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Abstract: The oxidation of aqueous solutions of carbamazepine is conducted using the Fenton
reagent, combined with the photolytic action of a 150 W medium pressure UV lamp, operating at
T = 40 ◦C. The effect of acidity is analysed at an interval pH = 2.0–5.0, verifying that operating at
pH = 5.0 promotes colour formation (Colour = 0.15 AU). The effect of iron is studied, finding that the
colour of the water increases in a linear way, Colour = 0.05 + 0.0075 [Fe]0. The oxidising action of
hydrogen peroxide is tested, confirming that when operating with [H2O2]0 = 2.0 mM, the maximum
colour is generated (Colourmax = 0.381 AU). The tint would be generated by the degradation of
by-products of carbamazepine, which have chromophoric groups in their internal structure, such as
oxo and dioxocarbazepines, which would produce tint along the first minutes of oxidation, while the
formation of acridones would slowly induce colour in the water.

Keywords: acridone; carbamazepine; colour; oxo-carbamazepine; photo-Fenton

1. Introduction

The study of emerging pollutants in wastewater, as well as its treatment and elimina-
tion, are receiving great attention in recent times due to their presence in many kinds of
waters and their possible repercussions on the environment [1]. In almost all wastewater
of both urban and industrial origin, different emerging pollutants have been detected in
variable concentrations, depending on the activities conducted in the original areas of such
waters. Recently, several governments are beginning to limit the presence of some of them,
based on the Directive 2013/39/EU of the European Parliament, as well as the Council
of 12 August 2013 Amending Directives 2000/60/EC and 2008/105/EC [2], although the
effects that they cause or their content in the environment are largely unknown.

The main source of entry into the environment for these pollutants is through unpro-
cessed wastewater and effluents from wastewater treatment plants (WWTPs). Conventional
plants are not designed for the elimination of this type of micro-pollutants, so their removal
in many cases is not complete. Based on this approach, a need arises for these studies,
which seek to know the behaviour of emerging pollutants, which are selected based on
European guidelines to be analysed in WWTPs. In this way, the aim of this work is to es-
tablish indicators of contamination throughout the different phases that form the treatment
systems of these plants, being a key aspect to consider the degree of elimination of these
contaminants in the different treatment processes currently used.

Among these priority substances, pharmaceutical products, being active biological
substances, can affect living organisms in water even in small concentration. Pharmaceu-
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ticals such as hormones, pain relievers, and antidepressants can have adverse influence
on fish, crustaceans, and algae, because they have a similar kind of receptors as humans.
The consequences on animals and plants can be very different from the pharmacological
effects expected in humans. For this reason, there is a current need to develop new analysis
methods that ensure the effectiveness of the AOPs, in order to conduct a correct design of
the new processes [3].

Following the indications of Directive 2013/39/EU of the European Parliament, this
work is part of a central line of research that is focussed on the development of techniques
that allow the degradation of drugs, because there are resistant micro-pollutants contained
in wastewater. The purpose is to prevent their transmission to water distribution networks
based on the Commission Implementing Rule (EU) 2018/840 of 5 June 2018 [4].

This work focusses on the study of the degradation of the drug carbamazepine. This
drug has been selected as a model pollutant of the study, due to its persistence in conven-
tional treatment plants, as well as its wide presence in urban water [5]. Carbamazepine
(CBZ) is a medicine utilised to treat neurological conditions such as epilepsy, depression, or
bipolar disorder. In humans, around 72% is absorbed and metabolised in the liver, and 28%
is excreted in feces. CBZ is one of the most frequently detected pharmaceutical compounds
in urban aqueous systems [6,7]. On the other hand, the main metabolites detected in urine
are BBZ-epoxide, CBZ-diol, CBZ-acridan, 2-OH-CBZ, and 3-OH-CBZ [5,8,9]. CBZ is a
recalcitrant pollutant identified in the effluents of sewage treatment plants and in superfi-
cial waters, which has a potential impact on the environment due to its physico-chemical
properties, since it is seldom eliminated in conventional water treatments [10].

Due to its potential effect on aquatic microorganisms and human health, there is
a notable concern about its removal from water. Studies performed in the presence of
CBZ in relevant concentrations show that it can induce disorders in lipid metabolism, as
well as damage to mitochondria and DNA in fish [11,12]. Moreover, research published
by Faisal et al. [5] shows that CBZ residues in drinking water could cause congenital
malformations and/or neurological development problems after long-term intrauterine
exposure or breastfeeding. On the other hand, analysis of UV-irradiated aqueous CBZ
solutions reveals that acridine, a compound known to be carcinogenic, is one of the by-
products formed [13].

Within this context, Advanced Oxidation Processes (AOPs) are presented as an alter-
native with great potential to effectively eliminate emerging pollutants. To perform the
industrial implementation of AOPs, it is necessary to evaluate the different technologies
to minimise toxic risks to human health [14], and to solve problems regarding technical
feasibility, cost-effectiveness, and their own sustainability [15]. On the other hand, the
low concentration levels in which these micro-pollutants are found in the waters limit the
effectiveness of these treatments [16]. Assessing the effects induced by the discharge of
these wastewaters into natural channels is a challenge, since it presents the difficulty of
identifying numerous pollutants, metabolites, and transformation products in very low
concentrations.

Among these technologies, this work tries to test the use of hydrogen peroxide com-
bined with iron salts and ultraviolet (UV) light, called photo-Fenton Technology, in order
to study the degradation of carbamazepine in aqueous solution. Ultraviolet light is a
germicide emission that does not present any residual or secondary effects. Therefore, this
technique has a great potential to become a useful tool with high viability. Nevertheless, it
is necessary to develop a solid foundation of knowledge in the design of feasible processes
for the degradation of emerging pollutants, which requires exhaustive research on the
laboratory scale and in pilot plants.

2. Results
2.1. Colour Changes during Carbamazepine Oxidation

Figure 1 displays the colour changes that occur in the aqueous solution during the
degradation of carbamazepine using the photo-Fenton process. The operating conditions in
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the tests shown in Figure 1a lead to the formation of a tinted aqueous residue recalcitrant to
oxidation. For this reason, it is chosen as a representative essay to analyse this phenomenon.
The degradation of carbamazepine occurs during the first two hours of reaction following
second-order kinetic guidelines. The generation of tint in the water occurs during the first
40 min of reaction until it reaches a maximum value that remains stable over time.
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Figure 1. Water quality parameters analysed during carbamazepine oxidation by photo-Fenton: (a) Carbamazepine concen-
tration, colour and redox potential. (b) Dissolved oxygen and ferrous ion. Experimental conditions: [CBZ]0 = 50.0 mg/L;
pH = 3.0; [H2O2]0 = 2.0 mM; [Fe]0 = 10.0 mg/L; [UV] = 150 W; T = 40 ◦C.

Analysing the redox potential values, an intense increase is observed during the first
5 min of the reaction until reaching a maximum value that decreases, arriving to a steady
state after 40 min. This similar evolution between the colour and the redox potential
changes makes it possible to associate the species that produce the hue changes in the water
with the degradation intermediates of carbamazepine, which cause the redox potential
values considered in the solution.

It should be noted that the increase in the redox potential during the first minutes of
the reaction may be due to the oxidation of the ferrous ions to ferric, which is presented
in Figure 1b. This allows verifying that approximately 70% of iron added to the reaction
mixture in the form of ferrous ions is oxidised through the Fenton mechanism to ferric ions.
Furthermore, during the course of the reaction, it is found that under the conditions tested,
complete regeneration of the catalyst to ferrous ions occurs.

These results allow proposing a direct relationship between the redox potential and
the reaction intermediates generated in the different stages of the carbamazepine oxidation
mechanism. The substitution of groups of different nature (hydroxyl, oxo) in the aromatic
rings affect the redox potential of the molecule, enlarging or reducing its value depending
on the inducing effect of the substituent groups to accept or reject electrons in such a way
that if the substitution in the ring is favored, they decrease the redox potential. In the
case of hydroxylated carbamazepine molecules, when the aromatic ring loses the proton
of the substituted hydroxyl group, electron delocalisation increases, thereby enlarging
stability and causing the redox potential to decline [17]. Based on this hypothesis, it could
be considered that the diminishment in redox potential would be related to the maximum
concentration of dihydroxylated carbamazepines in the reaction medium, which would be
contemplated as the precursor species of colour formation in water.

On the other hand, Figure 1b shows the evolution of dissolved oxygen (DO, mg O2/L).
During the first 10 min of the reaction, there is a high consumption of oxygen dissolved
in water, until reaching levels around (DO = 0.1 mg O2/L). This utilisation can be related
to the oxidation process through the formation of strongly oxidising radical species. In
this way, a highly oxidising environment is created that requires a large consumption of
oxidising species. In addition, it is found that the moment when almost all the DO is
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exhausted corresponds to the highest redox potential. This aspect can be associated to the
maximum concentration of ferric ions generated in the Fenton reaction.

Next, the DO concentration begins to increase slightly until reaching levels of about
0.4 mg O2/L after two hours of reaction. This behaviour is similar to that observed in
studies reported in the bibliography during the oxidation of other organic pollutants [18],
where this second stage of DO production presents a clear dependence on the nature of
the oxidised species. In general, it is found that DO release is higher during the oxidation
of organic matter that does not form organometallic complexes with iron, due to their
molecular structure configuration. When the release of DO in the water is very slow,
it is attributed to the fact that the degradation intermediates can form supramolecular
structures with the ferric ions, preventing the iron regeneration.

In the case of the oxidation of carbamazepine shown in Figure 1b, it is observed
that the DO release rate in water is very low (kDO = 0.0017 mg O2/L min), although
the ferric ions are completely regenerated to ferrous. This result could be attributed to
oxygen evolution reactions, where free radicals participate. The conditions that facilitate
the formation of tint in the water are related to the use of scarce oxidant with respect to the
contaminant load. This leads to partial oxidation of carbamazepine towards the formation
of colour precursor intermediates. By conducting the reaction with a shortage of oxidant,
it causes the generated radical load to be consumed through the processes of oxidation
of organic matter and iron regeneration. As a result, the interradical reactions producing
oxygen release in the water are relegated.

2.2. pH Effect

Figure 2 presents the effect of pH on water colour changes during the oxidation of
aqueous carbamazepine solutions, operating between pH = 2.0 and 5.0. It should be noted
that the acidity has remained stable throughout the reaction at the initial established value.
In the tests conducted, it was found that during the first 5 min of the oxidation, tint was
generated in the water until it reached a maximum value and then decreases to a stable
value, around 30 min of reaction time. PH determines the value of the colour area as well
as the residual hue of the oxidised water. On the other hand, it is observed that operating
between pH = 2.0 and 3.5, the maximum colour formation occurs at around 5 min of
reaction. However, at pH = 4.0 and 5.0 the maximun colour formation occurs between 10
and 15 min.
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Figure 2. pH effect on colour changes in a photo-Fenton system during the carbamazepine oxidation.
Experimental conditions: [CBZ]0 = 50.0 mg/L; [H2O2]0 = 15.0 mM; [Fe]0 = 10.0 mg/L; [UV] = 150 W;
T = 40 ◦C.

To analyse this result in more detail, Figure 3a represents the colour of the treated
water once it has reached a steady state, together with the redox potential values. It is
observed that both variables show a similar evolution regarding pH effect. By increasing
the value from pH = 2.0 to 5.0, the intensity of the colour and the redox potential increases,



Catalysts 2021, 11, 386 5 of 13

showing a maximum when carrying out the tests at pH = 5.0. As this pH increases, the
colour and redox potential of the water decrease.
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Figure 3. Indicator parameters of water quality analysed at the steady state: (a) Colour and redox potential. (b) Dissolved
oxygen and total dissolved solids. Experimental conditions: [CBZ]0 = 50.0 mg/L; [H2O2]0 = 15.0 mM; [Fe]0 = 10.0 mg/L;
[UV] = 150 W; T = 40 ◦C.

To explain this effect, the speciation diagram of Fe (III) species as pH function in
a photo-Fenton system [19] has been analysed. Then, it is found that the formation of
the Fe(OH)2

− species in a photo-Fenton system potentially increases from pH = 2.0 until
reaching its maximum at pH = 5.5. Thus, the effect of pH on colour formation could
be associated with the presence of ferric hydroxide in the aqueous medium. The colour
reduction operating at values higher than pH = 5.5 may be due to the fact that from this
value, the formation of ferric hydroxide takes place, which would precipitate. This could
cause a decrease in the concentration of iron dissolved, diminishing the aqueous tint.

Figure 3b displays the effect of pH on the concentration of DO in the water, which leads
to verify a strong increase from pH = 2.0 to pH = 4.0, where the maximum concentration of
DO occurs ([DO] = 7.9 mg O2/L), and then, it decreases from pH = 4.0 to 6.0. This effect
could be explained with the Pourbaix diagram for iron, which presents the predominance
of the various chemical species in water for an element. Analysing the redox potential
diagram of the medium as a function of pH, it can be verified that the experimental redox
potential values measured for each pH (see Figure 3a) indicate that within the interval
between pH = 2.0 and 4.0, the iron would be in the Fe3+ form. Meanwhile, the values
analysed at pH = 5.0 would indicate that iron would be in the FeO4

2− form and at pH = 6.0
in the Fe2O3 form. This change in the nature of the iron species that would coexist in the
system could be related with the reactions of oxygen release.

2.3. Effect of Hydrogen Peroxide Dosage

During the oxidation treatment of aqueous carbamazepine samples, it is found that
the water acquires colour during the first 20 min of reaction (Figure 4a). It is verified
that the intensity of the tint depends on the dose of oxidant used. The results present
two clear trends in the kinetics of colour formation. On the one hand, operating with
low concentrations of oxidant, around [H2O2]0 = 2.0 mM, corresponding to stoichiometric
ratios of 1 mol CBZ: 10 mol H2O2, tint is generated in the water according to a ratio of
0.0086 AU/min, until reaching its maximum intensity (Colourmax = 0.353 AU) at 30 min
of reaction. Subsequently, the hue continues increasing but much more slowly, following
ratios of 0.0005 AU/min, until it arrives at the steady state (Colour∞ = 0.381 AU).
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Performing with oxidant concentrations greater than [H2O2]0 = 5.0 mM, corresponding
to stoichiometric ratios greater than 1 mol CBZ: 25 mol H2O2, the colour formation follows
the evolution of a reaction intermediate, with rapid colour formation during the first
minutes of oxidation, until reaching a maximum value, and decreasing until obtaining a
colourless solution. The oxidant dosage determines both the maximum colour generated
(Equation (1)) and the time in which the formation of the highest colour intensity occurs
(Equation (2)), as it is shown in Figure 4b. This result indicates that the stoichiometric
ratio of oxidant utilised determines the degree of oxidation achieved—that is, the stage of
the carbamazepine degradation mechanism reached and, consequently, the nature of the
intermediates that coexist in solution. As a result, the higher the molar ratio of oxidant,
the lower the intensity of the tint generated, so that the formation of coloured species is
reduced. The fact that under these conditions, a colourless oxidised residue is obtained
shows that operating in all conditions, the dose of oxidant is sufficient to degrade the
intermediates that provide tint to colourless species.

Colourmax = 0.3759 − 0.011 [H2O2]0 (r2 = 0.9988) (1)

tcolour max = 58.31 × [H2O2]0
−0.8813 (r2 = 0.9916) (2)

The results shown indicate the existence of two stages in colour formation based on
the carbamazepine degradation mechanism proposed in Figure 5. The first step takes
place during the first stages of decomposition and leads to the formation of highly tinted
species. This stage would involve hydroxylation reactions through the electrophilic attack
of the hydroxyl radicals to the olefinic double bond in the central and lateral heterocyclic
rings of carbamazepine, conducting to the formation of the corresponding hydroxylated
carbamazepines. The action of hydroxyl radicals can generate a new hydroxylation of
the molecule, leading to the creation of cis and trans-dihydroxy-carbamazepine [20]. The
formation of the rare cis isomer appears to be less than that of trans [21]. Finally, the
oxidation of these species would produce colour precursors, oxo and dioxo-carbazepines
(10-OH-CBZ, 9-OH-CBZ, EP-CBZ, OX-CBZ), due to the presence of chromophore groups
in their molecular structure.
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During the second stage, there would be the creation of additional species that coexist
with those generated in the previous stage, which provide less intensity of tint to the water.
In this case, it is possible to consider the formation of degradation by-products of the
carbazepine species, generating hydroxylated molecules of acridine (9-OH-acridine) and
the corresponding acridones that cause the additional contribution of colour.

Figure 6 shows the effect of the oxidant concentration used on several parameters
that indicate the quality of the water once it is treated. Analysing the tint of the oxidised
water, it is found that operating with concentrations [H2O2]0 = 2.0 mM, the oxidation
of carbamazepine leads to the formation of highly coloured species. On the other hand,
working with concentrations higher than [H2O2]0 = 5.0 mM, a colourless water is obtained.
Simultaneously, the redox potential shows an evolution characterised by a slight decrease
until reaching a minimum value ([Redox]min = −0.489 V) in [H2O2]0 = 2.0 mM, when the
maximum colour formation take place (Colourmax = 0.381 AU). Subsequently, it increases
practically linear with respect to the concentration of oxidant applied.

To explain this minimum value of redox potential, a relationship can be established
between the evolution of the potential and the reaction intermediates generated in the
different stages of the oxidation mechanism. Studies carried out on the effect of the
substitution of groups of different nature in aromatic rings indicate that they affect the
value of the redox potential of the molecule, increasing or decreasing depending on the
inducing effect of the substituent groups to accept or transfer electrons [17]. Therefore, if
ring substitution is favored, the redox potential value diminishes.

In the case of carbamazepine, there is a small stabilisation by resonance, which is
attributable to electronic delocalisation. When the ring loses the proton of the substituted
hydroxyl group, electron delocalisation increases, thus favoring stability and reducing
the redox potential. Therefore, based on these hypotheses, the minimum value observed
would be related to the maximum concentration of hydroxylated and dihydroxylated
carbamazepines in the reaction medium, which would be the precursors of the tint that
the solution acquires. By increasing the oxidant ratio, these intermediates are degraded,
increasing the degree of oxidation, and it is found that the redox potential of the system
evolves to positive values, which would indicate the formation of quinones and acridines.
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Figure 6. Indicator parameters of water quality analysed at the steady state: (a) Colour and redox potential. (b) Dissolved
oxygen and total dissolved solids. Experimental conditions: [CBZ]0 = 50.0 mg/L; pH = 3.0; [Fe]0 = 10.0 mg/L; [UV] = 150 W;
T = 40 ◦C.

The dissolved oxygen analysed in treated samples is consistent with their redox
potential values. It is observed that the DO concentration in water increases as the treatment
is conducted with higher concentrations of oxidant, up to a maximum operating point,
which corresponds to [H2O2]0 = 11.0 mM, with a DO = 8.4 mg O2/L. However, in the test
carried out using [H2O2]0 = 15.0 mM, the DO experienced a big decrease until values of
DO = 4.2 mg O2/L. These lower levels of DO are observed throughout the course of the
reaction, which could be due to operating with excess of oxidant with respect to the iron
concentration. On the other hand, the concentration of Total Dissolved Solids (TDS, mg/L)
remains constant in all the tests performed.

2.4. Effect of Iron Dosage

Figures 7 and 8 show the effect of catalyst concentration on the colour acquired by
oxidised carbamazepine solutions. Operating with different iron concentrations (Figure 7a),
it is observed that adding the iron dose established for each experiment increases tint to
the initial carbamazepine solution (Colour0, AU). The colour that the water gains shows a
second degree polynomial increase (Equation (3)) with respect to the concentration of total
iron supplied ([Fe]0, mg/L). The initial iron added to the solution in the form of ferrous
sulfate undergoes a series of equilibrium reactions between species, because the pH of the
sample is adjusted to pH = 3.0 (Figure 7b). For this reason, one part of the iron ions is in
a reduced state and the other is oxidised, being the ferric ions the providers of the tint to
the water.

When the oxidant is added and the oxidation of the carbamazepine begins, the hue
generated in the water increases until reaching a maximum value (Colourmax, AU) at
5 min after oxidation in all the tests conducted. This fact indicates that when using the
same concentration of oxidant, the degradation intermediates of carbamazepine formed in
water are similar species. Therefore, the colour peaks occur simultaneously, and following
identical kinetics, they are displaced in parallel. This linear displacement is established by
the iron concentration (Equation (4)).
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Figure 7. (a) Effect of iron on colour changes in a photo-Fenton system during the carbamazepine oxidation. (b) Ferrous ions
concentration in water solution during carbamazepine oxidation. Experimental conditions: [CBZ]0 = 50.0 mg/L; pH = 3.0;
[H2O2]0 = 15.0 mM; [UV] = 150 W; T = 40 ◦C.
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Figure 8. (a) Effect of iron dosage on water colour levels observed during the carbamazepine oxidation. (b) Relation-ship
between total dissolved solids and the residual colour of water oxidized. Experimental conditions: [CBZ]0 = 50.0 mg/L;
pH = 3.0; [H2O2]0 = 15.0 mM; [UV] = 150 W; T = 40 ◦C.

On the other hand, the persistant colour that lasts in the oxidised sample (Colour∞,
AU) increases linearly with the iron concentration (Equation (5)). It is observed that both
the maximum colour and the residual increase linearly with the total iron concentration,
according to an average ratio of kFe = 0.0075 AU L/mg Fe. Furthermore, it is found that
they remain constant in all the tests: a difference between the maximum colour and the
residual of 0.0843 AU. This tint value is explained by the contribution of iron species that
can interact with the organic load of the water, forming metallic complexes, which are
degraded during oxidation. As shown in Figure 8b, the lasting residual colour is provided
by the iron species in suspension, which contribute linearly (Equation (7)) to the total
suspended solids (TDS, mg/L).

Colour0 = 0.0117 [Fe]0 − 0.0002 [Fe]0
2 (r2 = 0.9901) (3)

Colourmax = 0.132 + 0.0074 [Fe]0 (r2 = 0.9946) (4)

Colour∞ = 0.0477 + 0.0076 [Fe]0 (r2 = 0.9961) (5)
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[TDS] = 72.982 + 20.211 [Fe]0 (r2 = 0.9974) (6)

Colour∞ = 0.0004 [TDS] (r2 = 0.9826) (7)

3. Materials and Methods
3.1. Experimental Methods

Samples of carbamazepine aqueous solutions ([CBZ]0 = 50.0 mg/L, Fagron 99.1%)
were studied in a photocatalytic 1.0 L reactor provided with an UV-150 W mercury lamp
of medium pressure (Heraeus, 95%, transmission between 300 and 570 nm). Reactions
started adding the iron catalyst as ferrous ion ([Fe]0, mg/L), operating between [Fe]0 =
5.0–40.0 mg/L (FeSO4 7 H2O, Panreac 99.0%) and the oxidant dosage for each set of
experiments, which varied between [H2O2]0 = 0–15.0 mM (Panreac, 30% w/v). All the
experiments were conducted at around 40 ◦C in order to simulate real working conditions,
considering the heat absorbed by the water that is in direct contact with the UV lamp.
Assays were performed under different initial pH conditions (pH between 2.0 and 5.0) in
order to assess the effect of this parameter on colour formation during the oxidation of
carbamazepine aqueous solutions. Acidity was kept constant adding NaOH and HCl.

3.2. Analytical Methods

Carbamazepine concentration (CBZ, mg/L) was assessed along the reaction at λ = 210 nm
by a High-Performance Liquid Chromatograph attached to a spectrophotometer UV/Vis
(HPLC Agilent 1200). Analysis was performed by injecting manually 20.0 µL samples,
which were dragged by a carrier of 1.0 mL/min flow, consisting of a mixture of methanol
and distilled water MeOH/H2O: 80/20, through a Column C18, XBridge Phenyl 5 µm
4.6 × 250 mm (Bridge Waters), with limit of detection 0.1 mg/L.

Colour expressed in Absorbance Units (AU) was quantified by the absorbance of the
aqueous solution analysed at λ = 455 nm and ferrous ion ([Fe2+], mg/L) at λ = 510 nm
by the phenanthroline method using an UV/Vis Spectrophotometer 930-Uvikon [22].
Dissolved oxygen (DO, mg/L) was measured by a DO-meter HI9142. Total dissolved
solids (TDS, mg/L) were analysed by a TDS Metter Digital and Redox potential (V) by a
conductimeter (Basic 20 Crison).

3.3. Liquid Chromatography-Mass Spectrometry to Elucidate the Intermediates of Carbamazepine
Degradation

Samples were analysed by Liquid Chromatography-Mass Spectrometry to find the
carbamazepine degradation pathways that induce high levels of colour in the water during
the oxidation process. Analysis was performed with an LC/Q-TOF provided with an ioni-
sation source ESI + Agilent Jet Stream, with the following conditions: Kinetex column EVO
C18 (100 × 3 mm) 2.6 µm. Moving phase 0.1% Formic Acid (A): Acetonitrile 0.1% Formic
Acid (B). Gradient, %B: time (min): 20:0; 20:2; 100:24; 100:28; 20:30. Flow 0.3 mL/min. Col-
umn Temperature 35 ◦C. Injection volume 5 µL. Ionisation: Gas temperature 300 ◦C, drying
gas 10 L/min, nebuliser 20 psig, shelf gas temperature 350 ◦C, shelf gas flow 11 L/min,
frag 125 V. Vcap 3500 V.

A screening method was developed, allowing the elution and ionisation of the majority
of compounds in the sample. Before starting the analysis, the stabilisation of the system,
the reproduction in the signals, and the correction of the exact masses were checked. With
the aforementioned conditions, the chronogram shown in Figure 9 was attained.
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The search for compounds was performed using the Find deconvolution algorithm
by molecular features and a subsequent screening of the proposed compounds, based on
compounds detected in the blank, background noise, and minimum abundance of the
compound (Figure 10). Appendix A summarises the major ions (m/z) and the experimental
masses calculated for each of the compounds.
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4. Conclusions

The stoichiometric ratio of oxidant determines the degree of oxidation achieved, that is,
the nature of the intermediates that coexist in solution. Performing with low concentrations
of oxidant, corresponding to stoichiometric ratios of 1 mol CBZ: 10 mol H2O2, colour is
generated in the water until it reaches its maximum intensity (oxo and dioxo-carbazepines).
Subsequently, the tint continues to increase more slowly, until arriving at the steady state,
remaining a coloured aqueous residue that would contain hydroxylated acridines and
acridones. Applying concentrations higher than 1 mol CBZ: 25 mol H2O2, the colour
formation follows the evolution of a reaction intermediate, obtaining a colourless solution.

The initial iron added to the solution, in the form of ferrous sulfate, undergoes a series
of equilibrium reactions between species. This is due to the fact that the acidity of the
sample is adjusted to pH = 3.0 Therefore, a part of the iron ions are found in a reduced state
and the another in its oxidised, being the ferric ions that provide tint to the water. Both the
maximum colour and the persistent colour increase with the concentration of iron used in
the treatment, according to an average ratio of kFe = 0.0075 AU L/mg Fe. The maximum
tint would be generated by the iron species that interact with the organic load, forming
metallic complexes, while the lasting colour would be generated by the iron species in
suspension.
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