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Abstract: 2,3-dihydroxy-2-methylbutyric acid, also known as 2,3-dimethylglyceric acid, constitutes 
the acyl and/or the alcoholic moiety of many bioactive natural esters. Herein, we describe a 
chemoenzymatic methodology which gives access to all the four possible stereoisomers of the 2,3-
dimethylglyceric acid ethyl ester. The racemic ethyl α-acetolactate, produced by the N-heterocycle 
carbene (NHC)-catalyzed coupling of ethyl pyruvate and methylacetoin was employed as the 
starting material. The racemic mixture was resolved through (S)-selective reductions, promoted by 
the acetylacetoin reductase (AAR) affording the resulting ethyl (2R,3S)-2,3-dimethylglycerate; the 
isolated remaining (S)-ethyl α-acetolactate was successively treated with baker’s yeast to obtain the 
corresponding (2S,3S) stereoisomer. syn-2,3-Dimethylgliceric acid ethyl ester afforded by reducing 
the rac-α-acetolactate with NaBH4 in the presence of ZnCl2 was kinetically resolved through 
selective acetylation with lipase B from Candida antarctica (CAL-B) and vinyl acetate to access to 
(2S,3R) stereoisomer. Finally, the (2R,3R) stereoisomer, was prepared by C3 epimerization of the 
(2R,3S) stereoisomer recovered from the above kinetic resolution, achieved through the TEMPO-
mediated oxidation, followed by the reduction of the produced ketone with NaBH4. The resulting 
2,3-dimethylglycertate enriched in the (2R,3R) stereoisomer was submitted to stereospecicific 
acetylation with vinyl acetate and CAL-B in order to separate the major stereoisomer. The entire 
procedure enabled conversion of the racemic α-acetolactate into the four enantiopure stereoisomers 
of the ethyl 2,3-dihydroxy-2-methylbutyrate with the following overall yields: 42% for the (2R,3S), 
40% for the (2S,3S), 42% for the (2S,3R) and 20% for the (2R,3R). 
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Figure S1. 1H- and 13C-NMR spectra of compound 3. 



Catalysts 2021, 11, 1440 2 of 15 
 

 
Figure S2. 1H- and 13C-NMR spectra of syn-4 [(2R,3S)-4 and (2S,3R)-4]. 
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Figure S3. 1H- and 13C-NMR spectra of anti-4 [(2S,3S)-4 and (2R,3R)-4]. 
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Figure S4. 1H- and 13C-NMR spectra of (2S,3R)-5. 
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Figure S5. 1H- and 13C-NMR spectra of (2R,3R)-5. 
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1H-NMR spectrum of the syn/anti mixture of 4 obtained by reduction of racemic 3 with NaBH4 in the absence of ZnCl2.  

  
Figure S6. 1H-NMR of the anti/syn mixture of 4 and chelation model scheme. 

For literature data on syn- and anti-4 1H-NMR spectra see:  
Greiner A.; Ortholand J-Y. Erythroselective aldol condensation of amine free 2-t-butyl-5-methyl-2phenyl-1,3-dioxolan-
4-on3 lithium enolate synthesis of ethyl acetolactate enantiomers. Tetrahedron letters, 1992, 33, 1897-1900.  
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Synthesis of the ethyl (2R,3S)-2-O-tosyl-2,3-dimethylglycerate (2R,3S)-6  
A solution of (2R,3S)-4 (122 mg, 0.75 mmol) and p-dimethylaminopyridine (5 mg, 0.04 

mmol) in pyridine (1 mL) was cooled to 0 °C and p-toluenesulfonyl chloride (190 mg, 1.0 
mmol) was added in four portions over 30 min. The mixture was kept at room tempera-
ture for 5 h and then diluted with water (5 mL). The suspension was extracted with ethyl 
acetate (3 x 4 mL) and dried under vacuum. The residue was chromatographed on silica 
gel wit cyclohexane-ethyl acetate 4:1 as eluent to afford the compound (2R,3S)-6 as a white 
solid (208 mg, 0.66 mmol), 88% yield. 1H NMR (400 MHz, CDCl3) δ 7.74 (d, J = 8.3 Hz, 2H, 
Ts), 7.32 (d, J = 7.9 Hz, 2H, Ts), 4.92 (q, J = 6.6 Hz, 1H, CHOTs), 4.24 – 4.00 (m, 2H, CH2), 
3.28 (br s, 1H, OH), 2.43 (s, 3H, CH3), 1.32 (d, J = 6.6 Hz, 3H, CH3), 1.31 (s, 3H, CH3), 1.27 
(t, J = 7.2 Hz, 3H, CH3).  

  
Figure S7. Synthesis and 1H-NMR of compound 6. 
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Synthesis of the epoxide (2R,3R)-7  
The compound (2R,3S)-6 (208 mg, 0.66 mmol) (2.06 g, 7.2 mmol) was added to a so-

lution of triethylamine (200 mg, 1.98 mmol) and acetic acid (238 mg, 3.96 mmol) in toluene 
(4 mL) previously stirred at room temperature for half an hour. The mixture was heated 
to 80 °C, and stirred at this temperature for 4 h. After cooling to room temperature, the 
reaction mixture was diluted with toluene (10 mL) and was washed successively with 
aqueous 2 M HCl solution (5 mL) and 10% (w/v) aqueous K2CO3 solution (10 mL). The 
organic layer was separated,  dried  over  anhydrous  Na2SO4  and 
 evaporated.  The  residue  was chromatographed on silica gel with cyclohexane-
ethyl acetate 6:1 to afford the epoxide (2R,3R)-7 as a colorless oil (62 mg, 0.43 mmol), 65% 
yield. 1H NMR (400 MHz, CDCl3) δ 4.23 (qd, J = 7.1, 2.3 Hz, 2H, CH2), 3.03 (q, J = 5.4 Hz, 
1H, CH), 1.55 (s, 3H, CH3), 1.32 (d, J = 5.4 Hz, 3H, CH3), 1.29 (t, J = 7.1 Hz, 3H, CH3).  

  
Figure S8. Synthesis and 1H-NMR of compound 7. 
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Figure S9. Chiral phase GC for the trifluoroacetyl derivative of (2R,3S)-4. 
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Figure S10. Chiral phase GC for the trifluoroacetyl derivative of (2S,3R)-4. 
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Figure S11. Chiral phase GC for the trifluoroacetyl derivative of (2S,3S)-4. 
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Figure S12. Chiral phase GC for the trifluoroacetyl derivative of (2R,3S)-4. 
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Figure S13. Chiral phase GC for the trifluoroacetyl derivative of (2R)-3. 
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Figure S14. Chiral phase GC for the trifluoroacetyl derivative of (2S)-3. 

 


