Supplementary Materials

Synthesis of Magnetic α-Fe₂O₃/Rutile TiO₂ Hollow Spheres for Visible-Light Photocatalytic Activity

Zhongli Zhou ¹, Hang Yin ¹, Yuling Zhao ^{1,2}, Jianmin Zhang ^{3,4}, Yahui Li ¹, Jinshi Yuan ¹, Jie Tang ^{5,*} and Fengyun Wang ^{1,2*}

¹ College of Physics; Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China; zhouzl1019@163.com (Z.Z.); hangyinccc@gmail.com (H.Y.); zhaoyuling@qdu.edu.cn (Y.Z.); lyh kitou@163.com (Y.L.); yuanjinshi@foxmail.com (J.Y.)

2 State Key Laboratory of Bio Fibers and Eco Textiles; Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China; zhaoyuling@qdu.edu.cn (Y.Z.)

3 National Engineering Research Center for Intelligent Electrical Vehicle Power System,Qingdao University, No. 308 Ningxia Road, Qingdao 266071, , China; jamiede@163.com

4 School of Mechanical and Electrical Engineering, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China;

- 5 National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 3050047, Japan
- * Correspondence: tang.jie@nims.go.jp (J.T.); fywang@qdu.edu.cn (F.W.)

Figure S1. SEM image of α -Fe₂O₃/Rutile TiO₂ (0.025 mM) placed after 3 months. The morphology and structure of the as synthesized sample is almost no change.

Figure S2. Image of Magnet adsorbs α -Fe₂O₃/Rutile TiO₂ (0.025 mM).

Table S1. The values of remnant magnetization (Mr) and coercivity (Hc) of the samples.

Samples	Time (h)	Mr (emug ⁻¹)	Hc (Oe)
α-Fe2O3/RT (0 mM)	48 h	0.005	75
α-Fe2O3/RT (0.025 mM)	48 h	0.042	565.74
α-Fe ₂ O ₃ /RT (0.042 mM)	48 h	0.029	669.65
α -Fe ₂ O ₃	48 h	0.37	372
RT	6 h	0.09	174.9

Table S2. Comparison of the photocatalytic performances of other materials.

Materials	Light source	Time	Photodegradation Ref	
		(min)	Amount (%)	
Rutile TiO ₂	Artificial solar	300 min	70% RhB	[1]
	light			
α-Fe2O3/Anatase TiO2	Visible light	100 min	86% RhB	[2]
Fe2O3/Anatase TiO2	Visible light	100 min	85% RhB	[3]
1D Fe2O3@Anatase TiO2	Visible light	360 min	86.53% RhB	[4]
α-Fe2O3(Al)@Anatase TiO2	UV-light	100 min	90% RhB	[5]
α -Fe ₂ O ₃ /Rutile TiO ₂	Visible light	100 min	93% RhB	This work

Reference

[1] Wang, Y. W.; Zhang, L. Z.; Deng, K. J.; Chen, X.-Y.; Zou, Z. G. Low Temperature Synthesis and Photocatalytic Activity of Rutile TiO₂ Nanorod Superstructures. J. Phys. Chem. C **2007**, 111, 2709-2714.

[2] Tang, H.; Zhang, D.; Tang, G. G.; Yang, X. F. Hydrothermal synthesis and visible-light photocatalytic activity of α -Fe₂O₃/TiO₂ composite hollow microspheres. Ceramics International **2013**, 39, 8633-8640.

[3] Wang, T.; Yang, G. D.; Liu, J.; Yang, B. L. Orthogonal synthesis, structural characteristics, and enhanced visible-light photocatalysis of mesoporous Fe₂O₃/TiO₂ heterostructured microspheres. APPL SURF SCI **2014**, 311, 314-323.

[4] Tao, Q. Q.; Huang, X.; Bi, J. T.; Yu, L.; Hao, H. X. Aerobic Oil-Phase Cyclic Magnetic Adsorption to

Synthesize 1D Fe₂O₃@TiO₂ Nanotube Composites for Enhanced Visible-Light Photocatalytic Degradation. Nanomaterials **2020**, 10, 1345.

[5] Liu, J.; Yang, S. L.; Wu, W.; Tian, Q. Y.; Cui, S. Y.; Dai, Z. G.; Ren, F. 3D Flowerlike α-Fe₂O₃ @TiO₂ Core-Shell Nanostructures: General Synthesis and Enhanced Photocatalytic Performance. ACS Sustain. Chem. Eng **2015**, 3, 2975-2984.