
catalysts

Article

Versatile Coordination Polymer Catalyst for Acid Reactions
Involving Biobased Heterocyclic Chemicals

Margarida M. Antunes , Ricardo F. Mendes , Filipe A. Almeida Paz and Anabela A. Valente *

����������
�������

Citation: Antunes, M.M.; Mendes,

R.F.; Paz, F.A.A.; Valente, A.A.

Versatile Coordination Polymer

Catalyst for Acid Reactions Involving

Biobased Heterocyclic Chemicals.

Catalysts 2021, 11, 190. https://

doi.org/10.3390/catal11020190

Academic Editor: Raffaella Mancuso

Received: 10 January 2021

Accepted: 22 January 2021

Published: 1 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro,
3810-193 Aveiro, Portugal; margarida.antunes@ua.pt (M.M.A.); rfmendes@ua.pt (R.F.M.);
filipe.paz@ua.pt (F.A.A.P.)
* Correspondence: atav@ua.pt; Tel.: +351-234370603

Abstract: The chemical valorization/repurposing of biomass-derived chemicals contributes to a
biobased economy. Furfural (Fur) is a recognized platform chemical produced from renewable
lignocellulosic biomass, and furfuryl alcohol (FA) is its most important application. The aromatic
aldehydes Fur and benzaldehyde (Bza) are commonly found in the slate of compounds produced via
biomass pyrolysis. On the other hand, glycerol (Gly) is a by-product of the industrial production of
biodiesel, derived from fatty acid components of biomass. This work focuses on acid catalyzed routes
of Fur, Bza, Gly and FA, using a versatile crystalline lamellar coordination polymer catalyst, namely
[Gd(H4nmp)(H2O)2]Cl·2H2O (1) [H6nmp=nitrilotris(methylenephosphonic acid)] synthesized via an
ecofriendly, relatively fast, mild microwave-assisted approach (in water, 70 ◦C/40 min). This is the
first among crystalline coordination polymers or metal-organic framework type materials studied
for the Fur/Gly and Bza/Gly reactions, giving heterobicyclic products of the type dioxolane and
dioxane, and was also effective for the FA/ethanol reaction. 1 was stable and promoted the target
catalytic reactions, selectively leading to heterobicyclic dioxane and dioxolane type products in the
Fur/Gly and Bza/Gly reactions (up to 91% and 95% total yields respectively, at 90 ◦C/4 h), and, on
the other hand, 2-(ethoxymethyl)furan and ethyl levulinate from heterocyclic FA.

Keywords: biomass; furfural; furfuryl alcohol; glycerol; benzaldehyde; acid catalysis; coordina-
tion polymer

1. Introduction

The conversion of biomass or derived waste/residues/by-products to useful bioprod-
ucts may reduce society’s dependency on fossil fuels and avoid global warming and energy
security issues. A good example concerns glycerol (Gly), a by-product of the biodiesel indus-
try [1]. The biodiesel mandates for transportation fuels imposed by several countries have
accounted for uninterrupted supply of Gly with a forecast annual global market growth
rate of ca. 4% up to 2027 [1–3]. Gly has increasing demand from food (bakery, processed
meat, etc.), cosmetic, personal care, nutraceutical and pharmaceutical industries. Neverthe-
less, as increasing biofuel production and demand for oleochemicals drive the Gly market
growth, it is important to broaden this chemical’s portfolio [1,4–8]. Several valorization
routes of Gly as feedstock were explored, including reactions of oxidation [4,9–18], carboxy-
lation [19–21], carbonylation [4,22], etherification [23–26], esterification [27–37], transesteri-
fication [38–43], hydrogenation [44,45], dehydrogenation [46,47], hydrogenolysis [48–53],
oxidehydration [54], dehydration [55–59], polymerization [60–65], aromatization [66], gasi-
fication [67,68], reforming [51,69–76], acetalization/ketalization [3,19,31–33,35,37,77–94]
and trans-acetalization [95]. The acetalization routes of carbonyl compounds with Gly
are particularly important [3,35,94,96] since they may give versatile cyclic acetals (1,3-
dioxanes, 1,3-dioxolanes), which are useful bio-based solvents [97,98], starting materials in
organic synthesis and protecting group strategies [78,92,93,99], fragrances [78,84,92,99,100],
flavors [92,101], cosmetics [84,93,102], pharmaceuticals [84,93,99,102], food and beverage
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industries [93,102], polymers [99], surfactants, binders [84,103] and oxygenated fuel addi-
tives [3,31,32,35,78,84,87,94,98,99,101,103], among others.

The reactions of Gly with aromatic aldehydes such as furfural (Fur) and benzaldehyde
(Bza)—derived from lignocellulosic biomass (Fur) [104], pyrolysis of vegetable biomass (Fur
and Bza) [105] or oil (Bza)—may give cyclic acetals (Scheme 1) as fuel additives [77,101,106]
with antioxidant, non-toxic and renewable features [84]. Different types of acid catalysts
were studied for the Bza/Gly reaction (organic acids [107], metal chlorides [108], ionic
liquids [109], Keggin-tungstophosphoric acid-based [92], acid resins [77,79,110] and or-
ganic polymers [84], metal or mixed metal oxides [82,111], sulfated metal oxides [33],
zeolites [19,79,82], functionalized silicas [93,102,112], mesoporous silicas or aluminosili-
cates [19,31,32,83,88,113] and silesquioxanes [80]), and for the Fur/Gly reaction (metal chlo-
rides [114], resins [77,106] and organic polymer [84], metal or mixed metal oxides [78,81,99],
mesoporous silicas or aluminosilicate (bulk and supported) catalysts [31,32,101,113–115],
clays [86,106] and lignosulfonated monolith [103]). Nevertheless, heterogeneous acid cat-
alysts are preferable to homogeneous ones in that the former are easier to store/handle,
avoid energy-intensive catalyst separation processes, waste generation and/or corrosion
hazards. To the best of our knowledge, the reactions of Fur/Gly and Bza/Gly have not
yet been investigated using crystalline coordination polymers or metal organic framework
(MOF)-type catalysts, which are versatile hybrid materials.
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Scheme 1. The chemical valorization/repurposing of biomass-derived chemicals such as furfural (Fur), furfuryl alcohol
(FA) and glycerol (Gly). The reactions of Fur/Gly and benzaldehyde/Gly to useful cyclic acetals, and FA/ethanol to furanic
ether (EMF) and levulinate ester (EL).

In this work, the Fur/Gly and Bza/Gly reactions were studied in the presence of
[Gd(H4nmp)(H2O)2]Cl·2H2O (1) [H6nmp=nitrilotris(methylenephosphonic acid)] (Scheme 1),
which is an attractive material in that it may be synthesized via a simple, ecofriendly
microwave-assisted approach using water as solvent, and possesses acid properties for cat-
alytic reactions under relatively mild conditions [116]. 1 also proved effective for removing
sulfur and nitrogen pollutant compounds from diesel-type mixtures [117].

1 is a (two dimensional) crystalline lamellar coordination polymer with Gd3+ centers
({GdO8} coordination polyhedra) and a flexible organic linker (H4nmp2−) (Figure 1) [116].
The organic linker is a zwitterionic species with a protonated central nitrogen atom and
peripheral phosphonate groups, each bearing a single negative charge (PO3H−). The
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phosphonate groups act as µ2-O,O’ bridging moieties, and P=O and P-OH surface groups
are formed. The influence of the reaction conditions and mechanistic and structural features
involved in these catalytic systems are discussed based on experimental studies.
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[Gd(H4nmp)(H2O)2]Cl·2H2O (1).

The catalytic potentialities of 1 were further investigated for converting hetero-
cyclic furfuryl alcohol (FA) to useful bioproducts. FA represents the highest market
volume of Fur, produced from lignocellulosic biomass. Fur and FA have wide appli-
cation profiles [104,118–120]. The reaction of FA with (biomass-derivable) ethanol gives
2-(ethoxymethyl)furan (EMF) and ethyl levulinate (EL) (Scheme 1) [121]. The applications
of EMF include bio-solvent [122], pharmaceuticals, food flavor [123–126], aging flavor
for beer storage [127–131] or white wine [132] and fuel additive [122,124–126,133–137]
since it has a high energy density, cetane number [138] and capacity to reduce soot emis-
sions [124,134,139,140]. On the other hand, EL is an attractive oxygenated fuel extender (its
high oxygen content enhances engine efficiency, improves flow properties, etc. [141,142])
with a promising global market [141,143]. Tian et al. [139] reported that EMF and EL
present superior antiknock features to Euro95 gasoline, and Lange et al. [144] highlighted
the limited footprint CO2 emissions associated with the use of EMF in fuels. To the best of
our knowledge, solely two coordination polymers or MOFs were studied for the conversion
of FA to EMF/EL, namely Hf-UiO-66-SO3H [145] and MIL-101 (Cr)-SO3H [146,147], both
functionalized with sulfonic acid groups.

Hence, 1 is the first of crystalline coordination polymers/MOFs investigated in the
Fur/Gly and Bza/Gly reactions, and the first non-sulfonic acid crystalline coordination
polymer studied in the FA/ethanol reaction. A relatively fast and mild synthesis protocol
of 1, using water as solvent, is reported. 1 effectively promoted the target biomass-related
reactions. The influence of the reaction conditions and insights into the reaction mech-
anism and catalyst structural features contributing to the formation of the cyclic acetals
are reported.

2. Results and Discussion
2.1. General Considerations

The scaled-up synthesis of the hybrid material 1 (Figure 1) was successfully accom-
plished, as confirmed by powder X-ray diffraction, which was similar to that reported in
the literature (Supplementary Figure S1) [117]. Additional characterization studies are
discussed in the catalyst stability Section 2.5. Material 1 was explored as an acid catalyst
for the reactions of Bza (Section 2.2) and Fur (Section 2.3) with Gly, to give heterobicyclic
products. The interest in the repurposing/valorization of Fur, Bza and Gly is related to the
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fact that Fur is an established platform chemical industrially produced from lignocellulosic
biomass, Gly is industrially associated (as a by-product) with biodiesel production and
Fur and Bza are aromatic aldehydes commonly found in the slate of compounds produced
via biomass pyrolysis [105,148,149]. 1 promoted the reactions of Fur/Gly and Bza/Gly,
leading to the corresponding heterobicyclic products of the type dioxolane and dioxane
(five and six membered ring acetals, respectively).

More than 80% of the global Fur produced is converted to furfuryl alcohol (FA) for
several industrial sectors [150]. Broadening the applications of these heterocyclic biobased
chemicals may positively contribute to a biobased economy. Paving the way in this future
direction, the catalytic potential of 1 was herein studied for the acid catalyzed reaction of FA
with ethanol to the useful bioproducts 2-(ethoxymethyl)furan (EMF) and ethyl levulinate
(EL) (Section 2.6) [121,124,127–131,141,151]. The carbon mass balances closed in at least
96% for the Fur/Gly and Bza/Gly reaction systems, and 89% for the FA/ethanol system.

2.2. Reaction of Benzaldehyde and Glycerol to Heterobicyclic Products

Compound 1 was active for the reaction of Bza with Gly, in the temperature range
50–120 ◦C, without adding co-solvent, leading mainly to the corresponding dioxolane
(five membered ring acetal), namely 2-phenyl-1,3-dioxalan-4-yl)methanol, and dioxane
(six membered ring acetal), namely 2-phenyl-1,3-dioxan-5-ol (cis/trans mixture), in high
total yields of up to 97% (90 ◦C, 24 h). Catalyst 1 favored the formation of the dioxane,
formed in a molar ratio dioxane:dioxolane of up to 3. The predominance of the dioxane
product in the Bza/Gly reaction agrees with the literature [97] for various types of catalysts:
MoOx-TiO2-ZrO2 (molar ratio dioxane:dioxolane = 1.13) [111], MoO3/SiO2 (1.48) [93],
TSA-MCM-48 (1.91) [113] and SO4

2−/SnO2 (1.5) [33]. The temperature and molar ratio
Gly:aldehyde are important parameters influencing the catalytic reaction [110]. Hence, the
Bza/Gly system was firstly studied in the presence of 1, using a molar ratio Gly:Bza of
1:2 or 1:3, and a reaction temperature of 90 or 120 ◦C, 24 h (Table 1). Increasing the molar
ratio Gly:Bza from 1:3 to 1:2 led to higher total acetals yield, especially at 90 ◦C (70% and
97% respectively, at 24 h; entries 1 and 2, Table 1). On the other hand, the total acetals
yields were comparable at 90 and 120 ◦C, using Gly:Bza = 1:2 (97% and 94% yield at 24 h
respectively, entries 2 and 4, Table 1). The total acetals yield did not change considerably
between 4 and 24 h reaction at 90 ◦C, likely being thermodynamically limited (95% and
97% respectively, Gly:Bza = 1:2). These results suggested that 1 may favorably operate at
reaction temperatures lower than 120 ◦C, 4 h reaction, using a molar ratio Gly:Bza = 1:2.

Table 1. Influence of the molar ratio Gly:Bza and temperature range 90–120 ◦C on the Bza/Gly
reaction at 24 h, in the presence of 1.

Entry T
(◦C)

Gly:Bza
Molar Ratio

Conv.
(%)

Product Yield (%)

Dioxolane
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the range 2.0–2.8. For each reaction temperature, a 10-fold increase in the catalyst load 
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Total
Acetals

1 90 1:3 73 18 52 70
2 90 1:2 99 24 73 97
3 120 1:3 100 28 65 93
4 120 1:2 98 28 66 94

The influence of the catalyst mass load was thus studied using Gly:Bza = 1:2, at 50,
70 and 90 ◦C, until 4 h reaction (since product yields did not increase considerably after
this time) (Figures 2 and 3). In the studied ranges of reaction conditions, the dioxane and
dioxolane were always the main products, formed in a molar ratio dioxane:dioxolane in
the range 2.0–2.8. For each reaction temperature, a 10-fold increase in the catalyst load
from 3.3 to 33 gcat L−1 enhanced the reaction kinetics (Figure 2) and led to higher total
acetals yield (Figure 3), e.g., 69% and 79% total yield for 3.3 and 33 gcat L−1 respectively,
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at 50 ◦C/4 h, or 85% and 95% total yield for 3.3 and 33 gcat L−1 respectively, at 90 ◦C/4 h.
Nevertheless, 1 was effective at relatively low temperature in that up to 79% total acetals
yield was reached at 50 ◦C/4 h using only 1 wt.% catalyst (based on Gly).

1 
 

 
 
Figure 2. 
 
 
 

 

Scheme 2. 
 

Figure 2. Kinetic profiles of the Bza/Gly reaction in the presence of 1, at 50 ◦C (triangles), 70 ◦C (circles) and 90 ◦C (squares),
using a catalyst load of (a) 3.3 gcat L−1 or (b) 33 gcat L−1.
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Catalyst 1 is, to the best of our knowledge, the first among crystalline
coordination polymers/MOF-type materials studied for the Bza/Gly reaction. Table 2
compares the catalytic results for 1 to literature data for different types of solid acid
catalysts [19,31–33,77,79,80,82–84,86,88,93,102,110–113]. Under similar reaction conditions
to those used by Yamamoto et al. [110] for a cationic resin IRA-120 (entry 7), 1 (entry 6)
led to higher acetals total yield and selectivity (51% and 90% total yield for the resin and 1
respectively, at 90 ◦C/2 h). The sulfonic acid resin Amberlyst-36 led to a higher total acetal
yield (94%) than 1 (69%, Figure 3b) under similar conditions (50 and 58.7 ◦C for 1 and the
resin respectively, at 4 h, using a mass ratio catalyst/Gly = 0.01) [79]. Nevertheless, this
resin was used with chloroform as a (toxic) solvent, whereas no co-solvent was required
for 1. The performance of 1 seemed to compare favorably to that of the sulfonic acid resin
Amberlyst-15 using toluene as a co-solvent (entry 9) [77]. A mixed metal oxide catalyst
MoOx-TiO2-ZrO2 led to lower total acetals yield of 32% at 100 ◦C/0.5 h (entry 10 [111])
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than 1 (58% at 90 ◦C/0.5 h, entry 5), using the same mass ratio catalyst/Gly = 0.01. The
metal oxide catalyst MoO3/SiO2 tested for the Bza/Gly reaction at 100 ◦C/8 h using cata-
lyst/Gly = 0.1, led to 72% total acetals yield (entry 11 [93]), and 1, in the same catalyst/Gly
ratio, led to 76% yield at 90 ◦C/0.5 h (entry 6).

Table 2. Comparison of the results for 1 to literature data for other solid acid catalysts studied for the Bza/Gly reaction to
heterobicyclic products 1.

Entry Catalyst 2

(Solvent)
T

(◦C)
Gly:Bza

(mol)
Cat:Gly

(wt)
t

(h)
Conv.
(%)

Dioxolane
Yield (%)

Dioxane
Yield (%)

Total
Yield (%) Ref

1 1 50 1:2 0.01 0.5/2 10/53 2/18 4/34 6/52 -
2 1 50 1:2 0.1 0.5/2 38/77 12/52 24/21 38/73 -
3 1 70 1:2 0.01 0.5/2 46/73 14/19 30/51 44/70 -
4 1 70 1:2 0.1 0.5/2 67/82 19/21 45/61 64/82 -
5 1 90 1:2 0.01 0.5/2 58/77 17/22 41/53 58/75 -
6 1 90 1:2 0.1 0.5/2 80/91 22/26 54/64 76/90 -
7 Resin IRA-120 90 1:2 0.1 2 85 nm nm 51 [110]

8 Amberlyst-36
(chloroform) 59 1.1:1 0.01 4 nm 56 44 94 [79]

9 Amberlyst-15
(toluene) 70 1:1.1 0.06 4 nm nm nm 70 [77]

10 MoOx-TiO2-ZrO2 100 1:1 0.01 0.5 32 15 17 32 [111]

11 MoO3/SiO2
(toluene) 100 1.1:1 0.1 8 72 29 43 72 [93]

12 Meso-SnO2-T350 100 1:1 0.1 0.5 60 nm 30 30 [82]
13 SO4

2−/SnO2 100 1:1 0.05 0.5 80 32 48 80 [33]

14 Beta (Si/Al = 25)
(chloroform) 59 1.1:1 0.1 6 nm 41 59 94 [79]

15 Beta (Si/Al = 25) 100 1:1 0.1 0.5 60 nm 29 29 [82]

16 W-Beta
(Si/Al = 10) 30 1:1 0.05 1 95 74 21 95 [19]

17 Hf-SBA-15
(t-butanol) 90 1:1 1.09 6 63 15 25 40 [83]

18 Al-SBA-15 100 1:1 0.005 8 72 60 12 72 [32]
19 Al-SBA-15 100 1:1 1.09 8 82 68 14 82 [31]

20 30SiW12/
MCM-41 30 1:1.2 0.11 1 91 68 23 91 [88]

21 40TSA/
MCM-48 30 1:2 0.05 1 99 34 65 99 [113]

22 POSS-SO3H 30 1:1 0.018 2 90 70 20 90 [80]

23 RHASO3H
(toluene) 120 1:2 0.01 8 62 nm nm 62 [112]

24 An-POP-SO3H 40 1:1 0.217 1.5 78 51 24 75 [84]
25 RHABIm-HSO4 120 1:2 0.005 6 54 46 8 54 [102]
26 6BBnU/6 60 2:1 0.05 1 84 50 34 84 [86]

1 nm = not mentioned, reaction temperature (T) and time (t), molar ratio Gly:Bza, mass ratio catalyst:Gly. 2 40TSA-MCM-48 = 12-
tungstosilicic acid (TSA) supported on MCM-48, POSS-SO3H = synthesized through free radical copolymerization of polyhedral oligomeric
vinylsilsesquioxanes (POSS) with sodium p-styrene sulfonate, RHASO3H = rice husk ash (RHA) modified with sulfonic acid groups,
An-POP-SO3H = sulfonic acid functionalized anthracene-derived conjugated porous organic polymer, RHABIm-HSO4 (consisting of
1-butylimidazole (BIm) supported on rice husk ash via 3-chloropropyltriethoxysilane and then sulphated), 6BBnU/6 (sulfuric acid (6 N,
65 ◦C, 10 h) activated bentonite clay).

The catalytic performance of 1 compared favorably to that of commercial zeolite
H-Beta (entry 14, which in turn was better than zeolites H-ZSM-5 and H-Mordenite,
Si/Al = 16–30 [82]) and Hf-SBA-15 (used in a much higher catalyst/Gly mass ratio of
1.09 than that for 1, entry 17 [83]). Sulfated tin oxide (SO4

2−/SnO2, entry 13) led to
80% total acetals yield at 100 ◦C/0.5 h (catalyst/Gly = 0.05) [33], and 1 led to a roughly
comparable 76% total yield at 90 ◦C/0.5 h (catalyst/Gly = 0.1, entry 6). Silicotungstate
supported on MCM-41 (30SiW12/MCM-41, entry 20 [88]), 12-tungstosilicic acid (TSA)
supported on MCM-48 (40TSA-nMCM-48, entry 21 [113]), an oligomeric silsesquioxane
functionalized with sulfonic acid groups (POSS-SO3H, entry 22 [80]) and zeolite Beta loaded
with 16.5 wt.% tungsten (entry 16 [19]) led to 90–99% total acetals yield at 30 ◦C, 1–2 h
(catalyst/Gly = 0.018–0.11), while 1 led to 73% total yield at 50 ◦C/2 h (catalyst/Gly = 0.1,
entry 2). A sulfuric acid (6 N, 65 ◦C, 10 h) activated bentonite clay (6BBnU/6, entry
26 [86]) led to somewhat comparable results to 1: 84% total acetals yield at 60 ◦C/1 h,
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catalyst/Gly = 0.05, versus 70–82% total yield for 1, at 70 ◦C/2 h (catalyst/Gly = 0.01–0.1,
entries 3, 4). Sulfonated silica studied in the Bza/Gly reaction with toluene as solvent
(RHASO3H, entry 23 [112]) led to 62% total acetals yield at 120 ◦C/8 h, whereas 1 led to
similar yield (70%, entry 3) at 70 ◦C/2 h, using the same catalyst/Gly mass ratio of 0.01.
In summary, 1 seemed to stand on a relatively good footing compared to the reported
commercial catalysts (resins, zeolites), and on a comparable good footing to various types
of catalysts prepared at the lab-scale for the Bza/Gly reaction.

2.3. Reaction of Furfural and Glycerol to Heterobicyclic Products

The reaction of Fur/Gly was studied in the presence of 1, in the temperature range
50–90 ◦C, using a molar ratio of Gly:Fur of 1:2 and different catalyst mass loads (Figures 4 and 5).
The reaction products were the five- (1,3-dioxolane) and six (1,3-dioxane)-membered ring
products, namely 2-(furan-2-yl)-1,3-dioxolan-4-yl)methanol and 2-(furan-2-yl)-1,3-dioxan-
5-ol, formed in dioxolane:dioxane molar ratios in the range 1.5–2.5 (at 4 h) for catalyst mass
loads in the range 0.38–76 gcat L−1. Kinetic curves were measured for intermediate catalyst
mass loads of 3.8 and 38 gcat L−1, at the different reaction temperatures (Figure 4). Con-
version increased significantly until 4 h, and only slightly between 4 and 24 h, somewhat
in parallel to literature data [78], e.g., conversion at 30 min/4 h/24 h was 48%/74%/82%
at 50 ◦C, and 74%/93%/96% at 90 ◦C (using 38 gcat L−1, Figure 4b). Without catalyst,
conversion was 36% at 90 ◦C/4 h.
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Figure 4. Kinetic profiles for the Fur/Gly reaction in the presence of 1, at 50 ◦C (triangles), 70 ◦C (circles) or 90 ◦C (squares)
using a catalyst load of (a) 3.8 gcat L−1 or (b) 38 gcat L−1.

Increasing the reaction temperature and/or the catalyst mass load enhanced the
reaction kinetics (Figure 4) and the total acetals yields until 4 h reaction (Figure 5). For
example, the initial catalytic activity increased in the order 106 mol gcat

−1 h−1 (50 ◦C) <
126 mol gcat

−1 h−1 (70 ◦C) < 157 mol gcat
−1 h−1 (90 ◦C), using 38 gcat L−1. At 90 ◦C, a high

total acetals yield of 93% (dioxolane:dioxane = 2.4) was reached at 4 h using 38 gcat L−1,
compared to 73–80% at 50–70 ◦C (Figure 5c). A two-fold increase in the catalyst amount
from 38 to 76 gcat L−1 at 50–90 ◦C enhanced the initial total acetals yields (at 30 min) but
did not significantly influence the catalytic results at 4 h (Figure 5). Noticeably, 1 was fairly
active for the Fur/Gly reaction at relatively low temperature of 50 ◦C, using only 0.1 or
1 wt.% catalyst (relative to Gly), which gave 47% and 61% total acetals yield respectively, at
4 h (dioxolane:dioxane ∼= 1.5, 0.38 and 3.8 gcat L−1, Figure 5a).

A literature survey for the Fur/Gly reaction to dioxane/dioxolane products
indicated that crystalline coordination polymers/MOFs have not yet been
investigated for this reaction. Table 3 compares the catalytic results for 1 (using 3.8 or
38 gcat L−1, at 50–90 ◦C) to literature data for various other types of solid acid
catalysts [31,32,77,78,81,84,86,101,103,106,113–115]. When a work focused on the same
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type of catalyst modified in slightly different fashions, the best results reported in that
work were chosen to be included in Table 3. Catalyst 1 led to a similar acetals’ distribution
(47% and 21% yield of dioxolane and dioxane respectively, entry 6) under milder reaction
conditions to mesoporous Al-SBA-15 (50% and 24% yield of dioxolane and dioxane respec-
tively, entry 7 [31,32]). However, 1 (entry 6) was used in a tenth of the catalyst/Gly mass
ratio compared to Al-SBA-15, a much shorter reaction time (12 and 0.5 h, respectively) and
lower reaction temperature (100 and 90 ◦C, respectively). Mesoporous Fe-Al-SBA-15 used
in catalyst/Gly = 0.54 led to 100% total acetals yield at 100 ◦C/12 h (entry 7 [32]), and an
approximate total yield of 91% was reached for 1 used in a fifth of the catalyst/Gly mass
ratio, at 90 ◦C/24 h (entry 6). SBA-15 functionalized with sulfonic acid groups (SBA-15-SC,
entry 13 [101]) led to 42% total acetals yield at 40 ◦C/4 h (catalyst/Gly = 0.05), while 1 led
to 56% total yield at 50 ◦C/2 h (catalyst/Gly = 0.01, entry 1). In that study, a sulfonated
montmorillonite (MK-10-SC, entry 12 [101]) was more selective to the cyclic acetals than
SBA-15-SC (87% total selectivity at 62% conversion, 40 ◦C/4 h, for MK-10-SC), and 1 used
in a fifth of the catalyst/Gly mass ratio led to at least 98% total selectivity at 62% conversion,
50 ◦C/4 h (entry 1). Mesoporous aluminosilicate of the type MCM-41 led to 80% total
acetals yield at 100 ◦C/2 h (entry 14 [114]), and 1 at slightly lower temperature of 90 ◦C/2 h
led to 76% total yield (entry 6).
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Table 3. Comparison of the results for 1 to literature data for other solid acid catalysts studied for the Fur/Gly reaction to
heterobicyclic products 1.

Entry Catalyst 2

(Solvent)
T

(◦C)
Gly:Fur

(mol)
Cat:Gly

(wt)
t

(h)
Conv.
(%)

Dioxolane
Yield

(%)
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9 Zr-Mont Rt 1:1 0.10 4 84 52 26 78 [106]

10 6BBNu/6 60 2:1 0.05 1 69 37 32 69 [86]
11 ReHectMw 40 1:1 0.05 4 32 12 11 23 [101]
12 MK-10-SC 40 1:1 0.05 4 62 47 7 54 [101]
13 SBA-15-SC 40 1:1 0.05 4 74 38 4 42 [101]
14 Al-MCM-41 100 1:5 0.1 2 nm nm nm 80 [114]
15 TSA-nMCM-48 30 1:2 0.02 0.67 87 37 50 87 [113]

16
H3PW12O40/
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(toluene)

>110 c 1:1.05 0.05 1.67 nm nm nm 89 [115]

17 MoO3/SnO2 rt 1: 1 0.05 0.5 75 45 26 71 [81]
18 WO3/SnO2 rt 1:1 0.05 0.5 67 40 22 62 [81]
19 SO4

2−/SnO2 rt 1:1 0.05 0.5 82 55 27 82 [78]
20 An-POP-SO3H 40 1:1 0.2 1.5 85 64 22 85 [84]

21 Amberlyst-15
(cyclohexane) 70 1:1.1 0.06 4 nm nm nm 80 [77]

22 Amberlite-
IR120 rt 1:1 0.10 4 91 37 19 56 [106]

23 80LS20PS450H+ 100 1:2 0.005 1 93 47 46 93 [103]
1 rt = room temperature, nm = not mentioned, reaction temperature (T) and time (t), molar ratio Gly:Fur, mass ratio catalyst:Gly. 2 Zr-
Mont = Zr-montmorilloniteclay, 6BBNu/6 = sulfuric acid (6 N at 65 ◦C/10 h)-activated bentonite clay; ReHetMW = rhenium supported on
hectorite prepared in a stepwise fashion (aging, ion-exchange) using microwave heating; MK-10-SC = montmorillonite K-10 modified with
sulfonic acid groups using chlorosulfonylphenylethyltrimethoxysilane (CSPTMS)/HCl in methylene chloride; SBA-15-SC = sulfonated
(using CSPTMS) SBA-15; TSA-nMCM-48 = 12-tungstosilicic acid (TSA) supported on MCM-48; An-POP-SO3H = sulfonic acid functionalized
anthracene (An)-derived porous organic polymer (POP); 80LS20PS450H+ = protonated lignosulfonate-based macro/mesoporous monolith.
c Reflux conditions.

A rhenium-containing hectorite ReHectMw used in catalyst/Gly = 0.05 (entry 11 [101])
led to 23% total acetals yield at 40 ◦C/4 h, and 1 in a fifth of the catalyst/Gly ratio led to
37% total yield at 50 ◦C/0.5 h. Very good results were reported for Zr-Montmorillonite
(entry 9 [106]), 12-tungstosilicic acid supported on MCM-48 (TSA-nMCM-48, entry 15 [113])
and a sulfonic acid functionalized organic polymer (An-POP-SO3H, entry 20 [84]), used in
a catalyst/Gly ratio between 0.02 and 0.2, which led to 78–87% total acetals yield in the
temperature range room temperature (rt)–40 ◦C and 0.5–4 h reaction time. Similar results
(78–91% total yield) were reached for 1 with catalyst/Gly = 0.01–0.1, albeit at 90 ◦C/4 h (en-
tries 5, 6). In relation to some of these catalysts [84], the synthesis of 1 is significantly more
simple, not requiring, for example, toxic chlorinated solvents. The tin oxide-based catalysts
MoO3/SnO2 (prepared in a stepwise fashion involving Mo impregnation and calcination
at 650 ◦C, entry 17 [81], and SO4

2−/SnO2, entry 19 [78]) led to 71–82% total acetals yield at
rt/0.5 h (catalyst/Gly = 0.05), while 1 led to a similar result at 50 ◦C/4 h (catalyst/Gly = 0.1,
entry 2). The tungsten/tin oxide WO3/SnO2 (entry 18, prepared in a similar fashion to
MoO3/SnO2 [81]) led to a total acetal yield of 62% at rt/0.5 h (catalyst/Gly = 0.05), which
is similar to 1 at 50 ◦C/4 h used in lower catalyst amount (catalyst/Gly = 0.01, entry 1).
Sulfuric acid (6 N at 65 ◦C/10 h)-activated bentonite clay (6BBNu/6, entry 10 [86]) led to
69% total acetals yield at 60 ◦C/1 h (catalyst/Gly = 0.05), and 1 led to 73% at 50 ◦C/4 h (cat-
alyst/Gly = 0.1, entry 2). Protonic lignosulfonate-based macro/mesoporous 80LS20PS450H+

(synthesized in a multistep fashion involving freeze-dry, pyrolysis, ion exchange) was
tested for the Fur/Gly reaction at 100 ◦C/1 h (entry 23 [103]), leading to similar results
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to 1 at 90 ◦C/4 h, in a higher catalyst:Gly ratio (entry 6), 93% and 91% total acetals yield,
respectively. The performance of 1 seemed somewhat comparable/superior to the acid
resins Amberlyst-15 (80% total yield at 70 ◦C/4 h, cyclohexane as co-solvent, entry 21 [77],
compared to 81% for 1 at 70 ◦C/4 h without cosolvent, entry 4) and Amberlite-IR120 (56%
total yield at rt/4 h, entry 22 [106], compared to 56% for 1 used in a sixth of the catalyst/Gly
mass ratio at 50 ◦C/2 h, entry 1). Overall, the catalytic results for 1 in the Fur/Gly reaction
seemed relatively good among the studied solid acid catalysts.

2.4. Types of Active Species and Mechanistic Insights

The catalytic performance of 1 was compared to that of its synthesis precursors,
namely the free organic ligand H6nmp and the lanthanide oxide Gd2O3, used in equivalent
molar amounts to those added with 1 in a normal catalytic run (using 3.8 gcat L−1). The free
ligand H6nmp was completely soluble in the reaction media and led the 1,3-dioxolane and
1,3-dioxane products in a total yield of 52% (dioxolane:dioxane = 1.5) at 50 ◦C/4 h. These
results are significant considering that 1 led to 73% total yield under similar conditions.
Nevertheless, H6nmp acted as a homogeneous organocatalyst requiring more demanding
catalyst separation processes, in relation to 1. On the other hand, the lanthanide precursor
Gd2O3 led to a sluggish reaction (10% conversion at 50 ◦C/4 h).

The above results suggested that the catalytic activity of 1 seemed to be associated
with Brønsted acidity. The attenuated total reflectance (ATR) FT-IR spectra of the fresh and
used 1 were similar, and different from those of the catalyst synthesis precursors, H6nmp
and Gd2O3 (Figure 6). The fresh and used solids exhibited characteristic bands of the
coordinated organic linker and two very weak bands at ca. 1133 and 919 cm−1 assignable
to νas(PO2) and νas(POH) of PO3H− groups (which may confer Brønsted acidity) [152].
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The solids also exhibited a very broad band in the range 3600–3150 cm−1 assigned
to the ν(O-H) stretching modes of coordinated water (the solvent used in the catalyst
synthesis), a band at ca. 1620 cm−1 due to in-plane deformation δ(H2O) bands of water
molecules and bands in the range 3100–2800 cm−1 due to (as)symmetric ν(C-H) stretching
vibrational modes of the linker (Supplementary Figure S2) [153,154].
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The catalytic reaction may be triggered by interactions between the oxygen atom
of the carbonyl group of the aldehyde reactant and Brønsted acid sites, according to the
mechanistic proposal given in Scheme 2 (exemplified for Fur/Gly) [19,113,155]. Specifically,
the formation of a hemi-acetal in the reaction of the aldehyde with Gly may be followed
by the elimination of a water molecule and formation of a carbocation [79], which, in turn,
suffers an attack involving the inner or terminal hydroxyl group of the Gly molecule, finally
giving the cyclic acetals 1,3-dioxolane and 1,3-dioxane, respectively.

1 
 

 
 
Figure 2. 
 
 
 

 

Scheme 2. 
 

Scheme 2. Mechanistic proposal exemplified for the Fur/Gly reaction, in the presence of 1, leading to the 1,3-dioxolane or
1,3-dioxane acetal products.

2.5. Catalyst Stability and Structural Characterization

The stability of 1 was studied using the catalyst for three 4 h batch runs of the Fur/Gly
reaction at 50 ◦C. The catalyst regeneration simply involved washing and drying between
runs (details in the Experimental Section 3.2). The conversion and products distribution
remained steady in consecutive runs, suggesting that 1 was stable (Figure 7). A contact test
(CT) was performed to confirm that the catalytic reaction was heterogeneous. Specifically,
Gly was added to the liquid phase of the CT of Fur plus 1 and then left to react (details
in the Experimental Section 3.2), which led to 37% conversion at 50 ◦C/4 h. This result
was comparable to that obtained without catalyst (30% at 50 ◦C/4 h) and considerably
inferior to that for a normal catalytic test in the presence of 1 (62–74% conversion, using
3.8–38 gcat L−1), suggesting that the catalytic reaction for 1 is heterogeneous. The molar
ratios Gd:P of the fresh and used catalyst were similar (ca. 0.4), consistent with the results of
the contact test. The elemental mappings of the fresh and used catalysts indicated uniform
distributions of gadolinium and linker (based on phosphorous, Figure 8). No considerable
changes in morphology of the fresh and used catalyst occurred, albeit the particle size
seemed to have decreased somewhat (Supplementary Figure S3 and Figure 8).
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Figure 8. SEM and respective elemental mappings (Gd (green); P (red)) for the fresh (a) and used (b) catalyst 1.

The powder X-ray diffraction (PXRD) patterns of the fresh and consecutively used
solids were similar, suggesting that the crystalline structure of 1 was preserved (Figure 9).
The PXRD patterns of the solids recovered from the Fur/Gly reaction at different tem-
peratures (50, 70 and 90 ◦C) were also similar, suggesting that 1 was thermally stable
(Supplementary Figure S4). The ATR FT-IR spectra of the fresh and used solids were
comparable, suggesting that the chemical features were essentially preserved during the
catalytic reaction (Figure 6 and Supplementary Figure S2).
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2.6. Other Biobased Systems Involving Heterocyclic Compounds

The catalytic potential of 1 was further explored for the acid catalyzed reaction of het-
erocyclic furfuryl alcohol (FA) with ethanol (these two reactants are industrially produced
from vegetable biomass). The main products were 2-(ethoxymethyl)furan (EMF) and ethyl
levulinate (EL), formed in 93% and 95% total yield at 90 and 140 ◦C respectively, 24 h. FA
may be converted to EL via the intermediate formation of the heterocyclic product EMF,
which involves furan ring opening promoted by Brønsted acidity [156–158]. For the FA
reaction at 140 ◦C, the EMF yield decreased from 37% at 1 h to 3% at 24 h, whereas EL
yield increased from 49% to 92% (Figure 10). Other reaction products included angelica
lactone formed in <5% yield. The formation of angelica lactone in the FA/EtOH reaction
was reported in the literature for zeolite ZSM-5 as a catalyst [126,159].

The FA reaction at 90 ◦C in the presence of 1 gave EMF as the main product at 5 h
(52% yield) and EL was formed in 25% yield; after 24 h, EMF and EL yields were 35% and
58%, respectively. These results together with those for FA/ethanol at 140 ◦C indicate that
the products’ distribution is strongly reaction temperature- and time-dependent.

To the best of our knowledge, only two crystalline hybrid materials were reported
in the literature for FA conversion to EMF/EL. Specifically, two MOFs based on hafnium
and chromium functionalized with sulfonic (Brønsted) acid groups, namely Hf-UiO-66-
SO3H [145] and MIL-101(Cr)-SO3H [146,147]. Hf-UiO-66-SO3H led to a moderate EL yield
of 62% at 120 ◦C/2 h [145], and MIL-101(Cr)-SO3H [146,147] led to a somewhat comparable
EL yield to that for 1, but under different conditions. Specifically, at 100% FA conversion
and 140 ◦C, the chromium MOF led to 76–79% EL yield at 2 h, whereas 1 led to 72% EL yield
at 5 h using a lower catalyst/FA mass ratio (0.3 for 1 versus 0.44–1.02 for the chromium
catalyst) and using a more concentrated FA mixture (0.33 M for 1 versus 0.28 M for the
chromium catalyst). The total selectivity (EMF plus EL) was higher for 1 (90%) than for
MIL-101(Cr)-SO3H (79%) [146,147]. A detailed comparison of the catalytic results for 1 to
literature data for other types of solid acid catalysts is given in the Supplementary Material
Section 3 [121,126,134,136,137,145–147,157,160–197]. Overall, the catalytic performance of 1
seemed to stand on an intermediate footing among the various types of solid acid catalysts
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reported in the literature for the FA/ethanol system (e.g., commercial zeolites and acid
resins, and modified metal oxides). For example, the organocatalyst HCC-ML-SO3H led to
a high EL yield of 85% at 90 ◦C/8 h [161], albeit it was used in a catalyst/substrate mass
ratio three times greater than that for 1 (58% EL yield at 90 ◦C/24 h). Nano ZSM-5 led to
91% yield at 140 ◦C/1 h [173], while 1 required 24 h to reach a similar EL yield of 92%, using
a similar FA concentration (0.33–0.39 M) but requiring a much lower catalyst/FA mass
ratio (0.30 for 1 versus 1.02 for ZSM-5). Superior results were reported for HPW-MesoZSM-
5 [193], Ti-HPA [183], Fe-USY [194] and magnetic sulfated zirconia (MSZ) [167], which led
to 91–97% EL yield at 120–130 ◦C and 0.5–5 h (for 1: 72% EL at 140 ◦C/5 h). A higher
FA initial concentration was used for HPW-MesoZSM-5 and MSZ (1.04–3.12 M versus
0.33 M for 1) [193], and a lower catalyst/FA mass ratio was used for HPW-MesoZSM5 [193],
Ti-HPA [183], Fe-USY [194] and MSZ (0.02–0.07 versus 0.33 for 1) [167]. However, MSZ
requires catalyst regeneration at 500 ◦C to keep the catalytic performance steady, whereas 1
does not require thermal regeneration.
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3. Materials and Methods

All reagents and solvents were obtained from commercial sources and used as re-
ceived without further purification, excluding furfural which was distilled prior to use. For
the synthesis of [Gd(H4nmp)(H2O)2]Cl·2H2O (1), gadolinium(III) oxide (>99.99%, Jinan
Henghua Sci. & Tec. Co. Ltd., Jinan, China), nitrilotris(methylenephosphonic acid (H6nmp,
N(CH2PO3H2)3, 97%, Fluka, Algés, Portugal) and hydrochloric acid (HCl, 37% Analytical
Reagent Grade, Fisher Chemical, Waltham, MA, USA) were used. For catalytic tests, fur-
fural (Sigma-Aldrich, 99%), benzaldehyde (Sigma-Aldrich, 99%, Algés, Portugal), glycerol
(Sigma-Aldrich, ≥99.5%, Algés, Portugal), absolute ethanol (Honeywell, >99.8%, Alfragide,
Portugal) and furfuryl alcohol (Aldrich, 99%, Algés, Portugal) were used.

3.1. Catalyst Synthesis and Characterization

The aqueous phase synthesis of [Gd(H4nmp)(H2O)2]Cl·2H2O (1) was based on that
previously reported [116], albeit the synthesis was scaled up to give ca. 0.6 g per batch in
a relatively fast fashion, specifically, within 40 min under microwave irradiation at 70 ◦C
(75 W power) with stirring (details in the Supplementary Material Section 1).

Powder X-ray diffraction (PXRD) data were collected at ambient temperature on an
Empyrean PANalytical diffractometer (Panalytical, Almelo, The Netherlands) (Cu Ka1,2
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X-radiation, λ1 = 1.540598 Å; λ2 = 1.544426 Å), equipped with an PIXcel 1D detector
and a flat-plate sample holder in a Bragg-Brentano para-focusing optics configuration
(45 kV, 40 mA). Intensity data were collected by the step-counting method (step 0.01◦),
in continuous mode, in the range ca. 3.5 ≤ 2θ ≤ 50◦. EDS (energy dispersive X-ray
spectroscopy) data was recorded on a high-resolution Hitachi SU-70 (Monocomp, Madrid,
Spain) working at 15 kV, employing a Sprit 1.9 EDS microanalysis system, and samples
were prepared by deposition on aluminum sample holders followed by carbon coating
using an Emitech K950X carbon evaporator. Attenuated total reflectance (ATR) FT-IR
spectra were measured on a Mattson-7000 infrared spectrophotometer (Dias de Sousa S.A.,
Maia, Portugal) equipped with a Specac Golden Gate Mk II ATR accessory with a diamond
top plate and KRS-5 focusing lenses.

3.2. Catalytic Tests

The reactions of furfural (Fur) and benzaldehyde (Bza) with glycerol (Gly) were carried
out in tubular glass pear-shaped reactors equipped with a TeflonTM-coated magnetic
stirring bar and a valve for purging. The batch reactors were loaded with the reactants in a
molar ratio Gly: aldehyde of 1:2 or 1:3, and 1 or 10 wt.% catalyst (relative to Gly, which
was the limiting reactant). The reaction of furfuryl alcohol (FA, 0.33 M) with ethanol in the
presence of 1 (10 gcat L−1) was carried out using the same type of reactors, at 90 or 140 ◦C.
For comparative purposes, the free linker and gadolinium precursors, namely H6nmp
and Gd2O3 respectively, were tested as catalysts, added in an equivalent molar amount to
that added together with 1 wt.% (based on Gly) of 1. The reactor containing the reaction
mixture was immersed in a thermostatically controlled oil bath preheated at the desired
temperature and stirred at 1000 rpm to avoid diffusional limitations. Blank tests without
catalysts were performed for each substrate.

Prior to sampling, after each assay, the reactor was cooled to ambient temperature and
the solid catalyst was separated by centrifugation at 10,000 rpm. The analyses were always
carried out for fresh samples. The evolution of the catalytic reactions was monitored by gas
chromatography (GC) using an Agilent 7820A GC (Soquímica, Porto, Portugal) equipped
with a capillary column (HP-5, 30 m × 0.32 µm × 0.25 mm) and a flame ionization detector,
and product quantification was based on the external calibration. Individual experiments
were performed for a given reaction time and the presented results are the mean values of
at least two replicates (experimental error < 10%). The product (Prod) yield was calculated
relative to the initial amount of the limiting reactant, Gly, using the formula: 100 × ((molar
concentration of Prod at time t)/(initial molar concentration of Gly)). Conversion was based
on the limiting reactant Gly. For product identification, a Shimadzu QP2010 ultra-GC-MS
(Izasa Scientific, Lisbon, Portugal) equipped with a Phenomenex capillary Zebron ZB5-MS
column (ZB-5, 30 m × 0.25 µm × 0.25 mm) and He as carrier gas was used, as well as
commercial databases Wiley229 and NIST14.

The used catalyst was separated from the reaction mixture by centrifugation at
10,000 rpm, washed with acetone, dried at 85 ◦C overnight and reused for up to three 4 h
batch runs of the Fur/Gly reaction at 50 ◦C. The contact test (CT) was carried out by heating
a stirred suspension of 1 (3.8 gcat L−1) in Fur at 50 ◦C for 4 h, under similar conditions to
those used for a normal catalytic test, but without Gly. The solid catalyst was separated
from the liquid phase by centrifugation at 10,000 rpm and the supernatant liquid phase
was passed through a 220 nm pore size PTFE membrane. Gly was added to the solution
(filtrate) to give an initial Gly concentration of 4.2 M (as for a normal catalytic test), and
this solution was left to react for 4 h at 50 ◦C, with stirring, and finally analyzed by GC.

4. Conclusions

The hybrid catalyst [Gd(H4nmp)(H2O)2]Cl·2H2O (1) was synthesized in aqueous
phase, in a relatively fast, mild fashion (40 min, 70 ◦C), in gram-scale. This material
proved to be an effective solid acid catalyst for synthesizing heterobicyclic products of
the type 1,3-dioxane and 1,3-dioxolane via reactions of biomass-derived furfural (Fur)
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and glycerol (Gly), and of benzaldehyde (fossil fuel or biomass derived) and Gly, without
requiring co-solvents. The catalyst was stable upon reuse via simple washing/drying
procedures, and led to up to 91% total acetals yield in the reaction of Fur/Gly (90 ◦C,
4 h; molar ratio (2-(furan-2-yl)-1,3-dioxolan-4-yl)methanol)/(2-(furan-2-yl)-1,3-dioxan-5-ol)
∼= 2.4), and 95% total acetals yield in the reaction of Bza/Gly (90 ◦C, 4 h; molar ratio of
(2-phenyl-1,3-dioxan-5-ol)/(2-phenyl-1,3-dioxalan-4-yl)methanol) ∼= 2.8); at 24 h/90 ◦C,
the total yields increased to 95% and 97%, respectively. To the best of our knowledge, 1 is
the first among crystalline coordination polymers or metal-organic framework (MOF)-type
materials studied in the literature for these reaction systems. Studies of the influence
of the reaction conditions indicated that a lower Gly:Bza molar ratio and increasing the
temperature and catalyst load enhanced the total cyclic acetals yields. Insights into the
reaction mechanism and catalyst structural features contributing to the formation of cyclic
acetals in these acid catalyzed reactions were put forward. Hybrid 1 seemed to perform
relatively well based on comparative studies to literature data for various types of solid
acid catalysts. Hybrid 1 was further explored for the catalytic conversion of biobased
heterocyclic furfuryl alcohol (FA), industrially produced from Fur, which selectively gave
ethyl levulinate (up to 92% yield, at 140 ◦C, 24 h). Decreasing the reaction temperature
and time favored the formation of the intermediate 2-(ethoxymethyl)furan (52% yield at
5 h/90 ◦C). The performance of 1 compared favorably to that reported in the literature for
the only two MOFs previously studied for the FA/ethanol conversion (the two MOFs were
based on hafnium and chromium functionalized with sulfonic acid groups).

This work included a detailed comparative study of the results for 1 to literature
data for different types of catalysts studied for the target reactions. One may envisage
that the desired product distributions and superior catalytic performances may be met by
exploring the highly versatile (tuneable physicochemical properties) families of crystalline
coordination polymers or MOF-type catalysts for these reaction systems.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4344/
11/2/190/s1, detailed synthesis of 1, Figure S1: Powder X-ray diffraction of [Gd(H4nmp)(H2O)2]Cl·2H2O
(1) simulated (black), synthesized using the previously reported synthetic approach (red) and ob-
tained using the scale-up synthesis in this work, Figure S2: ATR FT-IR spectra of the fresh (a) and
used (b) catalyst (Fur/Gly reaction at 50 ◦C), Figure S3: SEM images of [Gd(H4nmp)(H2O)2]Cl·2H2O
(1) before (a) and after (b) the catalytic reaction of Fur/Gly at 90 ◦C, Figure S4: Powder X-ray diffrac-
tion of [Gd(H4nmp)(H2O)2]Cl·2H2O (1) after the catalytic reaction of Fur/Gly at different reaction
temperatures, Table S1: Comparison of the catalytic results for 1 to literature data for other acid
catalysts studied in the FA/ethanol reaction system, and detailed discussion.
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152. Kołodyńska, D.; Gęca, M.; Siek, M.; Hubicki, Z. Nitrilotris(methylenephosphonic) acid as a complexing agent in sorption of heavy
metal ions on ion exchangers. Chem. Eng. J. 2013, 215, 948–958. [CrossRef]

153. Vilela, S.M.F.; Ananias, D.; Fernandes, J.A.; Silva, P.; Gomes, A.C.; Silva, N.J.O.; Rodrigues, M.O.; Tomé, J.P.C.; Valente, A.A.;
Ribeiro-Claro, P.; et al. Multifunctional micro- and nanosized metal–organic frameworks assembled from bisphosphonates and
lanthanides. J. Mater. Chem. C 2014, 2, 3311–3327. [CrossRef]

154. Monteiro, B.; Fernandes, J.A.; Pereira, C.C.L.; Vilela, S.M.F.; Tome, J.P.C.; Marcalo, J.; Paz, F.A.A. Metal-organic frameworks based
on uranyl and phosphonate ligands. Acta Crystallogr. B 2014, 70, 28–36. [CrossRef] [PubMed]

155. Nanda, M.R.; Yuan, Z.; Qin, W.; Ghaziaskar, H.S.; Poirier, M.-A.; Xu, C.C. Thermodynamic and kinetic studies of a catalytic
process to convert glycerol into solketal as an oxygenated fuel additive. Fuel 2014, 117, 470–477. [CrossRef]

156. Song, D.; An, S.; Sun, Y.; Guo, Y. Efficient conversion of levulinic acid or furfuryl alcohol into alkyl levulinates catalyzed by
heteropoly acid and ZrO2 bifunctionalized organosilica nanotubes. J. Catal. 2016, 333, 184–199. [CrossRef]

157. Guo, H.; Abe, Y.; Qi, X.; Smith, R.L., Jr. Bifunctional carbon Ni/NiO nanofiber catalyst based on 5-sulfosalicylic acid for conversion
of C5/C6 carbohydrates into ethyl levulinate. React. Chem. Eng. 2020, 5, 1759–1767. [CrossRef]

158. Zaccheria, F.; Scotti, N.; Ravasio, N. Solid Acids for the Reaction of Bioderived Alcohols into Ethers for Fuel Applications.
Catalysts 2019, 9, 172. [CrossRef]

159. Zhao, D.; Prinsen, P.; Wang, Y.; Ouyang, W.; Delbecq, F.; Len, C.; Luque, R. Continuous Flow Alcoholysis of Furfuryl Alcohol to
Alkyl Levulinates Using Zeolites. ACS Sustain. Chem. Eng. 2018, 6, 6901–6909. [CrossRef]

160. Islam, M.M.; Bhunia, S.; Molla, R.A.; Bhaumik, A.; Islam, S.M. Organic Solid Acid Catalyst for Efficient Conversion of Furfuryl
Alcohol to Biofuels. ChemistrySelect 2016, 1, 6079–6085. [CrossRef]

161. Zhai, P.; Lv, G.; Cai, Z.; Zhu, Y.; Li, H.; Zhang, X.; Wang, F. Efficient Production of Ethyl Levulinate from Furfuryl Alcohol
Catalyzed by Modified Zirconium Phosphate. ChemistrySelect 2019, 4, 3940–3947. [CrossRef]

162. Zhou, H.; Song, J.; Kang, X.; Hu, J.; Yang, Y.; Fan, H.; Meng, Q.; Han, B. One-pot conversion of carbohydrates into gamma-
valerolactone catalyzed by highly cross-linked ionic liquid polymer and Co/TiO2. RSC Adv. 2015, 5, 15267–15273. [CrossRef]

163. Zhao, G.; Liu, M.; Xia, X.; Li, L.; Xu, B. Conversion of Furfuryl Alcohol into Ethyl Levulinate over Glucose-Derived Carbon-Based
Solid Acid in Ethanol. Molecules 2019, 24, 1881. [CrossRef] [PubMed]

http://doi.org/10.1016/j.apcata.2019.117338
http://doi.org/10.1016/j.fuel.2017.04.027
http://doi.org/10.1016/j.biombioe.2011.10.034
http://doi.org/10.1002/ente.201700594
http://doi.org/10.1039/C6GC01523A
https://www.grandviewresearch.com/industry-analysis/ethyl-levulinate-market
http://doi.org/10.1002/cssc.201100648
http://doi.org/10.1016/j.catcom.2019.03.003
http://doi.org/10.1021/acsomega.9b00480
http://www.ncbi.nlm.nih.gov/pubmed/31172039
http://doi.org/10.1039/C6RA19116A
http://doi.org/10.1016/j.scp.2019.100165
http://doi.org/10.1016/j.proci.2018.05.119
https://www.grandviewresearch.com/industry-analysis/furfuryl-alcohol-market
https://www.grandviewresearch.com/industry-analysis/furfuryl-alcohol-market
http://doi.org/10.1021/acs.iecr.8b00273
http://doi.org/10.1016/j.cej.2012.10.054
http://doi.org/10.1039/c3tc32114b
http://doi.org/10.1107/S2052520613034781
http://www.ncbi.nlm.nih.gov/pubmed/24441125
http://doi.org/10.1016/j.fuel.2013.09.066
http://doi.org/10.1016/j.jcat.2015.10.018
http://doi.org/10.1039/D0RE00153H
http://doi.org/10.3390/catal9020172
http://doi.org/10.1021/acssuschemeng.8b00726
http://doi.org/10.1002/slct.201601285
http://doi.org/10.1002/slct.201900315
http://doi.org/10.1039/C4RA14363A
http://doi.org/10.3390/molecules24101881
http://www.ncbi.nlm.nih.gov/pubmed/31100815


Catalysts 2021, 11, 190 23 of 24

164. Tian, H.; Shao, Y.; Liang, C.; Xu, Q.; Zhang, L.; Zhang, S.; Liu, S.; Hu, X. Sulfated attapulgite for catalyzing the conversion of
furfuryl alcohol to ethyl levulinate: Impacts of sulfonation on structural transformation and evolution of acidic sites on the
catalyst. Renew. Energ. 2020, 162, 1576–1586. [CrossRef]

165. Shao, Y.; Du, W.; Gao, Z.; Sun, K.; Zhang, Z.; Li, Q.; Zhang, L.; Zhang, S.; Liu, Q.; Hu, X.J. Sulfated TiO2 nanosheets catalyzing
conversion of biomass derivatives: Influences of the sulfation on distribution of Brønsted and Lewis acidic sites. Chem. Technol.
Biot. 2020, 95, 1337–1347. [CrossRef]

166. Zhao, G.; Hu, L.; Sun, Y.; Zeng, X.; Lin, L. Conversion of Biomass-Derived Furfuryl Alcohol into Ethyl Levulinate Catalyzed by
Solid Acid in Ethanol. BioResources 2014, 9, 2634–2644. [CrossRef]

167. Tiwari, M.S.; Gawade, A.B.; Yadav, G.D. Magnetically separable sulfated zirconia as highly active acidic catalysts for selective
synthesis of ethyl levulinate from furfuryl alcohol. Green Chem. 2017, 19, 963–976.

168. Zhang, Z.; Yuan, H.; Wang, Y.; Ke, Y.J. Preparation and characterisation of ordered mesoporous SO42−/Al2O3 and its catalytic
activity in the conversion of furfuryl alcohol to ethyl levulinate. Solid State Chem. 2019, 280, 120991. [CrossRef]

169. Shao, Y.; Li, Y.; Sun, K.; Zhang, Z.; Tian, H.; Gao, G.; Li, Q.; Liu, Q.; Liu, Q.; Hu, X. Sulfated Zirconia with Different Crystal Phases
for the Production of Ethyl Levulinate and 5-Hydroxymethylfurfural. Energy Technol. Ger. 2020, 8, 1900951. [CrossRef]

170. Topolyuk, Y.A.; Nekhaev, A.I. Functionalized nanocarbon materials as catalysts for the ethanolysis of furfuryl alcohol. Mendeleev
Commun. 2018, 28, 93–95. [CrossRef]

171. Guo, H.; Hirosaki, Y.; Qi, X.; Smith, R.L. Synthesis of ethyl levulinate over amino-sulfonated functional carbon materials. Renew.
Energ. 2020, 157, 951–958. [CrossRef]

172. Wang, Y.; Zhao, D.; Triantafyllidis, K.S.; Ouyang, W.; Luque, R.; Len, C. Microwave-assisted catalytic upgrading of bio-based
furfuryl alcohol to alkyl levulinate over commercial non-metal activated carbon. Mol. Catal. 2020, 480, 110630. [CrossRef]

173. Wu, J.; Shao, Y.; Jing, G.; Zhang, Z.; Ye, Z.; Hu, X.J. Design of graphene oxide by a one-pot synthetic route for catalytic conversion
of furfural alcohol to ethyl levulinate. Chem. Technol. Biotechnol. 2019, 94, 3093–3101. [CrossRef]

174. Zhu, S.; Chen, C.; Xue, Y.; Wu, J.; Wang, J.; Fan, W. Graphene Oxide: An Efficient Acid Catalyst for Alcoholysis and Esterification
Reactions. ChemCatChem 2014, 6, 3080–3083. [CrossRef]

175. Russo, P.A.; Antunes, M.M.; Neves, P.; Wiper, P.V.; Fazio, E.; Neri, F.; Barreca, F.; Mafra, L.; Pillinger, M.; Pinna, N.; et al.
Mesoporous carbon–silica solid acid catalysts for producing useful bio-products within the sugar-platform of biorefineries. Green
Chem. 2014, 16, 4292–4305.

176. Russo, P.A.; Antunes, M.M.; Neves, P.; Wiper, V.P.; Fazio, E.; Neri, F.; Barreca, F.; Mafra, L.; Pillinger, M.; Pinna, N.; et al. Solid
acids with SO3H groups and tunable surface properties: Versatile catalysts for biomass conversion. J. Mater. Chem. A 2014, 2,
11813–11824. [CrossRef]

177. Gao, X.; Peng, L.; Li, H.; Chen, K. Formation of Humin and Alkyl Levulinate in the Acid-catalyzed Conversion of Biomass-derived
Furfuryl Alcohol. BioResources 2015, 10, 6548–6564.

178. Onkarappa, S.B.; Bhat, N.S.; Dutta, S. Preparation of alkyl levulinates from biomass-derived 5-(halomethyl)furfural (X = Cl, Br),
furfuryl alcohol, and angelica lactone using silica-supported perchloric acid as a heterogeneous acid catalyst. Biomass Convers.
Biorefin. 2020, 10, 849–856. [CrossRef]

179. Zhang, Z.; Wang, P.; Wu, Z.; Yue, C.; Wei, X.; Zheng, J.; Xiang, M.; Liu, B. Efficient synthesis of niobium pentoxide nanowires and
application in ethanolysis of furfuryl alcohol. RSC Adv. 2020, 10, 5690–5696.

180. Skrodczky, K.; Antunes, M.M.; Han, X.; Santangelo, S.; Scholz, G.; Valente, A.A.; Pinna, N.; Russo, P.A. Niobium pentoxide
nanomaterials with distorted structures as efficient acid catalysts. Commun. Chem. 2019, 2, 129. [CrossRef]

181. Ren, D.; Fu, J.; Li, L.; Liu, Y.; Jin, F.; Huo, Z. Efficient conversion of biomass-derived furfuryl alcohol to levulinate esters over
commercial α-Fe2O3. RSC Adv. 2016, 6, 22174–22178. [CrossRef]

182. Chada, R.R.; Koppadi, K.S.; Enumula, S.S.; Kondeboina, M.; Kamaraju, S.R.R.; Burri, D.R. Effect of WOx Doping into Pt/SiO2
Catalysts for Glycerol Hydrogenolysis to 1,3-Propanediol in Liquid Phase. Catal. Lett. 2018, 148, 1731–1738. [CrossRef]

183. Lingaiah, N. One pot selective transformation of biomass derived chemicals towards alkyl levulinates over titanium exchanged
heteropoly tungstate catalysts. Catal. Today 2018, 309, 269–275.

184. Neves, P.; Russo, P.A.; Fernandes, A.; Antunes, M.M.; Farinha, J.; Pillinger, M.; Ribeiro, M.F.; Castanheiro, J.E.; Valente, A.A.
Mesoporous zirconia-based mixed oxides as versatile acid catalysts for producing bio-additives from furfuryl alcohol and glycerol.
Appl. Catal. A Gen. 2014, 487, 148–157. [CrossRef]

185. Guo, Q.; Yang, F.; Liu, X.; Sun, M.; Guo, Y.; Wang, Y. Low-cost synthesis of nanoaggregate SAPO-34 and its application in the
catalytic alcoholysis of furfuryl alcohol. Chin. J. Catal. 2020, 41, 1772–1781. [CrossRef]

186. Wang, M.-Y.; Su, H.; Zhai, G.-Y.; Yu, Q.-Y.; Wang, H.-H.; Jiang, Z.-D.; Li, X.-H.; Chen, J.-S. Synergy of B and Al Dopants in
Mesoporous MFI Nanocrystals for Highly Selective Alcoholysis of Furfuryl Alcohol into Ethyl Levulinate. Energy Technol. Ger.
2019, 7, 1900271. [CrossRef]

187. Nandiwale, K.Y.; Pande, A.M.; Bokade, V.V. One step synthesis of ethyl levulinate biofuel by ethanolysis of renewable furfuryl
alcohol over hierarchical zeolite catalyst. RSC Adv. 2015, 5, 79224–79231. [CrossRef]

188. Lange, J.-P.; van de Graaf, W.D.; Haan, R.J. Conversion of Furfuryl Alcohol into Ethyl Levulinate using Solid Acid Catalysts.
ChemSusChem 2009, 2, 437–441. [CrossRef]

189. Cao, Q.; Guan, J.; Peng, G.; Hou, T.; Zhou, J.; Mu, X. Solid acid-catalyzed conversion of furfuryl alcohol to alkyl tetrahydrofurfuryl
ether. Catal. Commun. 2015, 58, 76–79. [CrossRef]

http://doi.org/10.1016/j.renene.2020.09.113
http://doi.org/10.1002/jctb.6318
http://doi.org/10.15376/biores.9.2.2634-2644
http://doi.org/10.1016/j.jssc.2019.120991
http://doi.org/10.1002/ente.201900951
http://doi.org/10.1016/j.mencom.2018.01.032
http://doi.org/10.1016/j.renene.2020.05.103
http://doi.org/10.1016/j.mcat.2019.110630
http://doi.org/10.1002/jctb.6116
http://doi.org/10.1002/cctc.201402574
http://doi.org/10.1039/C4TA02320J
http://doi.org/10.1007/s13399-020-00791-1
http://doi.org/10.1038/s42004-019-0231-3
http://doi.org/10.1039/C5RA24319J
http://doi.org/10.1007/s10562-018-2371-y
http://doi.org/10.1016/j.apcata.2014.08.042
http://doi.org/10.1016/S1872-2067(20)63604-X
http://doi.org/10.1002/ente.201900271
http://doi.org/10.1039/C5RA13520F
http://doi.org/10.1002/cssc.200800216
http://doi.org/10.1016/j.catcom.2014.08.030


Catalysts 2021, 11, 190 24 of 24

190. Enumula, S.S.; Koppadi, K.S.; Gurram, V.R.B.; Burri, D.R.; Kamaraju, S.R.R. Conversion of furfuryl alcohol to alkyl levulinate fuel
additives over Al2O3/SBA-15 catalyst. Sustain. Energy Fuels 2017, 1, 644–651. [CrossRef]

191. Neves, P.; Lima, S.; Pillinger, M.; Rocha, S.M.; Rocha, J.; Valente, A.A. Conversion of furfuryl alcohol to ethyl levulinate using
porous aluminosilicate acid catalysts. Catal. Today 2013, 218, 76–84. [CrossRef]

192. Neves, P.; Antunes, M.M.; Russo, P.A.; Abrantes, J.P.; Lima, S.; Fernandes, A.; Pillinger, M.; Rocha, S.M.; Ribeiro, M.F.; Valente,
A.A. Production of biomass-derived furanic ethers and levulinate esters using heterogeneous acid catalysts. Green Chem. 2013, 15,
3367–3376. [CrossRef]

193. Nandiwale, K.Y.; Pande, A.M.; Bokade, V.V. HPW anchored Meso-HZ-5, a novel catalyst for selective synthesis of ethyl levulinate
biofuel by alcoholysis of biomass-derived furfuryl alcohol. Environ. Prog. Sustain. 2018, 37, 1736–1742. [CrossRef]

194. Kong, X.; Zhang, X.; Han, C.; Li, C.; Yu, L.; Liu, J. Ethanolysis of biomass based furfuryl alcohol to ethyl levulinate over Fe
modified USY catalyst. Mol. Catal. 2017, 443, 186–192. [CrossRef]

195. Song, D.; An, S.; Sun, Y.; Zhang, P.; Guo, Y.; Zhou, D. Ethane-Bridged Organosilica Nanotubes Functionalized with Arenesulfonic
Acid and Phenyl Groups for the Efficient Conversion of Levulinic Acid or Furfuryl Alcohol to Ethyl Levulinate. ChemCatChem
2016, 8, 2037–2048. [CrossRef]

196. Song, D.; An, S.; Lu, B.; Guo, Y.; Leng, J. Arylsulfonic acid functionalized hollow mesoporous carbon spheres for efficient
conversion of levulinic acid or furfuryl alcohol to ethyl levulinate. Appl. Catal. B Environ. 2015, 179, 445–457.

197. An, S.; Song, D.; Lu, B.; Yang, X.; Guo, Y.H. Morphology Tailoring of Sulfonic Acid Functionalized Organosilica Nanohybrids for
the Synthesis of Biomass-Derived Alkyl Levulinates. Chem. Eur. J. 2015, 21, 10786–10798. [CrossRef]

http://doi.org/10.1039/C6SE00103C
http://doi.org/10.1016/j.cattod.2013.04.035
http://doi.org/10.1039/c3gc41908h
http://doi.org/10.1002/ep.12822
http://doi.org/10.1016/j.mcat.2017.10.011
http://doi.org/10.1002/cctc.201600083
http://doi.org/10.1002/chem.201501219

	Introduction 
	Results and Discussion 
	General Considerations 
	Reaction of Benzaldehyde and Glycerol to Heterobicyclic Products 
	Reaction of Furfural and Glycerol to Heterobicyclic Products 
	Types of Active Species and Mechanistic Insights 
	Catalyst Stability and Structural Characterization 
	Other Biobased Systems Involving Heterocyclic Compounds 

	Materials and Methods 
	Catalyst Synthesis and Characterization 
	Catalytic Tests 

	Conclusions 
	References

