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S2 

Section S1 – Derivation of equations for a simple model for the [FeFe] hydrogenase 

In the main text, Section 2.3 we described a simple model for the [FeFe] hydrogenase 

including two redox steps and one protonation step in which Ox can be reduced to Red and 

further to Sred, and each of these states can be protonated (Scheme 3 of the main text). The 

scheme is reproduced here at Scheme S1: 

 

Scheme S1. Scheme showing the reactions in a simple model for the [FeFe] hydrogenase. The oxidised 

and deprotonated species Ox can be reduced to Red with a redox potential of 𝐸1
𝑂. Red can then be further 

reduced to Sred with a redox potential of 𝐸2
𝑂. The oxidised protonated species OxH can be reduced to 

give RedH with a redox potential of 𝐸3
𝑂 and RedH can be further reduced to give SredH with a redox 

potential of 𝐸4
𝑂.OxH, RedH and SredH can be deprotonated to Ox, Red and Sred, respectively, with acid 

dissociation constants Ka,1, Ka,2 and Ka,3, respectively. The scheme is identical to Scheme 3 of the main 

text. 

Using the Nernst equation (S1) and the equation for a simple acid dissociation constant (S2): 

𝐸 = 𝐸𝑂 −
𝑅𝑇

𝑛𝐹
𝑙𝑛(

[𝑅𝑒𝑑]

[𝑂𝑥]
) (S1) 

𝐾𝑎 =
[𝑂𝑥][𝐻+]

[𝑂𝑥𝐻]
 (S2) 

We can define equations for each of the steps in Scheme S1: 

𝐸 = 𝐸1
𝑂 −

𝑅𝑇

𝑛𝐹
ln(

[𝑅𝑒𝑑]

[𝑂𝑥]
) (S3) 

𝐸 = 𝐸2
𝑂 −

𝑅𝑇

𝑛𝐹
ln(

[𝑆𝑟𝑒𝑑]

[𝑅𝑒𝑑]
) (S4) 

𝐸 = 𝐸3
𝑂 −

𝑅𝑇

𝑛𝐹
ln(

[𝑅𝑒𝑑𝐻]

[𝑂𝑥𝐻]
) (S5) 

𝐸 = 𝐸4
𝑂 −

𝑅𝑇

𝑛𝐹
ln(

[𝑆𝑟𝑒𝑑𝐻]

[𝑅𝑒𝑑𝐻]
 (S6) 

𝐾𝑎,1 =
[𝑂𝑥][𝐻+]

[𝑂𝑥𝐻]
 (S7) 
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𝐾𝑎,2 =
[𝑅𝑒𝑑][𝐻+]

[𝑅𝑒𝑑𝐻]
 (S8) 

𝐾𝑎,3 =
[𝑆𝑟𝑒𝑑][𝐻+]

[𝑆𝑟𝑒𝑑𝐻]
 (S9) 

 

Equation S3 can be rearranged to get [Red] in terms of [Ox] as follows: 

[𝑅𝑒𝑑] = [𝑂𝑥] × 𝑒𝑥𝑝
𝑛𝐹

𝑅𝑇
(𝐸1

𝑂 − 𝐸)  

[𝑅𝑒𝑑] = [𝑂𝑥] × 𝛼 
(S10) 

Where: 

𝛼 = 𝑒𝑥𝑝
𝑛𝐹

𝑅𝑇
(𝐸1

𝑂 − 𝐸) 

Equation S4 can be rearranged to get [Sred] in terms of [Red] as follows: 

[𝑆𝑟𝑒𝑑] = [𝑅𝑒𝑑] × 𝑒𝑥𝑝
𝑛𝐹

𝑅𝑇
(𝐸2

𝑂 − 𝐸)  

[𝑆𝑟𝑒𝑑] = [𝑅𝑒𝑑] × 𝛽 
(S11) 

Where: 

𝛽 = 𝑒𝑥𝑝
𝑛𝐹

𝑅𝑇
(𝐸2

𝑂 − 𝐸) 

Equation S5 can be rearranged to get [RedH] in terms of [OxH] as follows: 

[𝑅𝑒𝑑𝐻] = [𝑂𝑥𝐻] × 𝑒𝑥𝑝
𝑛𝐹

𝑅𝑇
(𝐸3

𝑂 − 𝐸)  

[𝑅𝑒𝑑𝐻] = [𝑂𝑥𝐻] × 𝛾 
(S12) 

Where: 

𝛾 = 𝑒𝑥𝑝
𝑛𝐹

𝑅𝑇
(𝐸3

𝑂 − 𝐸) 

Equation S6 can be rearranged to get [SredH] in terms of [RedH] as follows: 

[𝑆𝑟𝑒𝑑𝐻] = [𝑅𝑒𝑑𝐻] × 𝑒𝑥𝑝
𝑛𝐹

𝑅𝑇
(𝐸4

𝑂 − 𝐸)  

[𝑆𝑟𝑒𝑑𝐻] = [𝑅𝑒𝑑𝐻] × 𝛿 
(S13) 

Where: 

𝛿 = 𝑒𝑥𝑝
𝑛𝐹

𝑅𝑇
(𝐸4

𝑂 − 𝐸) 

And Equations S7-9 can be rearranged to get [OxH], [RedH] and [SredH] in terms of [Ox], 

[Red] and [Sred], respectively, as follows: 
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[𝑂𝑥𝐻] = [𝑂𝑥]
[𝐻+]

𝐾𝑎,1
 (S14) 

[𝑅𝑒𝑑𝐻] = [𝑅𝑒𝑑]
[𝐻+]

𝐾𝑎,2
 (S15) 

[𝑆𝑟𝑒𝑑𝐻] = [𝑆𝑟𝑒𝑑]
[𝐻+]

𝐾𝑎,3
 (S16) 

Next, we define the sum of the concentrations of all states as 1: 

[𝑂𝑥] + [𝑅𝑒𝑑] + [𝑆𝑟𝑒𝑑] + [𝑂𝑥𝐻] + [𝑅𝑒𝑑𝐻] + [𝑆𝑟𝑒𝑑𝐻] = 1 
 

Next, we substitute [Sred] and [SredH] using Equations S11 and S13, respectively: 

[𝑂𝑥] + [𝑅𝑒𝑑] + [𝑅𝑒𝑑] × 𝛽 + [𝑂𝑥𝐻] + [𝑅𝑒𝑑𝐻] + [𝑅𝑒𝑑𝐻] × 𝛿 = 1 

[𝑂𝑥] + [𝑅𝑒𝑑] × (1 + 𝛽) + [𝑂𝑥𝐻] + [𝑅𝑒𝑑𝐻] × (1 + 𝛿) = 1 

Next we substitute [RedH] using Equation S12, respectively: 

[𝑂𝑥] + [𝑅𝑒𝑑] × (1 + 𝛽) + [𝑂𝑥𝐻] + [𝑂𝑥𝐻] × 𝛾 × (1 + 𝛿) = 1 

[𝑂𝑥] + [𝑅𝑒𝑑] × (1 + 𝛽) + [𝑂𝑥𝐻] × {1 + 𝛾(1 + 𝛿)} = 1 

Next we substitute [Red] and [OxH] using Equations S10 and S14, respectively: 

[𝑂𝑥] + [𝑂𝑥] × 𝛼 × (1 + 𝛽) + [𝑂𝑥]
[𝐻+]

𝐾𝑎,1
× {1 + 𝛾(1 + 𝛿)} = 1 

[𝑂𝑥] × (1 + 𝛼(1 + 𝛽) +
[𝐻+]

𝐾𝑎,1
{1 + 𝛾(1 + 𝛿)}) = 1 

[𝑂𝑥] =
1

1 + 𝛼(1 + 𝛽) +
[𝐻+]
𝐾𝑎,1

{1 + 𝛾(1 + 𝛿)}
 

Using [𝐻+] =  10−𝑝𝐻 and 𝐾𝑎,1 =  10−𝑝𝐾𝑎,1 we can substitute 
[𝐻+]

𝐾𝑎,1
 for 10(𝑝𝐾𝑎,1−𝑝𝐻) and arrive 

at Equation 22 of the main text: 

[𝑂𝑥] =
1

1 + 𝛼(1 + 𝛽) + 10(𝑝𝐾𝑎,1−𝑝𝐻){1 + 𝛾(1 + 𝛿)}
 

(22) 

As noted in the main text, we did not need to use all the parameters to arrive at the results, 

(𝐾𝑎,2 and 𝐾𝑎,3 were not used), but we can derive these parameters from the defined parameters 

using the conjoined thermodynamic cycles in this model. The rules still apply so that the total 

free energy when going from one state to another is independent of the pathway. Therefore, we 

can define the situation as follows in Scheme S2 (same as Scheme 4 of the main text): 
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Scheme S2. Scheme showing the free energy changes for the reactions in a simple model for the [FeFe] 

hydrogenase. The oxidised and deprotonated species Ox can be reduced to Red with a free energy change 

ΔG1. Red can be further reduced to Sred with a free energy change ΔG2. The oxidised protonated species 

OxH can be reduced to give RedH with a free energy change ΔG3. RedH can be further reduced to SredH 

with a free energy change ΔG4. OxH, RedH and SredH can be deprotonated to Ox, Red and Sred, 

respectively, with free energy changes ∆𝐺5
𝑂, ∆𝐺6

𝑂 and ∆𝐺7
𝑂, respectively (-∆𝐺5

𝑂, -∆𝐺6
𝑂 and –∆𝐺7

𝑂 for 

the respective protonation processes). The scheme is identical to Scheme 4 of the main text. 

Since the free energy change is the same regardless which pathway is taken, going from 

Ox to RedH via Red or via OxH have the same overall free energy change, as does going from 

Red to SredH via Sred or via RedH. Importantly, it should be noted that the Ka is defined for a 

deprotonation, and so when we protonate we need to subtract the ΔG0associated with this step. 

Therefore, we can define the following equations: 

∆𝐺1
𝑂 − ∆𝐺6

𝑂 = ∆𝐺3
𝑂 − ∆𝐺5

𝑂 (S17) 

∆𝐺2
𝑂 − ∆𝐺7

𝑂 = ∆𝐺4
𝑂 − ∆𝐺6

𝑂 (S18) 

Where: 

∆𝐺1
𝑂 = −𝑛𝐹𝐸1

𝑂 (S19) 

∆𝐺2
𝑂 = −𝑛𝐹𝐸2

𝑂 (S20) 

∆𝐺3
𝑂 = −𝑛𝐹𝐸3

𝑂 (S21) 

∆𝐺4
𝑂 = −𝑛𝐹𝐸4

𝑂 (S22) 

∆𝐺5
𝑂 = −𝑅𝑇𝑙𝑛𝐾𝑎,1 (S23) 

∆𝐺6
𝑂 = −𝑅𝑇𝑙𝑛𝐾𝑎,2 (S24) 

∆𝐺7
𝑂 = −𝑅𝑇𝑙𝑛𝐾𝑎,3 (S25) 

For Ka,2 we substitute Equations S19, S21, S23 and S24 into Equation S17: 

−𝑛𝐹𝐸1
𝑂 − (−𝑅𝑇𝑙𝑛𝐾𝑎,2) = −𝑛𝐹𝐸3

𝑂 − (−𝑅𝑇𝑙𝑛𝐾𝑎,1) 

−𝑛𝐹𝐸1
𝑂 + 𝑅𝑇𝑙𝑛𝐾𝑎,2 = −𝑛𝐹𝐸3

𝑂 + 𝑅𝑇𝑙𝑛𝐾𝑎,1 
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We can then rearrange this equation to find out how 𝐾𝑎,2 depends on the other variables 

(Equation 27 in the main text): 

𝑅𝑇𝑙𝑛𝐾𝑎,2 − 𝑅𝑇𝑙𝑛𝐾𝑎,1 = 𝑛𝐹𝐸1
𝑂 − 𝑛𝐹𝐸3

𝑂 

𝑅𝑇𝑙𝑛
𝐾𝑎,2
𝐾𝑎,1

= 𝑛𝐹(𝐸1
𝑂 − 𝐸3

𝑂) 

𝐾𝑎,2
𝐾𝑎,1

= 𝑒𝑥𝑝{
𝑛𝐹

𝑅𝑇
(𝐸1

𝑂 − 𝐸3
𝑂)} 

𝐾𝑎,2 = 𝐾𝑎,1𝑒𝑥𝑝{
𝑛𝐹

𝑅𝑇
(𝐸1

𝑂 − 𝐸3
𝑂)} (27) 

For Ka,3 we substitute Equations S20, S22, S24 and S25 into Equation S18: 

−𝑛𝐹𝐸2
𝑂 − (−𝑅𝑇𝑙𝑛𝐾𝑎,3) = −𝑛𝐹𝐸4

𝑂 − (−𝑅𝑇𝑙𝑛𝐾𝑎,2) 

−𝑛𝐹𝐸2
𝑂 + 𝑅𝑇𝑙𝑛𝐾𝑎,3 = −𝑛𝐹𝐸4

𝑂 + 𝑅𝑇𝑙𝑛𝐾𝑎,2 

We can then rearrange this equation to find out how 𝐾𝑎,3 depends on the other variables 

(Equation 28 in the main text): 

𝑅𝑇𝑙𝑛𝐾𝑎,3 − 𝑅𝑇𝑙𝑛𝐾𝑎,2 = 𝑛𝐹𝐸2
𝑂 − 𝑛𝐹𝐸4

𝑂 

𝑅𝑇𝑙𝑛
𝐾𝑎,3
𝐾𝑎,2

= 𝑛𝐹(𝐸2
𝑂 − 𝐸4

𝑂) 

𝐾𝑎,3
𝐾𝑎,2

= 𝑒𝑥𝑝{
𝑛𝐹

𝑅𝑇
(𝐸2

𝑂 − 𝐸4
𝑂)} 

𝐾𝑎,3 = 𝐾𝑎,2𝑒𝑥𝑝{
𝑛𝐹

𝑅𝑇
(𝐸2

𝑂 − 𝐸4
𝑂)} (28) 
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Section S2 – Derivation of equations for a redox anticooperativity model 

In Section 2.4 of the main text we introduced the concept of redox anticooperativity where 

reduction of two adjacent clusters influence each other’s redox potentials. In Scheme S3 the 

simple model describing this situation is shown (Scheme 5 of the main text): 

 

Scheme S3. Scheme showing the reactions in a simple two step redox model. The doubly oxidised 

species OxOx can be reduced to OxRed with a redox potential of 𝐸1
𝑂 or to RedOx with a redox potential 

of 𝐸2
𝑂. OxRed and RedOx can then be further reduced to RedRed with redox potentials of 𝐸3

𝑂 and 𝐸4
𝑂, 

respectively. 

Using this scheme and the Nernst equation (S1) we can define four equations describing 

the system: 

𝐸 = 𝐸1
𝑂 −

𝑅𝑇

𝑛𝐹
ln(

[𝑂𝑥𝑅𝑒𝑑]

[𝑂𝑥𝑂𝑥]
) (S26) 

𝐸 = 𝐸2
𝑂 −

𝑅𝑇

𝑛𝐹
ln(

[𝑅𝑒𝑑𝑂𝑥]

[𝑂𝑥𝑂𝑥]
) (S27) 

𝐸 = 𝐸3
𝑂 −

𝑅𝑇

𝑛𝐹
ln(

[𝑅𝑒𝑑𝑅𝑒𝑑]

[𝑂𝑥𝑅𝑒𝑑]
) (S28) 

𝐸 = 𝐸4
𝑂 −

𝑅𝑇

𝑛𝐹
ln(

[𝑅𝑒𝑑𝑅𝑒𝑑]

[𝑅𝑒𝑑𝑂𝑥]
) (S29) 

Equation S26 can be rearranged to get [OxRed] in terms of [OxOx] as follows: 

[𝑂𝑥𝑅𝑒𝑑] = [𝑂𝑥𝑂𝑥] × 𝑒𝑥𝑝
𝑛𝐹

𝑅𝑇
(𝐸1

𝑂 − 𝐸)  

[𝑂𝑥𝑅𝑒𝑑] = [𝑂𝑥𝑂𝑥] × 𝛼 
(S30) 

Where: 

𝛼 = 𝑒𝑥𝑝
𝑛𝐹

𝑅𝑇
(𝐸1

𝑂 − 𝐸) 

Equation S27 can be rearranged to get [RedOx] in terms of [OxOx] as follows: 

[𝑅𝑒𝑑𝑂𝑥] = [𝑂𝑥𝑂𝑥] × 𝑒𝑥𝑝
𝑛𝐹

𝑅𝑇
(𝐸2

𝑂 − 𝐸)  

[𝑅𝑒𝑑𝑂𝑥] = [𝑂𝑥𝑂𝑥] × 𝛽 
(S31) 

Where: 
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𝛽 = 𝑒𝑥𝑝
𝑛𝐹

𝑅𝑇
(𝐸2

𝑂 − 𝐸) 

Equation S28 can be rearranged to get [RedRed] in terms of [OxRed] as follows: 

[𝑅𝑒𝑑𝑅𝑒𝑑] = [𝑂𝑥𝑅𝑒𝑑] × 𝑒𝑥𝑝
𝑛𝐹

𝑅𝑇
(𝐸3

𝑂 − 𝐸)  

[𝑅𝑒𝑑𝑅𝑒𝑑] = [𝑂𝑥𝑅𝑒𝑑] × 𝛾 
(S32) 

Where: 

𝛾 = 𝑒𝑥𝑝
𝑛𝐹

𝑅𝑇
(𝐸3

𝑂 − 𝐸) 

Equation S29 can be rearranged to get [RedRed] in terms of [RedOx] as follows: 

[𝑅𝑒𝑑𝑅𝑒𝑑] = [𝑅𝑒𝑑𝑂𝑥] × 𝑒𝑥𝑝
𝑛𝐹

𝑅𝑇
(𝐸4

𝑂 − 𝐸)  

[𝑅𝑒𝑑𝑅𝑒𝑑] = [𝑅𝑒𝑑𝑂𝑥] × 𝛿 
(S33) 

Where: 

𝛿 = 𝑒𝑥𝑝
𝑛𝐹

𝑅𝑇
(𝐸4

𝑂 − 𝐸) 

Next, we define the sum of the concentrations of all states as 1: 

[𝑂𝑥𝑂𝑥] + [𝑂𝑥𝑅𝑒𝑑] + [𝑅𝑒𝑑𝑂𝑥] + [𝑅𝑒𝑑𝑅𝑒𝑑] = 1 

Next, we substitute [RedRed] using Equation S32: 

[𝑂𝑥𝑂𝑥] + [𝑂𝑥𝑅𝑒𝑑] + [𝑅𝑒𝑑𝑂𝑥] + [𝑂𝑥𝑅𝑒𝑑] × 𝛾 = 1 

[𝑂𝑥𝑂𝑥] + [𝑂𝑥𝑅𝑒𝑑] × (1 + 𝛾) + [𝑅𝑒𝑑𝑂𝑥] = 1 

Next, we substitute [OxRed] and [RedOx] using Equations S30 and S31, and rearrange to get 

Equation 29 from the main text: 

[𝑂𝑥𝑂𝑥] + [𝑂𝑥𝑂𝑥] × 𝛼(1 + 𝛾) + [𝑂𝑥𝑂𝑥] × 𝛽 = 1 

[𝑂𝑥𝑂𝑥] × {1 + 𝛼(1 + 𝛾) + 𝛽} = 1 

[𝑂𝑥𝑂𝑥] =
1

1 + 𝛼(1 + 𝛾) + 𝛽
 (29) 

As before, in order to arrive at this result, we only needed to consider the three reduction 

events defined by 𝐸1
𝑂, 𝐸2

𝑂and 𝐸3
𝑂. 𝐸4

𝑂 can be calculated considering the thermodynamic square 

and that the free energy change when going from one state to another is not dependent on the 

path chosen. Therefore, we can define the situation as in Scheme S4 (Scheme 6 in the main 

text): 
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Scheme S4. Scheme showing the free energies associated with reactions in a simple two-step redox 

model. The doubly oxidised species OxOx can be reduced to OxRed or RedOx with free energy changes 

∆𝐺1
𝑂 and ∆𝐺2

𝑂, respectively. OxRed and RedOx can then be further reduced to RedRed with free energy 

changes ∆𝐺3
𝑂 and ∆𝐺4

𝑂, respectively.  

The free energy change when going from OxOx to RedRed via OxRed is the same as 

that when going via RedOx. Therefore, we can define the equation: 

∆𝐺1
𝑂 + ∆𝐺3

𝑂 = ∆𝐺2
𝑂 + ∆𝐺4

𝑂 (S34) 

Where: 

∆𝐺1
𝑂 = −𝑛𝐹𝐸1

𝑂 (S35) 

∆𝐺2
𝑂 = −𝑛𝐹𝐸2

𝑂 (S36) 

∆𝐺3
𝑂 = −𝑛𝐹𝐸3

𝑂 (S37) 

∆𝐺4
𝑂 = −𝑛𝐹𝐸4

𝑂 (S38) 

We then substitute Equations S35-S38 into Equation S34: 

−𝑛𝐹𝐸1
𝑂 + (−𝑛𝐹𝐸3

𝑂) = (−𝑛𝐹𝐸2
𝑂) + (−𝑛𝐹𝐸4

𝑂) 

𝑛𝐹𝐸1
𝑂 + 𝑛𝐹𝐸3

𝑂 = 𝑛𝐹𝐸2
𝑂 + 𝑛𝐹𝐸4

𝑂 

We can then rearrange this equation to find out how 𝐸4
𝑂 depends on the other variables and 

arrive at Equation 34 from the main text: 

𝑛𝐹𝐸4
𝑂 = 𝑛𝐹𝐸1

𝑂 − 𝑛𝐹𝐸2
𝑂 + 𝑛𝐹𝐸3

𝑂 

𝐸4
𝑂 = 𝐸1

𝑂 − 𝐸2
𝑂 + 𝐸3

𝑂 (34) 
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Section S3 – Derivation of equations for a redox anticooperativity model for the active 

[FeFe] hydrogenase 

In Section 2.5 we described a highly complex model containing both PCET and redox 

anticooperativity. Each species can now exist in three redox states of the H-cluster (Ox, Red 

and Sred), two protonation states, and also two different redox states of the proximal F-cluster, 

making the model “three-dimensional” as in Scheme S5 (Scheme 7 of the main text): 

 

Scheme S5. Model for active [FeFe] hydrogenase including redox anticooperativity. The steps and 

redox potentials indicated in red are reduction of the H-cluster first from Ox to Red, then Red to Sred. 

The steps and Ka values indicated in blue are protonation of the H-cluster in the Ox, Red and Sred states. 

The steps and redox potentials indicated in black are the reduction of the proximal F-cluster from Ox to 

Red. 

Using the Nernst equation (S1) and the equation for a simple acid dissociation constant (S2) we 

can define the following equations describing the system: 

𝐸 = 𝐸1
𝑂 −

𝑅𝑇

𝑛𝐹
ln(

[𝑂𝑥𝑅𝑒𝑑]

[𝑂𝑥𝑂𝑥]
) (S39) 

𝐸 = 𝐸2
𝑂 −

𝑅𝑇

𝑛𝐹
ln(

[𝑂𝑥𝑆𝑟𝑒𝑑]

[𝑂𝑥𝑅𝑒𝑑]
) (S40) 

𝐸 = 𝐸3
𝑂 −

𝑅𝑇

𝑛𝐹
ln(

[𝑂𝑥𝑅𝑒𝑑𝐻]

[𝑂𝑥𝑂𝑥𝐻]
) (S41) 

𝐸 = 𝐸4
𝑂 −

𝑅𝑇

𝑛𝐹
ln(

[𝑂𝑥𝑆𝑟𝑒𝑑𝐻]

[𝑂𝑥𝑅𝑒𝑑𝐻]
 (S42) 

𝐸 = 𝐸5
𝑂 −

𝑅𝑇

𝑛𝐹
ln(

[𝑅𝑒𝑑𝑅𝑒𝑑]

[𝑅𝑒𝑑𝑂𝑥]
) (S43) 

𝐸 = 𝐸6
𝑂 −

𝑅𝑇

𝑛𝐹
ln(

[𝑅𝑒𝑑𝑆𝑟𝑒𝑑]

[𝑅𝑒𝑑𝑅𝑒𝑑]
) (S44) 

𝐸 = 𝐸7
𝑂 −

𝑅𝑇

𝑛𝐹
ln(

[𝑅𝑒𝑑𝑅𝑒𝑑𝐻]

[𝑅𝑒𝑑𝑂𝑥𝐻]
) (S45) 
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𝐸 = 𝐸8
𝑂 −

𝑅𝑇

𝑛𝐹
ln(

[𝑅𝑒𝑑𝑆𝑟𝑒𝑑𝐻]

[𝑅𝑒𝑑𝑅𝑒𝑑𝐻]
 (S46) 

𝐸 = 𝐸9
𝑂 −

𝑅𝑇

𝑛𝐹
ln(

[𝑅𝑒𝑑𝑂𝑥]

[𝑂𝑥𝑂𝑥]
) (S47) 

𝐸 = 𝐸10
𝑂 −

𝑅𝑇

𝑛𝐹
ln(

[𝑅𝑒𝑑𝑅𝑒𝑑]

[𝑂𝑥𝑅𝑒𝑑]
) (S48) 

𝐸 = 𝐸11
𝑂 −

𝑅𝑇

𝑛𝐹
ln(

[𝑅𝑒𝑑𝑆𝑟𝑒𝑑]

[𝑂𝑥𝑆𝑟𝑒𝑑]
) (S49) 

𝐸 = 𝐸12
𝑂 −

𝑅𝑇

𝑛𝐹
ln(

[𝑅𝑒𝑑𝑂𝑥𝐻]

[𝑂𝑥𝑂𝑥𝐻]
 (S50) 

𝐸 = 𝐸13
𝑂 −

𝑅𝑇

𝑛𝐹
ln(

[𝑅𝑒𝑑𝑅𝑒𝑑𝐻]

[𝑂𝑥𝑅𝑒𝑑𝐻]
) (S51) 

𝐸 = 𝐸14
𝑂 −

𝑅𝑇

𝑛𝐹
ln(

[𝑅𝑒𝑑𝑆𝑟𝑒𝑑𝐻]

[𝑂𝑥𝑆𝑟𝑒𝑑𝐻]
 (S52) 

𝐾𝑎,1 =
[𝑂𝑥𝑂𝑥][𝐻+]

[𝑂𝑥𝑂𝑥𝐻]
 (S53) 

𝐾𝑎,2 =
[𝑂𝑥𝑅𝑒𝑑][𝐻+]

[𝑂𝑥𝑅𝑒𝑑𝐻]
 (S54) 

𝐾𝑎,3 =
[𝑂𝑥𝑆𝑟𝑒𝑑][𝐻+]

[𝑂𝑥𝑆𝑟𝑒𝑑𝐻]
 (S55) 

𝐾𝑎,4 =
[𝑅𝑒𝑑𝑂𝑥][𝐻+]

[𝑅𝑒𝑑𝑂𝑥𝐻]
 (S56) 

𝐾𝑎,5 =
[𝑅𝑒𝑑𝑅𝑒𝑑][𝐻+]

[𝑅𝑒𝑑𝑅𝑒𝑑𝐻]
 (S57) 

𝐾𝑎,6 =
[𝑅𝑒𝑑𝑆𝑟𝑒𝑑][𝐻+]

[𝑅𝑒𝑑𝑆𝑟𝑒𝑑𝐻]
 (S58) 

Equation S39 can be rearranged to get [OxRed] in terms of [OxOx] as follows: 

[𝑂𝑥𝑅𝑒𝑑] = [𝑂𝑥𝑂𝑥] × 𝑒𝑥𝑝
𝑛𝐹

𝑅𝑇
(𝐸1

𝑂 − 𝐸)  

[𝑂𝑥𝑅𝑒𝑑] = [𝑂𝑥𝑂𝑥] × 𝛼1 
(S59) 

Where: 

𝛼1 = 𝑒𝑥𝑝
𝑛𝐹

𝑅𝑇
(𝐸1

𝑂 − 𝐸) 

Equation S40 can be rearranged to get [OxSred] in terms of [OxRed] as follows: 

[𝑂𝑥𝑆𝑟𝑒𝑑] = [𝑂𝑥𝑅𝑒𝑑] × 𝑒𝑥𝑝
𝑛𝐹

𝑅𝑇
(𝐸2

𝑂 − 𝐸)  
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[𝑂𝑥𝑆𝑟𝑒𝑑] = [𝑂𝑥𝑅𝑒𝑑] × 𝛼2 
(S60) 

Where: 

𝛼2 = 𝑒𝑥𝑝
𝑛𝐹

𝑅𝑇
(𝐸2

𝑂 − 𝐸) 

Equation S41 can be rearranged to get [OxRedH] in terms of [OxOxH] as follows: 

[𝑂𝑥𝑅𝑒𝑑𝐻] = [𝑂𝑥𝑂𝑥𝐻] × 𝑒𝑥𝑝
𝑛𝐹

𝑅𝑇
(𝐸3

𝑂 − 𝐸)  

[𝑂𝑥𝑅𝑒𝑑𝐻] = [𝑂𝑥𝑂𝑥𝐻] × 𝛼3 
(S61) 

Where: 

𝛼3 = 𝑒𝑥𝑝
𝑛𝐹

𝑅𝑇
(𝐸3

𝑂 − 𝐸) 

Equation S42 can be rearranged to get [OxSredH] in terms of [OxRedH] as follows: 

[𝑂𝑥𝑆𝑟𝑒𝑑𝐻] = [𝑂𝑥𝑅𝑒𝑑𝐻] × 𝑒𝑥𝑝
𝑛𝐹

𝑅𝑇
(𝐸4

𝑂 − 𝐸)  

[𝑂𝑥𝑆𝑟𝑒𝑑𝐻] = [𝑂𝑥𝑅𝑒𝑑𝐻] × 𝛼4 
(S62) 

Where: 

𝛼4 = 𝑒𝑥𝑝
𝑛𝐹

𝑅𝑇
(𝐸4

𝑂 − 𝐸) 

Equation S43 can be rearranged to get [RedRed] in terms of [RedOx] as follows: 

[𝑅𝑒𝑑𝑅𝑒𝑑] = [𝑅𝑒𝑑𝑂𝑥] × 𝑒𝑥𝑝
𝑛𝐹

𝑅𝑇
(𝐸5

𝑂 − 𝐸)  

[𝑅𝑒𝑑𝑅𝑒𝑑] = [𝑅𝑒𝑑𝑂𝑥] × 𝛼5 
(S63) 

Where: 

𝛼5 = 𝑒𝑥𝑝
𝑛𝐹

𝑅𝑇
(𝐸5

𝑂 − 𝐸) 

Equation S44 can be rearranged to get [RedSred] in terms of [RedRed] as follows: 

[𝑅𝑒𝑑𝑆𝑟𝑒𝑑] = [𝑅𝑒𝑑𝑅𝑒𝑑] × 𝑒𝑥𝑝
𝑛𝐹

𝑅𝑇
(𝐸6

𝑂 − 𝐸)  

[𝑅𝑒𝑑𝑆𝑟𝑒𝑑] = [𝑅𝑒𝑑𝑅𝑒𝑑] × 𝛼6 
(S64) 

Where: 

𝛼6 = 𝑒𝑥𝑝
𝑛𝐹

𝑅𝑇
(𝐸6

𝑂 − 𝐸) 

Equation S45 can be rearranged to get [RedRedH] in terms of [RedOxH] as follows: 

[𝑅𝑒𝑑𝑅𝑒𝑑𝐻] = [𝑅𝑒𝑑𝑂𝑥𝐻] × 𝑒𝑥𝑝
𝑛𝐹

𝑅𝑇
(𝐸7

𝑂 − 𝐸)  
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[𝑅𝑒𝑑𝑅𝑒𝑑𝐻] = [𝑅𝑒𝑑𝑂𝑥𝐻] × 𝛼7 
(S65) 

Where: 

𝛼7 = 𝑒𝑥𝑝
𝑛𝐹

𝑅𝑇
(𝐸7

𝑂 − 𝐸) 

Equation S46 can be rearranged to get [RedSredH] in terms of [RedRedH] as follows: 

[𝑅𝑒𝑑𝑆𝑟𝑒𝑑𝐻] = [𝑅𝑒𝑑𝑅𝑒𝑑𝐻] × 𝑒𝑥𝑝
𝑛𝐹

𝑅𝑇
(𝐸8

𝑂 − 𝐸)  

[𝑅𝑒𝑑𝑆𝑟𝑒𝑑𝐻] = [𝑅𝑒𝑑𝑅𝑒𝑑𝐻] × 𝛼8 
(S66) 

Where: 

𝛼8 = 𝑒𝑥𝑝
𝑛𝐹

𝑅𝑇
(𝐸8

𝑂 − 𝐸) 

Equation S47 can be rearranged to get [RedOx] in terms of [OxOx] as follows: 

[𝑅𝑒𝑑𝑂𝑥] = [𝑂𝑥𝑂𝑥] × 𝑒𝑥𝑝
𝑛𝐹

𝑅𝑇
(𝐸9

𝑂 − 𝐸)  

[𝑅𝑒𝑑𝑂𝑥] = [𝑂𝑥𝑂𝑥] × 𝛼9 
(S67) 

Where: 

𝛼9 = 𝑒𝑥𝑝
𝑛𝐹

𝑅𝑇
(𝐸9

𝑂 − 𝐸) 

Equation S48 can be rearranged to get [RedRed] in terms of [OxRed] as follows: 

[𝑅𝑒𝑑𝑅𝑒𝑑] = [𝑂𝑥𝑅𝑒𝑑] × 𝑒𝑥𝑝
𝑛𝐹

𝑅𝑇
(𝐸10

𝑂 − 𝐸)  

[𝑅𝑒𝑑𝑅𝑒𝑑] = [𝑂𝑥𝑅𝑒𝑑] × 𝛼10 
(S68) 

Where: 

𝛼10 = 𝑒𝑥𝑝
𝑛𝐹

𝑅𝑇
(𝐸10

𝑂 − 𝐸) 

Equation S49 can be rearranged to get [RedSred] in terms of [OxSred] as follows: 

[𝑅𝑒𝑑𝑆𝑟𝑒𝑑] = [𝑂𝑥𝑆𝑟𝑒𝑑] × 𝑒𝑥𝑝
𝑛𝐹

𝑅𝑇
(𝐸11

𝑂 − 𝐸)  

[𝑅𝑒𝑑𝑆𝑟𝑒𝑑] = [𝑂𝑥𝑆𝑟𝑒𝑑] × 𝛼11 
(S69) 

Where: 

𝛼11 = 𝑒𝑥𝑝
𝑛𝐹

𝑅𝑇
(𝐸11

𝑂 − 𝐸) 

Equation S50 can be rearranged to get [RedOxH] in terms of [OxOxH] as follows: 

[𝑅𝑒𝑑𝑂𝑥𝐻] = [𝑂𝑥𝑂𝑥𝐻] × 𝑒𝑥𝑝
𝑛𝐹

𝑅𝑇
(𝐸12

𝑂 − 𝐸)  
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[𝑅𝑒𝑑𝑂𝑥𝐻] = [𝑂𝑥𝑂𝑥𝐻] × 𝛼12 
(S70) 

Where: 

𝛼12 = 𝑒𝑥𝑝
𝑛𝐹

𝑅𝑇
(𝐸12

𝑂 − 𝐸) 

Equation S51 can be rearranged to get [RedRedH] in terms of [OxRedH] as follows: 

[𝑅𝑒𝑑𝑅𝑒𝑑𝐻] = [𝑂𝑥𝑅𝑒𝑑𝐻] × 𝑒𝑥𝑝
𝑛𝐹

𝑅𝑇
(𝐸13

𝑂 − 𝐸)  

[𝑅𝑒𝑑𝑅𝑒𝑑𝐻] = [𝑂𝑥𝑅𝑒𝑑𝐻] × 𝛼13 
(S71) 

Where: 

𝛼13 = 𝑒𝑥𝑝
𝑛𝐹

𝑅𝑇
(𝐸13

𝑂 − 𝐸) 

Equation S52 can be rearranged to get [RedSredH] in terms of [OxSredH] as follows: 

[𝑅𝑒𝑑𝑆𝑟𝑒𝑑𝐻] = [𝑂𝑥𝑆𝑟𝑒𝑑𝐻] × 𝑒𝑥𝑝
𝑛𝐹

𝑅𝑇
(𝐸14

𝑂 − 𝐸)  

[𝑅𝑒𝑑𝑆𝑟𝑒𝑑𝐻] = [𝑂𝑥𝑆𝑟𝑒𝑑𝐻] × 𝛼14 
(S72) 

Where: 

𝛼14 = 𝑒𝑥𝑝
𝑛𝐹

𝑅𝑇
(𝐸14

𝑂 − 𝐸) 

And Equations S53-58 can be rearranged to get [OxOxH], [OxRedH], [OxSredH], [RedOxH], 

[RedRedH] and [RedSredH] in terms of [OxOx], [OxRed], [OxSred], [RedOx], [RedRed] and 

[RedSred], respectively, as follows: 

[𝑂𝑥𝑂𝑥𝐻] = [𝑂𝑥𝑂𝑥]
[𝐻+]

𝐾𝑎,1
 (S73) 

[𝑂𝑥𝑅𝑒𝑑𝐻] = [𝑂𝑥𝑅𝑒𝑑]
[𝐻+]

𝐾𝑎,2
 (S74) 

[𝑂𝑥𝑆𝑟𝑒𝑑𝐻] = [𝑂𝑥𝑆𝑟𝑒𝑑]
[𝐻+]

𝐾𝑎,3
 (S75) 

[𝑅𝑒𝑑𝑂𝑥𝐻] = [𝑅𝑒𝑑𝑂𝑥]
[𝐻+]

𝐾𝑎,4
 (S76) 

[𝑅𝑒𝑑𝑅𝑒𝑑𝐻] = [𝑅𝑒𝑑𝑅𝑒𝑑]
[𝐻+]

𝐾𝑎,5
 (S77) 

[𝑅𝑒𝑑𝑆𝑟𝑒𝑑𝐻] = [𝑅𝑒𝑑𝑆𝑟𝑒𝑑]
[𝐻+]

𝐾𝑎,6
 (S78) 

Next, we define the sum of the concentrations of all states as 1: 
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[𝑂𝑥𝑂𝑥] + [𝑂𝑥𝑅𝑒𝑑] + [𝑂𝑥𝑆𝑟𝑒𝑑] + [𝑂𝑥𝑂𝑥𝐻] + [𝑂𝑥𝑅𝑒𝑑𝐻] + [𝑂𝑥𝑆𝑟𝑒𝑑𝐻] + [𝑅𝑒𝑑𝑂𝑥]

+ [𝑅𝑒𝑑𝑅𝑒𝑑] + [𝑅𝑒𝑑𝑆𝑟𝑒𝑑] + [𝑅𝑒𝑑𝑂𝑥𝐻] + [𝑅𝑒𝑑𝑅𝑒𝑑𝐻] + [𝑅𝑒𝑑𝑆𝑟𝑒𝑑𝐻] = 1  

Next, we substitute [OxSred], [OxSredH], [RedSred] and [RedSredH] using Equations S60, 

S62, S64 and S66, respectively: 

[𝑂𝑥𝑂𝑥] + [𝑂𝑥𝑅𝑒𝑑] + [𝑂𝑥𝑅𝑒𝑑] × 𝛼2 + [𝑂𝑥𝑂𝑥𝐻] + [𝑂𝑥𝑅𝑒𝑑𝐻] + [𝑂𝑥𝑅𝑒𝑑𝐻] × 𝛼4 + [𝑅𝑒𝑑𝑂𝑥]

+ [𝑅𝑒𝑑𝑅𝑒𝑑] + [𝑅𝑒𝑑𝑅𝑒𝑑] × 𝛼6 + [𝑅𝑒𝑑𝑂𝑥𝐻] + [𝑅𝑒𝑑𝑅𝑒𝑑𝐻] + [𝑅𝑒𝑑𝑅𝑒𝑑𝐻] × 𝛼8 = 1 

[𝑂𝑥𝑂𝑥] + [𝑂𝑥𝑅𝑒𝑑] × (1 + 𝛼2) + [𝑂𝑥𝑂𝑥𝐻] + [𝑂𝑥𝑅𝑒𝑑𝐻] × (1 + 𝛼4) + [𝑅𝑒𝑑𝑂𝑥] + [𝑅𝑒𝑑𝑅𝑒𝑑] × (1
+ 𝛼6) + [𝑅𝑒𝑑𝑂𝑥𝐻] + [𝑅𝑒𝑑𝑅𝑒𝑑𝐻] × (1 + 𝛼8) = 1 

Next we substitute [OxRedH] and [RedRedH] using Equation S61 and S65, respectively: 

[𝑂𝑥𝑂𝑥] + [𝑂𝑥𝑅𝑒𝑑] × (1 + 𝛼2) + [𝑂𝑥𝑂𝑥𝐻] + [𝑂𝑥𝑂𝑥𝐻] × 𝛼3 × (1 + 𝛼4) + [𝑅𝑒𝑑𝑂𝑥] + [𝑅𝑒𝑑𝑅𝑒𝑑]
× (1 + 𝛼6) + [𝑅𝑒𝑑𝑂𝑥𝐻] + [𝑅𝑒𝑑𝑂𝑥𝐻] × 𝛼7 × (1 + 𝛼8) = 1 

[𝑂𝑥𝑂𝑥] + [𝑂𝑥𝑅𝑒𝑑] × (1 + 𝛼2) + [𝑂𝑥𝑂𝑥𝐻] × {1 + 𝛼3 × (1 + 𝛼4)} + [𝑅𝑒𝑑𝑂𝑥] + [𝑅𝑒𝑑𝑅𝑒𝑑] × (1

+ 𝛼6) + [𝑅𝑒𝑑𝑂𝑥𝐻] × {1 + 𝛼7 × (1 + 𝛼8)} = 1 

Next we substitute [RedRed] and [RedOxH] using Equations S63 and S76, respectively: 

[𝑂𝑥𝑂𝑥] + [𝑂𝑥𝑅𝑒𝑑] × (1 + 𝛼2) + [𝑂𝑥𝑂𝑥𝐻] × {1 + 𝛼3 × (1 + 𝛼4)} + [𝑅𝑒𝑑𝑂𝑥] + [𝑅𝑒𝑑𝑂𝑥] × 𝛼5

× (1 + 𝛼6) + [𝑅𝑒𝑑𝑂𝑥]
[𝐻+]

𝐾𝑎,4
× {1 + 𝛼7 × (1 + 𝛼8)} = 1 

[𝑂𝑥𝑂𝑥] + [𝑂𝑥𝑅𝑒𝑑] × (1 + 𝛼2) + [𝑂𝑥𝑂𝑥𝐻] × {1 + 𝛼3 × (1 + 𝛼4)} + [𝑅𝑒𝑑𝑂𝑥] × (1 + 𝛼5

× (1 + 𝛼6) +
[𝐻+]

𝐾𝑎,4
× {1 + 𝛼7 × (1 + 𝛼8)}) = 1 

Next we substitute [OxRed], [OxOxH] and [RedOx] using Equations S59, S73 and S67, 

respectively: 

[𝑂𝑥𝑂𝑥] + [𝑂𝑥𝑂𝑥] × 𝛼1 × (1 + 𝛼2) + [𝑂𝑥𝑂𝑥]
[𝐻+]

𝐾𝑎,1
× {1 + 𝛼3 × (1 + 𝛼4)} + [𝑂𝑥𝑂𝑥] × 𝛼9 × (1

+ 𝛼5 × (1 + 𝛼6) +
[𝐻+]

𝐾𝑎,4
× {1 + 𝛼7 × (1 + 𝛼8)}) = 1 

[𝑂𝑥𝑂𝑥] × {1 + 𝛼1 × (1 + 𝛼2) +
[𝐻+]

𝐾𝑎,1
× {1 + 𝛼3 × (1 + 𝛼4)} + 𝛼9

× (1 + 𝛼5 × (1 + 𝛼6) +
[𝐻+]

𝐾𝑎,4
× {1 + 𝛼7 × (1 + 𝛼8)})} = 1 

[𝑂𝑥𝑂𝑥] =
1

1 + 𝛼1 × (1 + 𝛼2) +
[𝐻+]
𝐾𝑎,1

× {1 + 𝛼3 × (1 + 𝛼4)} + 𝛼9 × (1 + 𝛼5 × (1 + 𝛼6) +
[𝐻+]
𝐾𝑎,4

× {1 + 𝛼7 × (1 + 𝛼8)})
 

Using [𝐻+] =  10−𝑝𝐻, 𝐾𝑎,1 =  10−𝑝𝐾𝑎,1 and 𝐾𝑎,4 =  10−𝑝𝐾𝑎,4 we can substitute 
[𝐻+]

𝐾𝑎,1
 for 

10(𝑝𝐾𝑎,1−𝑝𝐻), 
[𝐻+]

𝐾𝑎,4
 for 10(𝑝𝐾𝑎,4−𝑝𝐻)  and arrive at Equation 35 of the main text: 

[𝑂𝑥𝑂𝑥] =
1

1 + 𝛼1 × (1 + 𝛼2) + 10(𝑝𝐾𝑎,1−𝑝𝐻){1 + 𝛼3 × (1 + 𝛼4)} + 𝛼9 × (1 + 𝛼5 × (1 + 𝛼6) + 10(𝑝𝐾𝑎,4−𝑝𝐻){1 + 𝛼7 × (1 + 𝛼8)})
 

(35) 

Where 𝛼𝑛 = 𝑒𝑥𝑝
𝑛𝐹

𝑅𝑇
(𝐸𝑛

𝑂 − 𝐸) 
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As with the previous models, it was only necessary to use a limited number of the parameters. 

The rest can be calculated by considering the thermodynamic cycles. We used 𝐸1
𝑂 - 𝐸9

𝑂 as well 

as Ka,1 and Ka,4. Therefore, we need to calculate 𝐸10
𝑂  - 𝐸14

𝑂 , Ka,2, Ka,3, Ka,5, and Ka,6 . 

 

Scheme S6. Model for active [FeFe] hydrogenase including redox anticooperativity with the free energy 

changes involved. The ΔG0values corresponding to reduction events at the H-cluster (∆𝐺1
𝑂 to ∆𝐺8

𝑂) are 

coloured in red, the ΔG0values corresponding to reduction events at the proximal F-cluster (∆𝐺9
𝑂 to 

∆𝐺14
𝑂 ) are coloured in black, and the ΔG0values corresponding to deprotonation events at the H-cluster 

(∆𝐺15
𝑂  to ∆𝐺20

𝑂 ) are coloured in blue. 

From Scheme S6, we can focus on specific subcycles containing the steps for which the 

thermodynamic parameters are not defined: 

1) For ∆𝐺10
𝑂 : 

 

Scheme S7. Focus on the subcycle containing ∆𝐺10
𝑂 . 

Considering that when going between states the free energy change is the same regardless of 

the pathway, the following equation can be derived: 

∆𝐺1
𝑂 + ∆𝐺10

𝑂 = ∆𝐺5
𝑂 + ∆𝐺9

𝑂 (S79) 
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2) For ∆𝐺11
𝑂 : 

 

Scheme S8. Focus on the subcycle containing ∆𝐺11
𝑂 . 

Considering that when going between states the free energy change is the same regardless of 

the pathway, the following equation can be derived: 

∆𝐺2
𝑂 + ∆𝐺11

𝑂 = ∆𝐺6
𝑂 + ∆𝐺10

𝑂  (S80) 

 

3) For ∆𝐺12
𝑂 : 

 

Scheme S9. Focus on the subcycle containing ∆𝐺12
𝑂 . 

Considering that when going between states the free energy change is the same regardless of 

the pathway, the following equation can be derived: 

∆𝐺12
𝑂 − ∆𝐺15

𝑂 = ∆𝐺9
𝑂 − ∆𝐺18

𝑂  (S81) 
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4) For ∆𝐺13
𝑂 : 

 

Scheme S10. Focus on the subcycle containing ∆𝐺13
𝑂 . 

Considering that when going between states the free energy change is the same regardless of 

the pathway, the following equation can be derived: 

∆𝐺3
𝑂 + ∆𝐺13

𝑂 = ∆𝐺7
𝑂 + ∆𝐺12

𝑂  (S82) 

 

5) For ∆𝐺14
𝑂 : 

 

Scheme S11. Focus on the subcycle containing ∆𝐺14
𝑂 . 

Considering that when going between states the free energy change is the same regardless of 

the pathway, the following equation can be derived: 

∆𝐺4
𝑂 + ∆𝐺14

𝑂 = ∆𝐺8
𝑂 + ∆𝐺13

𝑂  (S83) 
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6) For ∆𝐺16
𝑂 : 

 

Scheme S12. Focus on the subcycle containing ∆𝐺16
𝑂 . 

Considering that when going between states the free energy change is the same regardless of 

the pathway, the following equation can be derived: 

∆𝐺1
𝑂 − ∆𝐺16

𝑂 = ∆𝐺3
𝑂 − ∆𝐺15

𝑂  (S84) 

 

7) For ∆𝐺17
𝑂 : 

 

Scheme S13. Focus on the subcycle containing ∆𝐺17
𝑂 . 

Considering that when going between states the free energy change is the same regardless of 

the pathway, the following equation can be derived: 

∆𝐺2
𝑂 − ∆𝐺17

𝑂 = ∆𝐺4
𝑂 − ∆𝐺16

𝑂  (S85) 
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8) For ∆𝐺19
𝑂 : 

 

Scheme S14. Focus on the subcycle containing ∆𝐺19
𝑂 . 

Considering that when going between states the free energy change is the same regardless of 

the pathway, the following equation can be derived: 

∆𝐺5
𝑂 − ∆𝐺19

𝑂 = ∆𝐺7
𝑂 − ∆𝐺18

𝑂  (S86) 

 

9) For ∆𝐺20
𝑂 : 

 

Scheme S15. Focus on the subcycle containing ∆𝐺20
𝑂 . 

Considering that when going between states the free energy change is the same regardless of 

the pathway, the following equation can be derived: 

∆𝐺6
𝑂 − ∆𝐺20

𝑂 = ∆𝐺8
𝑂 − ∆𝐺19

𝑂  (S87) 
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Where: 

∆𝐺1
𝑂 = −𝑛𝐹𝐸1

𝑂 (S88) 

∆𝐺2
𝑂 = −𝑛𝐹𝐸2

𝑂 (S89) 

∆𝐺3
𝑂 = −𝑛𝐹𝐸3

𝑂 (S90) 

∆𝐺4
𝑂 = −𝑛𝐹𝐸4

𝑂 (S91) 

∆𝐺5
𝑂 = −𝑛𝐹𝐸5

𝑂 (S92) 

∆𝐺6
𝑂 = −𝑛𝐹𝐸6

𝑂 (S93) 

∆𝐺7
𝑂 = −𝑛𝐹𝐸7

𝑂 (S94) 

∆𝐺8
𝑂 = −𝑛𝐹𝐸8

𝑂 (S95) 

∆𝐺9
𝑂 = −𝑛𝐹𝐸9

𝑂 (S96) 

∆𝐺10
𝑂 = −𝑛𝐹𝐸10

𝑂  (S97) 

∆𝐺11
𝑂 = −𝑛𝐹𝐸11

𝑂  (S98) 

∆𝐺12
𝑂 = −𝑛𝐹𝐸12

𝑂  (S99) 

∆𝐺13
𝑂 = −𝑛𝐹𝐸13

𝑂  (S100) 

∆𝐺14
𝑂 = −𝑛𝐹𝐸14

𝑂  (S101) 

∆𝐺15
𝑂 = −𝑅𝑇𝑙𝑛𝐾𝑎,1 (S102) 

∆𝐺16
𝑂 = −𝑅𝑇𝑙𝑛𝐾𝑎,2 (S103) 

∆𝐺17
𝑂 = −𝑅𝑇𝑙𝑛𝐾𝑎,3 (S104) 

∆𝐺18
𝑂 = −𝑅𝑇𝑙𝑛𝐾𝑎,4 (S105) 

∆𝐺19
𝑂 = −𝑅𝑇𝑙𝑛𝐾𝑎,5 (S106) 

∆𝐺20
𝑂 = −𝑅𝑇𝑙𝑛𝐾𝑎,6 (S107) 

1) Substituting Equations S88, S92, S96 and S97 into Equation S79 and rearrange this equation 

for 𝐸10
𝑂  giving Equation 36 from the main text: 

∆𝐺1
𝑂 + ∆𝐺10

𝑂 = ∆𝐺5
𝑂 + ∆𝐺9

𝑂 

−𝑛𝐹𝐸1
𝑂 + (−𝑛𝐹𝐸10

𝑂 ) = (−𝑛𝐹𝐸5
𝑂) + (−𝑛𝐹𝐸9

𝑂) 

𝑛𝐹𝐸1
𝑂 + 𝑛𝐹𝐸10

𝑂 = 𝑛𝐹𝐸5
𝑂 + 𝑛𝐹𝐸9

𝑂 

𝑛𝐹𝐸10
𝑂 = 𝑛𝐹𝐸5

𝑂 − 𝑛𝐹𝐸1
𝑂 + 𝑛𝐹𝐸9

𝑂 

𝐸10
𝑂 = 𝐸5

𝑂 − 𝐸1
𝑂 + 𝐸9

𝑂 (36) 
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2) Substituting Equations S89, S93, S97 and S98 into Equation S80 and rearrange this equation 

for 𝐸11
𝑂 givingEquation37fromthemaintext: 

∆𝐺2
𝑂 + ∆𝐺11

𝑂 = ∆𝐺6
𝑂 + ∆𝐺10

𝑂  

−𝑛𝐹𝐸2
𝑂 + (−𝑛𝐹𝐸11

𝑂 ) = −𝑛𝐹𝐸6
𝑂 + (−𝑛𝐹𝐸10

𝑂 ) 

𝑛𝐹𝐸2
𝑂 + 𝑛𝐹𝐸11

𝑂 = 𝑛𝐹𝐸6
𝑂 + 𝑛𝐹𝐸10

𝑂  

𝑛𝐹𝐸11
𝑂 = 𝑛𝐹𝐸6

𝑂 − 𝑛𝐹𝐸2
𝑂 + 𝑛𝐹𝐸10

𝑂  

𝐸11
𝑂 = 𝐸6

𝑂 − 𝐸2
𝑂 + 𝐸10

𝑂  (37) 

 

3) Substituting Equations S96, S99, S102 and S105 into Equation S81 and rearrange this 

equation for 𝐸12
𝑂  giving Equation 38 from the main text: 

∆𝐺12
𝑂 − ∆𝐺15

𝑂 = ∆𝐺9
𝑂 − ∆𝐺18

𝑂  

−𝑛𝐹𝐸12
𝑂 − (−𝑅𝑇𝑙𝑛𝐾𝑎,1) = −𝑛𝐹𝐸9

𝑂 − (−𝑅𝑇𝑙𝑛𝐾𝑎,4) 

𝑛𝐹𝐸12
𝑂 − 𝑅𝑇𝑙𝑛𝐾𝑎,1 = 𝑛𝐹𝐸9

𝑂 − 𝑅𝑇𝑙𝑛𝐾𝑎,4 

𝑛𝐹𝐸12
𝑂 = 𝑛𝐹𝐸9

𝑂 + 𝑅𝑇𝑙𝑛𝐾𝑎,1 − 𝑅𝑇𝑙𝑛𝐾𝑎,4 

𝐸12
𝑂 = 𝐸9

𝑂 +
𝑅𝑇

𝑛𝐹
𝑙𝑛
𝐾𝑎,1
𝐾𝑎,4

 (38) 

 

4) Substituting Equations S90, S94, S99 and S100 into Equation S82 and rearrange this 

equation for 𝐸13
𝑂  giving Equation 39 from the main text: 

∆𝐺3
𝑂 + ∆𝐺13

𝑂 = ∆𝐺7
𝑂 + ∆𝐺12

𝑂  

−𝑛𝐹𝐸3
𝑂 + (−𝑛𝐹𝐸13

𝑂 ) = −𝑛𝐹𝐸7
𝑂 + (−𝑛𝐹𝐸12

𝑂 ) 

𝑛𝐹𝐸3
𝑂 + 𝑛𝐹𝐸13

𝑂 = 𝑛𝐹𝐸7
𝑂 + 𝑛𝐹𝐸12

𝑂  

𝑛𝐹𝐸13
𝑂 = 𝑛𝐹𝐸7

𝑂 − 𝑛𝐹𝐸3
𝑂 + 𝑛𝐹𝐸12

𝑂  

𝐸13
𝑂 = 𝐸7

𝑂 − 𝐸3
𝑂 + 𝐸12

𝑂  

𝐸12
𝑂 = 𝐸9

𝑂 +
𝑅𝑇

𝑛𝐹
𝑙𝑛
𝐾𝑎,1
𝐾𝑎,4

 (39) 

 

5) Substituting Equations S91, S95, S100 and S101 into Equation S83 and rearrange this 

equation for 𝐸14
𝑂  giving Equation 40 from the main text: 

∆𝐺4
𝑂 + ∆𝐺14

𝑂 = ∆𝐺8
𝑂 + ∆𝐺13

𝑂  

−𝑛𝐹𝐸4
𝑂 + (−𝑛𝐹𝐸14

𝑂 ) = −𝑛𝐹𝐸8
𝑂 + (−𝑛𝐹𝐸13

𝑂 ) 

𝑛𝐹𝐸4
𝑂 + 𝑛𝐹𝐸14

𝑂 = 𝑛𝐹𝐸8
𝑂 + 𝑛𝐹𝐸13

𝑂  
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𝑛𝐹𝐸14
𝑂 = 𝑛𝐹𝐸8

𝑂 − 𝑛𝐹𝐸4
𝑂 + 𝑛𝐹𝐸13

𝑂  

𝐸14
𝑂 = 𝐸8

𝑂 − 𝐸4
𝑂 + 𝐸13

𝑂  (40) 

 

6) Substituting Equations S88, S90, S102 and 103 into Equation S84 and rearrange this 

equation for Ka,2 giving Equation 41 from the main text: 

∆𝐺1
𝑂 − ∆𝐺16

𝑂 = ∆𝐺3
𝑂 − ∆𝐺15

𝑂  

−𝑛𝐹𝐸1
𝑂 − (−𝑅𝑇𝑙𝑛𝐾𝑎,2) = −𝑛𝐹𝐸3

𝑂 − (−𝑅𝑇𝑙𝑛𝐾𝑎,1) 

𝑛𝐹𝐸1
𝑂 − 𝑅𝑇𝑙𝑛𝐾𝑎,2 = 𝑛𝐹𝐸3

𝑂 − 𝑅𝑇𝑙𝑛𝐾𝑎,1 

𝑅𝑇𝑙𝑛𝐾𝑎,2 − 𝑅𝑇𝑙𝑛𝐾𝑎,1 = 𝑛𝐹𝐸1
𝑂 − 𝑛𝐹𝐸3

𝑂 

𝑅𝑇𝑙𝑛
𝐾𝑎,2
𝐾𝑎,1

= 𝑛𝐹(𝐸1
𝑂 − 𝐸3

𝑂) 

𝐾𝑎,2
𝐾𝑎,1

= 𝑒𝑥𝑝 [
𝑛𝐹

𝑅𝑇
(𝐸1

𝑂 − 𝐸3
𝑂)] 

𝐾𝑎,2 = 𝐾𝑎,1𝑒𝑥𝑝 [
𝑛𝐹

𝑅𝑇
(𝐸1

𝑂 − 𝐸3
𝑂)] (41) 

 

7) Substituting Equations S89, S91, S103 and 104 into Equation S85 and rearrange this 

equation for Ka,3 giving Equation 42 from the main text: 

∆𝐺2
𝑂 − ∆𝐺17

𝑂 = ∆𝐺4
𝑂 − ∆𝐺16

𝑂  

−𝑛𝐹𝐸2
𝑂 − (−𝑅𝑇𝑙𝑛𝐾𝑎,3) = −𝑛𝐹𝐸4

𝑂 − (−𝑅𝑇𝑙𝑛𝐾𝑎,2) 

𝑛𝐹𝐸2
𝑂 − 𝑅𝑇𝑙𝑛𝐾𝑎,3 = 𝑛𝐹𝐸4

𝑂 − 𝑅𝑇𝑙𝑛𝐾𝑎,2 

𝑅𝑇𝑙𝑛𝐾𝑎,3 − 𝑅𝑇𝑙𝑛𝐾𝑎,2 = 𝑛𝐹𝐸2
𝑂 − 𝑛𝐹𝐸4

𝑂 

𝑅𝑇𝑙𝑛
𝐾𝑎,3
𝐾𝑎,2

= 𝑛𝐹(𝐸2
𝑂 − 𝐸4

𝑂) 

𝐾𝑎,3
𝐾𝑎,2

= 𝑒𝑥𝑝 [
𝑛𝐹

𝑅𝑇
(𝐸2

𝑂 − 𝐸4
𝑂)] 

𝐾𝑎,3 = 𝐾𝑎,2𝑒𝑥𝑝 [
𝑛𝐹

𝑅𝑇
(𝐸2

𝑂 − 𝐸4
𝑂)] (42) 

 

8) Substituting Equations S92, 94, S105 and S106 into Equation S86 and rearrange this 

equation for Ka,5 giving Equation 43 from the main text: 

∆𝐺5
𝑂 − ∆𝐺19

𝑂 = ∆𝐺7
𝑂 − ∆𝐺18

𝑂  

−𝑛𝐹𝐸5
𝑂 − (−𝑅𝑇𝑙𝑛𝐾𝑎,5) = −𝑛𝐹𝐸7

𝑂 − (−𝑅𝑇𝑙𝑛𝐾𝑎,4) 
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𝑛𝐹𝐸5
𝑂 − 𝑅𝑇𝑙𝑛𝐾𝑎,5 = 𝑛𝐹𝐸7

𝑂 − 𝑅𝑇𝑙𝑛𝐾𝑎,4 

𝑅𝑇𝑙𝑛𝐾𝑎,5 − 𝑅𝑇𝑙𝑛𝐾𝑎,4 = 𝑛𝐹𝐸5
𝑂 − 𝑛𝐹𝐸7

𝑂 

𝑅𝑇𝑙𝑛
𝐾𝑎,5
𝐾𝑎,4

= 𝑛𝐹(𝐸5
𝑂 − 𝐸7

𝑂) 

𝐾𝑎,5
𝐾𝑎,4

= 𝑒𝑥𝑝 [
𝑛𝐹

𝑅𝑇
(𝐸5

𝑂 − 𝐸7
𝑂)] 

𝐾𝑎,5 = 𝐾𝑎,4𝑒𝑥𝑝 [
𝑛𝐹

𝑅𝑇
(𝐸5

𝑂 − 𝐸7
𝑂)] (43) 

 

9) Substituting Equations S93, S95, S106 and S107 into Equation S87 and rearrange this 

equation for Ka,6 giving Equation 44 from the main text: 

∆𝐺6
𝑂 − ∆𝐺20

𝑂 = ∆𝐺8
𝑂 − ∆𝐺19

𝑂  

−𝑛𝐹𝐸6
𝑂 − (−𝑅𝑇𝑙𝑛𝐾𝑎,6) = −𝑛𝐹𝐸8

𝑂 − (−𝑅𝑇𝑙𝑛𝐾𝑎,5) 

𝑛𝐹𝐸6
𝑂 − 𝑅𝑇𝑙𝑛𝐾𝑎,6 = 𝑛𝐹𝐸8

𝑂 − 𝑅𝑇𝑙𝑛𝐾𝑎,5 

𝑅𝑇𝑙𝑛𝐾𝑎,6 − 𝑅𝑇𝑙𝑛𝐾𝑎,5 = 𝑛𝐹𝐸6
𝑂 − 𝑛𝐹𝐸8

𝑂 

𝑅𝑇𝑙𝑛
𝐾𝑎,6
𝐾𝑎,5

= 𝑛𝐹(𝐸6
𝑂 − 𝐸8

𝑂) 

𝐾𝑎,6
𝐾𝑎,5

= 𝑒𝑥𝑝 [
𝑛𝐹

𝑅𝑇
(𝐸6

𝑂 − 𝐸8
𝑂)] 

𝐾𝑎,6 = 𝐾𝑎,5𝑒𝑥𝑝 [
𝑛𝐹

𝑅𝑇
(𝐸6

𝑂 − 𝐸8
𝑂)] (44) 

 

 


