The selected area electron diffraction (SAED) micrographs (Figure 3a–c
insets) contain diffraction rings that confirm the synthesized nanoparticles were of anatase
and rutile phases (also confirmed by XRD and Raman results). Figure 3d–f illustrates
the high resolution TEM (HRTEM) electron micrographs for pure and iron-doped TiO2
nanoparticles. All analyzed samples showed high crystallinity as well as an ordered lattice
structure.
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Figure 4a–c show higher magnification of HRTEM images and illustrates the interpla-
nar spacing (d-spacing) of the planes for TiO2 phases of selected samples. It indicates the
decrease in d-spacing with an increase of the iron content in the sample. For pure TiO2
nanoparticles, the d-spacing of 0.354 nm is related to (101) anatase planes, whereas the
value of 0.327 nm for iron doped sample with Fe/Ti ratio of 10% is related to (110) rutile
planes [33]. This phase change from anatase to rutile when increasing the iron content
is in good agreement with the previous results. The statistical analysis of particle size
distribution obtained from TEM results was based on more than 150 nanoparticles and
the size distribution histograms are provided in Figure 4d–f. It could be concluded that
more than 95% of the particles have a diameter between 7 and 19 nm. The particle size
distribution does not change much with doping iron in the TiO2 samples.
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Figure 5 shows the data revealed from EDS spectra, which confirms the existence
of both Ti and O elements in the iron-free TiO2 sample. For the 3% (Fe/Ti atomic ratio)
sample, the Fe peak started to appear and its intensity increased for higher iron-doping
(Fe/Ti = 10%) with an additional Fe peak, which indicates a higher iron concentration in
the nanoparticles. In addition, a small Cu peak is observed in the sample with higher iron
concentration. Additional Cu peaks observed in the spectrum are attributed to the Cu-grid.
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The presented electron energy-loss spectroscopy (EELS) spectra in Figure 6 contain the
energy loss edges of Ti, O, and Fe elements. The energy loss edge of Ti at the energy loss
value of 456 eV is Ti-L23 and it represents electron beam-induced electronic transitions in Ti
atoms from the initial states of 2P1/2 and 2P3/2 to final states of 3S or 3P orbitals. Similarly,
the energy of edge of Fe at the energy loss value of 710 eV is Fe-L23 and it also represents
the same electronic transitions in Fe atoms as of Ti atoms. Whereas the energy loss edge of
O at the energy value of 532 eV is the O-K edge, it represents the electronic transitions from
1S1/2 initial states to 2P final states in O atoms. The intensity of signals of these energy
loss edges is proportional to the elemental composition of nanomaterials and, therefore,
have been utilized to map the spatial distributions of these elements in the samples. More
detailed analysis for EDS and EELS results can be found in Reference [34]. The acquired
elemental maps of the 10% sample are presented in Figure 7. The results demonstrated
that Ti, O, and Fe were present and reasonably uniform, implying that Fe was uniformly
doped in the TiO2 nanoparticles and did not contain segregated iron oxide particles.
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and d) are (O, Fe, and Ti) elemental maps, respectively.

2.3. Surface Chemistry

Chemical composition was analyzed using X-ray photoelectron spectroscopy (XPS).
Survey spectra from pure TiO2 and from Fe-doped TiO2 samples are shown in Figure 8.
Ti, O, C, and Fe elements are detected for the iron-doped samples whereas Fe was not
detected from pure TiO2 sample. It should be noted that the synthesized samples do not
contain any carbon while the carbon peak in the survey scan comes from the background.
High resolution XPS spectra of Ti 2p and O 1s core levels from pure TiO2 are shown in
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Figure 9. The Ti 2p3/2 core level is fitted using two components. The dominant peak
centered at 458.6 eV is associated with Ti ions with a formal valence 4+ (Ti4+), while the
peak at the lower binding energy of ~456.6 eV is associated with Ti ions with a reduced
charge state (Ti3+) [35]. The O 1s core level is centered at 529.8 eV, corresponding to the
metal oxide (TiO2) [35]. These Ti 2p and O 1s peaks are also observed for all the Fe-doped
TiO2 samples.
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Figure 10 illustrates high resolution XPS spectra for iron-doped TiO2 nanoparticles
resulting from the Fe 2p core level. High resolution data was fitted using eight components
located at 710.8, 709.1, 718.3, 719.4, 722.3, 724.2, 728.5, and 732.9 eV. The Fe 2p3/2 doublet
peak at 710.8 eV, and its corresponding satellite peak at 719.4 eV, together with the Fe 2p1/2
doublet peak at 724.3 eV, and its corresponding satellite peak at 732.9 eV, are the main
signature of the Fe3+ oxidation state of Fe [36,37]. Another signature of Fe3+ ions are the
satellite peaks located at 8.6 eV from the main peaks.
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Figure 10. High resolution spectra for iron-doped samples resulting from Fe 2p peaks with an Fe/Ti
ratio of (a) 3%, (b) 5%, and (c) 10%.

The Fe 2p3/2 doublet peak at 709.1 eV and its corresponding satellite peak at 715.3 eV,
together with the Fe 2p1/2 doublet peak at 722.3 eV and its corresponding satellite peak at
728.5 eV are signatures of the Fe2+ oxidation state of Fe [37,38]. Other signatures of Fe2+

ions are the satellite peaks located at 6.2 eV from the main peaks. The area ratio of Fe
2p3/2–Fe 2p1/2 components equals 2:1 with their doublet separation of 13.5 and 13.2 eV
for Fe3+ and Fe2+, respectively. The same values are used for their corresponding satellites.
Increasing the percentage of the Fe dopant leads to an increase of the Fe3+/Fe2+ ratio from
0.5 at 3% (Fe/Ti ratio) to 1.8 at 10% (Fe/Ti ratio).

The valence band spectra from pure and Fe-doped TiO2 nanoparticles are shown
in Figure 11. The spectrum of undoped TiO2 contained three major features (marked as
A, B, and C) at binding energy positions around ~7.5, 5, and 1 eV, respectively. This is
consistent with the literature [39]. Features A and B are related to the O-2p derived states
and are referred to as ‘bonding’ and ‘non-bonding orbital emissions,’ respectively. Feature
C corresponds to the Ti3+ 3d defect state. After Fe doping, feature D (~2.5 eV) began to
appear. Such a shape, based on the literature, is assigned to a mixed Fe 3d and Ti 3d derived
states [39]. Note that the valence band edge from the Fe-doped TiO2 shifted by ~1 eV to a
lower binding energy, compared to undoped TiO2, which could enhance photo-catalytic
properties in the region of visible light [40].
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2.4. Magnetic Properties

To study the intrinsic magnetic property, temperature variations of magnetization
measurements (moment M vs. temperature T) were performed. Initially, the sample
was cooled to 5 K under a nominal zero field. Then a field of H = 1 kOe was applied.
Subsequently, M vs. T data was measured under the constant magnetic field, while
warming the sample from 5 K to 300 K (Figure 12). Results showed that all the samples were
typical paramagnetic and none showed any Curie transition (TC), within the temperature
range, which implies that Fe doping did not induce a long range of a ferromagnetic
interaction in these samples.
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Figure 12. Temperature-dependent magnetizations measured under a constant magnetic field of
1 kOe.

Isothermal magnetization measurements (magnetic moment M vs. magnetic field H)
were carried out. A necessary diamagnetic correction corresponding to the bare sample
holder was applied after magnetization measurements on each sample. Figure 13 shows
the magnetic hysteresis (M-H) curves of the undoped and Fe-doped samples taken at 5 and
300 K. The results showed that magnetization increases monotonically with increased Fe
content. At room temperature, most of the doped samples have small moment values,
which is similar to the undoped sample. However, for the 10% case, a higher moment
was observed. The inset in Figure 13b shows a narrow opening of the hysteresis loop near
the origin for the 10% case, indicating a paramagnetic behavior. Earlier reports attributed
the absence of ferromagnetism (or paramagnetism in Fe-TiO2) to sample preparation
methods and/or dopant concentrations [41] where dopant Fe ions remain as isolated ions
weakly interacting in the host TiO2. The lack of magnetic properties in previous works
was also attributed to the presence of secondary phases, such as α-Fe2O3 or Fe3O4, since
iron ions may coexist in different valance states [42,43]. For magnetic behavior, oxygen
defects [41,44,45] could induce magnetic interactions. Since only paramagnetic properties
were observed in the present study, it was attributed to oxygen defects and Fe3+ ions in the
TiO2 crystal.
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Figure 13. Magnetization (M-H) curves for iron-doped TiO2 nanoparticles compared to pure TiO2 measured under an
external magnetic field (H), from −30 to 30 kOe at temperatures of (a) 5 K and (b) 300 K.

2.5. Optical Properties

The UV–vis absorption spectroscopy was adopted to determine light absorption from
iron-free and iron-doped TiO2 nanoparticles. The spectra are shown in Figure 14. The pure
TiO2 sample did not show any absorption in the region of visible light (>400 nm) whereas
it manifested an absorption edge toward the UV region (<400 nm). This absorption peak
could be assigned to anatase band-gap excitation, which equals 3.2 eV [31]. The visible light
absorption (350–550 nm) was significantly increased by iron doping in TiO2 nanoparticles
and monotonically increased with iron content in the sample. This observation is consistent
with data found in literature [46,47]. The powder color converted from white (pure TiO2)
by passing through yellow (low iron content) to brown (high iron content), indicating that
doping TiO2 nanoparticles with iron enhanced the visible light absorption.
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3. Photocatalytic Application
3.1. Photocatalytic Activity Test

A photocatalytic reactor system was utilized to carry out the photodegradation tests
of Rhodamine B (Rh-B) solution with iron-doped TiO2 nanoparticles under visible-light
irradiation. A mass equals 40 mg of iron-doped TiO2 nanoparticles (as a catalyst) was
added to 100 mL of organic dye solution (20 mg/L). Then the mixture was stirred in
dark for 60 min to reach an adsorption-desorption equilibrium before performing the
photodegradation experiments. The reactor was loaded up with the mixture of catalyst
and organic dye solution. Water cooling was used to maintain the temperature constant at
298 K. Then, a Xenon lamp (CX-04E) with an optical filter (>420 nm) passing only visible
light was used to irradiate the suspension. At a time interval of 15 min, about 2 mL of the
suspension was extracted and centrifuged at 14,000 rpm for a period of 5 min in order to
get rid of the catalyst. To calculate the new dye concentration in the solution, absorbance at
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λmax = 553 nm (maximum absorption peak of Rh-B) was measured and given the symbol
C. The rate of dye degradation is recorded as C/C0 where C0 is the initial concentration
after reaching the adsorption-desorption equilibrium.

3.2. Degradation of Rhodamine B

It was clear from the previous characterization of Fe-TiO2 nanoparticles that iron
doping shifted the optical response of TiO2 nanoparticles from UV to the visible light
region. The optical response was directly proportional to iron concentration in the iron-
doped samples. This implied that these iron-doped TiO2 nanoparticles, unlike iron-free
TiO2, could be active in the visible-light region and considered to be catalysts.

Since Rhodamine B is considered a major source of pollution for industrial waste water,
its degradation in an aqueous solution has been studied. Figure 15 illustrates that, in the
presence of iron-doped nanoparticles with Fe/Ti = 10%, the absorbance (at λmax = 553 nm)
of the Rh-B dye monotonically decreases with time. The degradation efficiency of Rh-B
dye in the presence of iron-doped TiO2 catalysts have been calculated from the following
equation.

D% =

[
1 − C

C0

]
× 100 (1)

where C0 is the initial concentration of dye and C is the concentration of dye after irradiation
in a selected time interval.
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Figure 15. Absorption spectra of Rh-B dye in the existence of the Fe/Ti = 10% sample at various
irradiation times.

The Rh-B dye concentration in the solution and its absorbance at λmax = 553 nm
are directly proportional according to Beer’s law. C0 was considered to be the initial
concentration of Rh-B dye in the solution to make sure that only a chemical reaction
changes the dye concentration and removes any effect of dark adsorption.

Figure 16 illustrates the RH-B dye degradation rates in the existence of iron-free TiO2
and iron-doped TiO2 nanoparticles under visible-light radiation. When using pure TiO2
nanoparticles as a catalyst for two hours of radiation, the dye was degraded by ~12%
and the degradation efficiency was raised to 20% when using an iron-doped sample with
Fe/Ti = 1%. Then it was monotonically increased up to 53% when using an iron-doped
sample with Fe/Ti = 10%. The degradation efficiencies of Rh-B dye in an aqueous solution
in the current study are consistent with values in literature [14,48,49]. After absorbing light,
the excited dye (Rhodamine B) injected an electron into the conduction band of TiO2 where
it was captured by surface-adsorbed O2 to form O2

•−. Then, the dye cation radicals were
degraded via attack by oxygen active species [50]. In addition, it was noticed that no Rh-B
dye degradation took place under visible-light radiation without catalysts.
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The first-order rate constant k (min−1) for photodegradation of dyes has been calcu-
lated by employing the following equation:

lnC = lnC0 − kt (2)

where C0 and C are dye concentrations initially and after time t, respectively. The pho-
todegradation rate constant (k) could be calculated from the above kinetic model and found
to have the value of 0.001, 0.0019, 0.0039, 0.0047, and 0.006 min−1 for samples Fe/Ti = 0%,
1%, 3%, 5%, and 10%, respectively. Previous studies showed that the rate constant of Rh-B
photodegradation had reported a value of 0.0029 min−1 when using iron-doped titania and
0.00016 min−1 when using P25 [48]. Higher rate constants for the decomposition of Rh-B
of the synthesized materials than standard P25 and Fe-TiO2 NPs prepared using different
methods suggested that the present materials are more active. Hence, the above findings
clearly demonstrate that a higher amount of iron incorporation into the framework of TiO2
makes the catalyst more efficient for photocatalytic degradation of organic dyes.

4. Experiment

FSP was applied to synthesize TiO2 and Fe-TiO2 nanoparticles. Figure 17 shows
the schematic of experimental setup, composed of a spray system with an annular pilot
flame, a precursor delivery system, and a particle collection system. The spray system
was an air-assisted spray nozzle. The precursor flowed through a capillary tube while the
dispersion gas passed through the annular gap. Dispersion gas of oxygen (10.6 L/min)
was supplied to the spray nozzle for precursor atomization with a pressure drop across
the nozzle of 2.5 bar. An annular slit (15.88 mm inner diameter and 1 mm thickness),
surrounding the nozzle provided the supporting premixed pilot flame. Methane (CH4 with
purity 99.995%) with a flow rate of 1.25 L/min was mixed with 2.5 L/min of oxygen (O2
with purity 99.9995%) for the pilot flame.

Various precursors were used to synthesize pure and doped-TiO2 nanoparticles. Ti-
tanium tetraisopropoxide (Sigma-Aldrich, 97% purity) for TiO2 nanoparticles (NP), and
dissolving ferrocene (Sigma-Aldrich, 98%) in m-xylene (Sigma-Aldrich, 99%) for Fe dop-
ing. Table 1 shows the Fe/Ti atomic ratios in synthesizing nanoparticles resulting from
changing ferrocene concentration. A syringe pump was used to inject the precursor into
the spray nozzle with a flow rate of 450 mL/hr. Synthesized nanoparticles were collected
on a glass-fiber filter with the aid of a vacuum pump.
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Figure 17. Schematic of flame spray pyrolysis (FSP) apparatus.

Phase and iron-content in the synthesized nanoparticles were identified by X-ray
diffraction (Bruker, D8) using radiation from CuKα (λ = 1.5406 Å), Raman spectroscopy
(Aramis, LabRAM HR Visible) with 473 nm excitation, and inductively-coupled plasma-
optical emission spectrometry (ICP-OES; Varian, 720ES). Average particle diameter can be
calculated from a specific surface area (SSA), which was measured by Brunauer–Emmett–
Teller (BET) nitrogen adsorption (Micromeritics, ASAP 2420). Surface chemistry was
identified using X-ray photoelectron spectroscopy (XPS). Light absorbance was measured
using ultraviolet-visible spectroscopy (UV–vis, Varian, Cary 500) and a superconducting
quantum interference device-vibrating sample magnetometer (SQUID-VSM, Quantum
design, USA) was used for the magnetic properties.

The nanoparticle morphology and size were extracted from transmission electron
microscope results (TEM, FEI Com., Titan 80-300ST) by operating it at an accelerating
voltage of 300 kV. The microscope was set in various modes, such as bright-field TEM (BF-
TEM), high resolution TEM (HRTEM), selected area electron diffraction (SAED), core-loss
electron energy-loss spectroscopy (EELS), and energy-filtered TEM (EFTEM) modes to
obtain specific information about the physical properties of Fe-doped TiO2 nanoparticles.
The entire TEM data were obtained and resolved by Digital-Micrograph Software Package
(Gatan Inc., Version GMS1.85).

5. Conclusions

Flame spray pyrolysis was utilized to synthesize pure and Fe-doped TiO2 nanoparti-
cles with various iron concentrations in a single-step process. Ferrocene was mixed with
TTIP and used as the precursor for iron-doped TiO2. XRD and Raman confirmed that the
anatase phase was dominant in pure TiO2 nanoparticles (>90% anatase), with an average
particle diameter of about 12 nm (based on HRTEM). The addition of iron substantially
changed the anatase phase to rutile with the anatase percentage decreasing from 86% to
21% when the Fe/Ti atomic ratio in the sample was changed from 1% to 10%, respectively.
Morphology of the generated nanoparticles was studied using HRTEM, which revealed
the crystallinity of the spherical particles and the uniformity of Fe doping distribution
across the samples. XPS confirmed the formation of Fe3+ and Fe2+ within the Fe-doped
TiO2 samples. The ratio of Fe3+/Fe2+ varied from 0.5 at Fe/Ti ratio of 3% to 1.8 at a 10%
ratio. The valence band edge for the Fe-doped TiO2 was also lowered by ~1 eV when
compared to the pure TiO2 sample. Regarding magnetic properties, Fe doping of TiO2
nanoparticles changed the material from nonmagnetic to paramagnetic. Doping TiO2
particles with Fe remarkably increased light absorption and expanded it to the visible-light
region due to their narrower band gap. The iron-doped samples showed much higher
catalytic activity for dye degradation under visible-light radiation when compared to pure
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TiO2 nanoparticles. Non-toxic, cost-effective photo-catalysts are vital for industrial waste
water treatment.

In summary, FSP is an attractive method for the production of Fe-doped TiO2 with
ferrocene as the source of iron. The resulting material has desirable magnetic and optical
properties, which can be used in various photocatalytic and electronic applications.
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