
catalysts

Communication

Synthesis of Au or Pt@Perovskite Nanocrystals via
Interfacial Photoreduction

Jing Zhang 1, Li Wang 1, Wenwen Liu 1, Mengsha Cao 1, Jing Zhang 1, Ningyi Yuan 1, Shuai Zhang 1,*
and Zhongze Gu 2,*

����������
�������

Citation: Zhang, J.; Wang, L.; Liu, W.;

Cao, M.; Zhang, J.; Yuan, N.; Zhang,

S.; Gu, Z. Synthesis of Au or

Pt@Perovskite Nanocrystals via

Interfacial Photoreduction. Catalysts

2021, 11, 174. https://doi.org/

10.3390/catal11020174

Academic Editor: Detlef

W. Bahnemann

Received: 13 December 2020

Accepted: 25 January 2021

Published: 27 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, School of Materials Science
and Engineering, Changzhou University, Changzhou 213164, China; 19085204534@smail.cczu.edu.cn (J.Z.);
18000147@smail.cczu.edu.cn (L.W.); 18000507@smail.cczu.edu.cn (W.L.);
19085204700@smail.cczu.edu.cn (M.C.); zhangjing1984@cczu.edu.cn (J.Z.); nyyuan@cczu.edu.cn (N.Y.)

2 State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
* Correspondence: shuaizhang@cczu.edu.cn (S.Z.); gu@seu.edu.cn (Z.G.)

Abstract: The surface modification of perovskite nanocrystals (NCs) (i.e., their decoration with noble
metals) holds great promise with respect to the tailoring of their properties but has remained a
challenge because perovskite NCs are extremely sensitive to water and alcohols. In this study, Au
or Pt@CsPbBr3 NCs were successfully synthesized by photoreduction at the water/hexane inter-
face. First, Cs4PbBr6 NCs were synthesized through the hot-injection method. Then, Cs4PbBr6 was
transformed into CsPbBr3 and subjected to noble metal modification, both at the interface. The syn-
thesized CsPbBr3 NCs exhibited a cubic perovskite phase and had an average size of approximately
13.5 nm. The deposited Au and Pt nanoparticles were crystalline, with a face-centered cubic lattice
and average diameters of approximately 3.9 and 4.4 nm, respectively. The noble metal modification
process had almost no effect on the steady-state photoluminescence (PL) emission wavelength but
affected the charge-recombination kinetics of the CsPbBr3 NCs. Time-resolved PL decay spectral
analysis indicated that the fluorescence lifetimes of the Au and Pt@CsPbBr3 NCs were shorter than
those of the pure CsPbBr3 NCs, probably owing to the quenching of the free charges because of
electron transfer from the perovskite to the noble metal nanoparticles.

Keywords: perovskite nanocrystals; noble metal; interface; photoreduction

1. Introduction

Organic–inorganic lead halide perovskite (OIHP) materials with a general ABX3
(A = organic cation, B = metal cation, and X = halide anion) formula have attracted
significant attention in the field of optoelectronics because of their unique optical and
semiconducting characteristics [1–3]. For instance, their use has rapidly increased the
power conversion efficiency of solar cells from 3.81% [4] to more than 25% [5] within a few
years. However, owing to the instability of OIHP, including its extreme sensitivity to oxygen
and moisture, as well as its poor photo- and thermostability [6], a number of perovskite
analogues have been developed. Replacing the A-site organic groups with inorganic cations
to construct all-inorganic halide perovskites (IHPs) is a potential strategy for improving
the stability of OIHP while maintaining its optical and electrical properties [7].

Cesium lead halide perovskite (CsPbX3) nanocrystals (NCs), an IHP material, show
great promise for use in a range of fields owing to their high photoluminescence quantum
yield, narrow emission width, and tunable band gap, which covers the entire visible
range [8]. They were first reported by the Kovalenko group in 2015 [9]. Since then,
considerable progress has been made in the synthesis of CsPbX3 NCs. For instance, the
hot-injection method [10,11], the solvothermal method [12], ultrasonication [13], room-
temperature precipitation [14], and chemical vapor deposition [15] have been employed to
prepare CsPbX3 NCs with controllable shapes and compositions.
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Although the advances made in the synthesis of CsPbX3 NCs have been impressive,
it is known that heterostructured NCs formed by tailoring the properties of two or more
dissimilar materials usually exhibit several interesting functionalities. An example is the
surface modification of CsPbX3 NCs at the individual particle level [16,17]. However, it
remains a challenge to use conventional sol-gel methods for surface modification of CsPbX3
NCs because of their water and alcohol intolerance. Recently, Hu et al. demonstrated an
effective sol-gel process for modifying the surfaces of CsPbX3 NCs at the interface of water
and a nonpolar solvent and were able to produce CsPbX3/metal oxide Janus NCs with
improved stability [17]. Thus, interfacial synthesis is the key to preparing heterostructured
NCs and is different from the other reported methods for preparing CsPbX3/metal [18,19]
and CsPbX3/SiO2 [20] heterostructures. Inspired by their report, herein, we performed
photoreduction at the water/hexane interface to produce noble metal@CsPbBr3 NCs. First,
Cs4PbBr6 NCs were synthesized through the hot-injection method. Subsequently, the
Cs4PbBr6 was transformed into CsPbBr3 and subjected to noble metal modification, both at
the interface. Owing to the localized surface plasmon resonance effect [21], high catalytic
activity [22], and ease of charge separation [23] of the noble metal nanoparticles, the
noble metal@CsPbX3 NCs have the potential to play an important role in photodetectors,
light-emitting diodes (LEDs), solar cells, and photocatalysts.

2. Results and Discussion

We propose the following mechanism to explain the synthesis process (Figure 1).
When the hexane suspension containing the Cs4PbBr6 NCs comes in contact with water,
the Cs4PbBr6 is transformed into CsPbBr3, which accompanies the stripping of CsBr
through the hexane/water interface and removing partial hydrophobic capping ligands
(i.e., oleic acid (OA) and oleylamine (OAm)) [17]. Subsequently, the noble metal precursor in
contact with the interface reacts with the electrons photogenerated from CsPbBr3 (methanol
was used as a sacrificial agent). According to a previous report [8], the CsPbBr3 NCs
obtained through this water-triggered transformation process exhibit enhanced stability
against moisture compared with those formed through the hot-injection method. Thus,
Cs4PbBr6 NCs were chosen to prepare the Au or Pt@CsPbBr3 NCs instead of CsPbBr3 NCs
presynthesized by the hot-injection method.
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To explore the morphologies of the synthesized Cs4PbBr6 and CsPbBr3 NCs, transmis-
sion electron microscopy (TEM) imaging was performed. Figure 2a shows that the original
Cs4PbBr6 NCs are quasispherical with an average diameter of approximately 13.9 nm. The
high-resolution TEM (HRTEM) image in the inset clearly shows that the lattice spacing is
0.122 nm and is in good agreement with that of the (1 0 1) plane of rhombohedral Cs4PbBr6.
The size distribution of the NCs was relatively narrow (Figure 2b), indicating that the NC
growth process was well controlled. After the water-triggered transformation process, the
NCs show a cube-like structure with an average edge length of approximately 13.5 nm.
Further, the d-spacing of 0.152 nm, as measured using the HRTEM image (Figure 2c and
its inset), could be assigned to the (1 1 1) plane of cubic CsPbBr3. The size distribution of
these NCs was similar to that of the Cs4PbBr6 NCs (Figure 2d).
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Figure 2. TEM images and size distributions of Cs4PbBr6 (a) and CsPbBr3 NCs (b).

The transformation was also monitored through ultraviolet (UV)-visible (vis) absorp-
tion and photoluminescence (PL) measurements. As shown in Figure 3a, two sharp peaks
were observed at 230 and 314 nm (solid black line). These could be assigned to the pris-
tine Cs4PbBr6 NCs [24]. The spectrum shows that the Cs4PbBr6 NC suspension did not
exhibit any distinct absorption peaks in the visible-light region, in accordance with the
colorless appearance of the suspension. After the reaction with water, the sharp peak at
314 nm disappeared and a new absorption peak emerged at approximately 510 nm (solid
red line), indicating the transformation of Cs4PbBr6 into CsPbBr3. The corresponding PL
spectrum shows a sharp peak at 532 nm, with a small full-width-at-half-maximum value.
Figure 3b shows the X-ray diffraction (XRD) pattern of the original Cs4PbBr6 NCs, as well
as that of the product after the water-triggered transformation. The Cs4PbBr6 NCs exhibit
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a rhombohedral phase, and the diffraction peaks at approximately 22.4◦, 27.8◦, 28.7◦, 29.0◦,
and 30.4◦ correspond to the (101), (610), (230), (121), and (330) planes, respectively [17]. On
the other hand, the product formed after the water treatment exhibits a pure cubic CsPbBr3
perovskite phase, and its diffraction pattern contains peaks related to the (100), (110), and
(200) planes [17]. These results confirm that a change in the crystal structure from Cs4PbBr6
to CsPbBr3 was successfully realized at the water/hexane interface.
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of Cs4PbBr6 and CsPbBr3 NCs. The background of XRD patterns in (b) is shifted because of artificial
translation of Y-axis.

Figure 4 shows the TEM images of the Au or Pt@CsPbBr3 hybrid NCs prepared
by reacting Cs4PbBr6 NCs with the corresponding noble metal precursor under light
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irradiation at the water/hexane interface. These hybrid NCs were similar in shape and size
to the pure CsPbBr3 NCs shown in Figure 1c. Moreover, the Au and Pt nanoparticles were
deposited randomly on the surfaces of the CsPbBr3 NCs, and their sizes were relatively
small, at 3.9 and 4.4 nm, respectively. The HRTEM images show that the formed Au and
Pt nanoparticles are crystalline with d-spacings of 0.106 and 0.090 nm, respectively, which
correspond to the face-centered cubic (fcc) Au (400) (JCPDS Card No. 04–0784) and Pt
(331) planes (JCPDS Card No. 70–2057), respectively. These results confirmed that the
photoreduction reaction had been carried out successfully at the water/hexane interface.
The X-ray photoelectron spectroscopy (XPS) survey scans of Au@CsPbBr3 and Pt@CsPbBr3
NCs are presented in the left of Figure 5, in which the presence of Cs, Pb, Br, and Au (or
Pt) elements is confirmed. In the high-resolution XPS spectra (the right part of Figure 5),
doublet peaks containing a low energy band (Au4f7/2) and a high energy band (Au4f5/2)
are observed at 84.0 and 87.7 eV for Au@CsPbBr3, respectively, and 71.0 (Pt4f7/2) and
74.3 eV (Pt4f5/2) for Pt@CsPbBr3, which are assigned to metallic Au(0) or Pt(0) [25,26]. The
results demonstrate that the noble metal precursors can be effectively reduced through the
interfacial photoreduction.
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Successful deposition of the Au or Pt nanoparticles was also verified through UV-vis
absorption measurements. Figure 6a shows the absorption spectra of suspensions contain-
ing the different NCs. Compared with the peaks of the pure CsPbBr3 NCs, the absorption
edges of the Au@CsPbBr3 and Pt@CsPbBr3 NCs exhibited a red shift. Furthermore, the
Pt@CsPbBr3 NCs showed enhanced absorption for wavelengths greater than 520 nm, while
the Au@CsPbBr3 NCs showed additional weak absorption peaks at 420–450 nm. These
differences in the absorption spectra may be attributed to the surface plasmonic resonance
effect of the deposited noble metal nanoparticles [16]. All the NCs exhibited PL emission
peaks at 532 nm, and their full-width-at-half-maximum values were also similar (Figure 6b).
A bright-green PL emission was observed under UV-light irradiation (Figure 6c). Time-
resolved PL (TRPL) measurements were performed to study charge transfer from the
perovskite NCs to the noble metal nanoparticles. The TRPL decay data (Figure 6d) were
fitted using a biexponential function of time, t, as shown in Equation (1), and the fitted data
are listed in Table 1.

I (t) = A1e−t/τ1 + A2e−t/τ2 (1)

where t is the time after optical excitation, I (t) is the luminescence intensity at t, τ1 is the
fast transient lifetime related to the charge-trapping process (nonradiative recombination),
τ2 is the slow lifetime attributed to the intrinsic band-to-band recombination (radiative
recombination) [27], and A1 and A2 are coefficients corresponding to the contributions of
the fast and slow lifetimes, respectively [28]. The τ2 value of the Au or Pt@CsPbBr3 NCs
was much smaller than that of the pure CsPbBr3 NCs (Table 1). This can be ascribed to the
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quenching of the free charges because of electron transfer from the perovskite to the noble
metal nanoparticles.
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Table 1. Fitting parameters for TRPL spectra shown in Figure 6d.

τ1 (ns) A1 τ2 (ns) A2

CsPbBr3 14.8 0.94 59.4 0.06
Au@CsPbBr3 NCs 7.03 0.95 28.2 0.05
Pt@CsPbBr3 NCs 2.49 0.96 9.97 0.04

3. Materials and Methods

Materials: Cesium carbonate (Cs2CO3, 99.99%), lead (II) bromide (PbBr2, 99.99%), OA
(90%), OAm (80%), 1-octadecene (ODE, 90%), and dihydrogen hexachloroplatinate(IV)
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hexahydrate (H2PtCl6·6H2O, AR) were purchased from Shanghai Aladdin Biochemical
Technology Co., Ltd. (Shanghai, China). Hexane and methanol (99.5%) were purchased
from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Gold(III) chloride trihy-
drate (HAuCl4·3H2O, 99.9%) was obtained from China National Pharmaceutical Group
Co., Ltd. (Beijing, China). All chemicals were used without further purification.

Synthesis of Cs4PbBr6 NCs: The Cs4PbBr6 NCs were prepared using the hot-injection
method [17]. A cesium oleate solution was prepared by mixing 0.32 g of Cs2CO3 (0.98 mmol),
1 mL of OA, and 16 mL of ODE in a 100-mL three-neck flask. The solution was dried for
1 h at 120 ◦C under vacuum and then heated in an Ar atmosphere to 150 ◦C until all the
Cs2CO3 had reacted with OA. During a typical run to synthesize the Cs4PbBr6 NCs, OAm
(2 mL), OA (2 mL), ODE (20 mL), and PbBr2 (0.4 mmol) were added to a 100-mL three-neck
flask and dried under vacuum for 1 h. The reaction mixture was then heated to 140 ◦C.
Next, 8.8 mL of a hot cesium oleate solution was rapidly injected into the PbBr2 solution.
After 6 s, the reaction mixture was immersed in an ice-water bath for immediate cooling.
The product was centrifuged at 12,000 rpm for 5 min to remove the ODE and unreacted OA
as well as the OAm. The precipitate was collected and redispersed in hexane and then cen-
trifuged at 3000 rpm for 5 min to remove the oversized Cs4PbBr6 NCs. The concentration
of the Cs4PbBr6 NC suspension was adjusted to 1 mg/mL for further synthesis.

Synthesis of Pt@CsPbBr3 NCs: During a typical synthesis process, 0.1 mL of methanol
was mixed with 0.4 mL of an aqueous H2PtCl6·6H2O solution (1.448 mM), and the mixture
was injected into 10 mL of the Cs4PbBr6 NC suspension. The system was irradiated with a
halogen lamp (~20 mW/cm2) for 1 h under vigorous stirring and then kept undisturbed
under the ambient conditions for 12 h. The product was centrifuged at 6000 rpm for 5 min.
The precipitates were discarded, and the supernatant was collected for characterization.

Synthesis of Au@CsPbBr3 NCs: The synthesis procedure was similar to that for
Pt@CsPbBr3 NCs, except that an aqueous HAuCl4·3H2O solution (1.904 mM) was used.

Synthesis of CsPbBr3 NCs. The synthesis procedure was similar to that of the
Pt@CsPbBr3 NCs, except that pure water without a metal precursor or methanol was used.

Characterization: The UV-vis absorption spectra were recorded using a Shimadzu
UV-vis spectrophotometer (UV3600) (Shimadzu, Kyoto, Japan). The morphologies of the
NCs were characterized by means of TEM (JEOL JEM-2100HR) (JEOL Ltd., Tokyo, Japan).
For the XRD measurements, the NC suspensions were cast on cleaned glass substrates and
dried. The measurements were performed using a Rigaku diffractometer (D/max 2500 PC)
(Rigaku Corporation, Akishima, Tokyo, Japan) and Cu Kα radiation. XPS analysis was
carried out using PHI Quantera II (Ulvac-PHI, Kanagawa, Japan). The PL and TRPL decay
measurements were performed using a Horiba DeltaFlex PL system (Horiba, Tokyo, Japan)
with a 520-nm pulsed laser for excitation at approximately 25 ◦C.

4. Conclusions

In this study, Au and Pt@CsPbBr3 NCs were successfully synthesized via a reaction at
the water/hexane interface, which involved the transformation of Cs4PbBr6 into CsPbBr3
and its subsequent modification with a noble metal. The prepared CsPbBr3 NCs exhibited
a cubic perovskite phase and an average size of approximately 13.5 nm. The deposited
Au and Pt nanoparticles were crystalline, with an fcc lattice and average diameters of
approximately 3.9 and 4.4 nm, respectively. The noble metal modification process affected
the charge recombination kinetics of the CsPbBr3 NCs, probably owing to the quenching
of the free charges because of electron transfer from the perovskite to the noble metal
nanoparticles. This simple strategy for designing and synthesizing perovskite/noble metal
nanostructures offers new opportunities to increase their applicability in photodetectors,
LEDs, solar cells, photocatalysts, and other such devices. With respect to solar cells, CsPbBr3
NCs modified with a noble metal may be used to construct perovskite quantum dot-based
solar cells. Compared with bare perovskite NCs, those modified with a noble metal can
enhance the light-harvesting properties of devices owing to their localized surface plasmon
resonance effect. In the case of photocatalysts, a composite of Au or Pt@CsPbBr3 NCs and
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reduced graphene oxide or TiO2 would be suitable for use as a visible-light-responsive
photocatalyst for H2 evolution in aqueous HI solutions. Modification with a noble metal
has the potential to enhance the photocatalytic activity of CsPbBr3 NCs. Further research
in these directions is underway in our laboratory.
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