Supplementary Information

Visible light driven photocatalytic decolorization and disinfection of water employing reduced TiO₂ nanopowders

Xiaolan Kang^{1‡}, Chrysanthi Berberidou^{2‡*}, Augustinas Galeckas³, Calliope Bazioti³, Einar Sagstuen⁴, Truls Norby¹, Ioannis Poulios², Athanasios Chatzitakis^{1*}

¹Centre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, FERMiO, Gaustadalléen 21, NO-0349 Oslo, Norway

²Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece

³Centre for Materials Science and Nanotechnology, Department of Physics, University of Oslo,

P. O. Box 1048 Blindern, NO-0316 Oslo, Norway

⁴Department of Physics, University of Oslo, P. O. Box 1048 Blindern, NO-0316 Oslo, Norway

Corresponding authors: a.e.chatzitakis@smn.uio.no, cberber@chem.auth.gr

[‡]Equally contributing authors

Figure S1: ABF-STEM images of the same magnification from C-TiO₂ (a) and N-TiO₂ (b). Annealing in NH₃ atmosphere resulted in larger grains reaching a maximum size \sim 25 nm, while the maximum grain size observed after annealing in air was \sim 15 nm.

Figure S2: A higher magnification of the EPR spectra of paramagnetic species in C-TiO₂, H-TiO₂ and N-TiO₂.

Figure S3: High-resolution ABF-STEM image of anatase nanoparticle N-TiO₂ (a) and the corresponding filtered image using g 101 (b). Areas of nano-scale lattice distortion were detected, attributed to accumulation of point defects.

Figure S4: Survey XPS spectra of A-TiO₂ (black), C-TiO₂ (blue), H-TiO₂ (green) and N-TiO₂ (red). Atomic percentages are given on the graph.

Figure S5: XPS spectra of N 1s of A-TiO₂ (black), C-TiO₂ (blue), H-TiO₂ (green) and N-TiO₂ (red).

Figure S6: Recycling experiments of the H-TiO₂ and N-TiO₂ samples for three consecutive cycles of 300 min each. In each round a fresh solution of 5 mg L^{-1} MG was photocatalytically treated by 0.5 g L^{-1} of recovered photocatalyst under visible light illumination.

Figure S7: XRD patterns of the H-TiO₂ (a) and N-TiO₂ (b) samples before and after the recycling experiments of Fig. S6.