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Abstract: Colored Ti2O3 and Ti2O3/TiO2 (mTiO) catalysts were prepared by the thermal treatment
method. The effects of treatment temperature on the structure, surface area, morphology and optical
properties of the as-prepared samples were investigated by XRD, BET, SEM, TEM, Raman and
UV–VIS spectroscopies. Phase transformation from Ti2O3 to TiO2 rutile and TiO2 anatase to TiO2

rutile increased with increasing treatment temperatures. The photocatalytic activities of thermally
treated Ti2O3 and mTiO were evaluated in the photodegradation of 4-tert-butylphenol (4-t-BP) under
solar light irradiation. mTiO heated at 650 ◦C exhibited the highest photocatalytic activity for the
degradation and mineralization of 4-t-BP, being approximately 89.8% and 52.4%, respectively, after
150 min of irradiation. The effects of various water constituents, including anions (CO2−

3 , NO3, Cl
and HCO−3 ) and humic acid (HA), on the photocatalytic activity of mTiO-650 were evaluated. The
results showed that the presence of carbonate and nitrate ions inhibited 4-t-BP photodegradation,
while chloride and bicarbonate ions enhanced the photodegradation of 4-t-BP. As for HA, its effect on
the degradation of 4-t-BP was dependent on the concentration. A low concentration of HA (1 mg/L)
promoted the degradation of 4-t-BP from 89.8% to 92.4% by mTiO-650, but higher concentrations of
HA (5 mg/L and 10 mg/L) had a negative effect.

Keywords: 4-tert-butylphenol; solar photocatalysis; Ti2O3/TiO2; degradation; mineralization

1. Introduction

Water pollution by a broad category of organic pollutants is a rising issue of worldwide
concern [1]. During the last decade, the consumption of personal care products (PPCPs),
pharmaceuticals and endocrine-disrupting compounds (EDCs) has increased owing to
economic development and population growth [2–5]. Their widespread use has increased
their appearance in the aqueous environment, including rivers, lakes and reservoirs, at
concentrations starting from several nanograms (ng/L) to several micrograms (µg/L) per
liter [6–12]. They can even escape wastewater treatment plants (WWTPs) and drinking
water treatment plants (DWTPs), ultimately reaching drinking water sources. These
contaminants are termed emerging pollutants (EPs) and can cause severe adverse effects
on human health and the aquatic environment [13].

In particular, 4-t-BP is an industrial chemical used as a raw material for the production
of synthetic phenol and polycarbonate resins [14,15]. As a representative of EDCs, 4-t-BP
has a high estrogenic effect and acute/chronic environmental toxicity [16,17]. Considering
its adverse effects on human health and aquatic systems, 4-t-BP, as a highly persistent
pollutant, needs to be controlled efficiently.

To date, various methods have been investigated to remove 4-t-BP from water, mainly
including advanced oxidation processes (AOPs) and biological processes [16,18–20]. Among
them, AOPs have attracted great attention for the removal such contaminants by converting

Catalysts 2021, 11, 1379. https://doi.org/10.3390/catal11111379 https://www.mdpi.com/journal/catalysts

https://www.mdpi.com/journal/catalysts
https://www.mdpi.com
https://orcid.org/0000-0002-3110-5396
https://orcid.org/0000-0001-7252-4098
https://orcid.org/0000-0001-7010-855X
https://doi.org/10.3390/catal11111379
https://doi.org/10.3390/catal11111379
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/catal11111379
https://www.mdpi.com/journal/catalysts
https://www.mdpi.com/article/10.3390/catal11111379?type=check_update&version=1


Catalysts 2021, 11, 1379 2 of 20

them into carbon dioxide and water [21,22]. The high efficiency of the process has mostly
been associated with the production of hydroxyl radicals (standard potential, 2.8 V) used
as oxidants. AOPs may vary in terms of work conditions, used materials and different
paths of hydroxyl radical (OH.) production [23,24]. Heterogeneous photocatalysis may be
considered an economically feasible solution to remove 4-t-BP from water due to the com-
petitive cost of the process and the ambient conditions of temperature and pressure [25–27].
Moreover, it is considered an environmentally friendly oxidation process since it allows
not only the degradation of the pollutant from the contaminated system but also its total
elimination, without generating any undesired by-products, which could be even more
toxic compounds than the parent one [28,29].

Although various photoactive materials have been investigated, TiO2-based photo-
catalysts remain the most studied ones due to their high photocatalytic oxidation activity,
chemical stability and availability [30–32]. The P25 form of TiO2 is one of the most effective
photocatalytic materials, which can be attributed to the combination of anatase and rutile
phases [33–35]. However, the high energy band gap of approximately 3.0–3.2 eV limits the
application of TiO2 under solar light. In this context, numerous strategies have been de-
voted to extending the absorption wavelength to the visible area for the efficient utilization
of sunlight. For example, the introduction of Ti3+ into TiO2 demonstrated the capacity to
extend the light response of TiO2. It has been reported that the formation of Ti3+ species is
accompanied by the generation of oxygen vacancies (Ov), which can favor the separation
of electron–hole pairs and thus improve the visible light activity of TiO2 [36–38]. Moreover,
Ti3+ and oxygen vacancies can form localized states below the conduction band (CB), which
reduces the band gap of TiO2 (Figure 1), so that it can distinctly expand the absorption
to the visible region [39–43]. The reported methods to prepare structurally defective TiO2
with Ti3+ include the partial oxidation of low-valence Ti species (Ti, Ti (II) and Ti (III)), H2
thermal treatment and the reduction of Ti4+ to Ti3+ by a chemical reducing agent (NaBH4),
metals (Al, Mg, Li, Zn), etc. [44–49]. Although there are numerous preparation methods
available, most of them require high consumption of chemicals, as well as multiple steps
using specialized equipment. Therefore, it is of significant importance to develop a facile
and feasible method to prepare defective TiO2 with Ti3+.
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In the present work, Ti2O3 alone or in combination with TiO2 (P25) was thermally
treated through a simple one-step method, and their photocatalytic performance towards
4-t-BP degradation under simulated solar light was tested. The as-prepared samples were
characterized by means of SEM, TEM, BET, XRD, Raman and UV–VIS spectroscopies to
study their morphology, textural properties, crystal structure and optical properties. The
effects of the presence of humic acid (HA) and inorganic ions (CO2−

3 , NO−3 , Cl− and HCO−3 )
on 4-t-BP degradation were also investigated.

2. Results and Discussion
2.1. Characterization of Photocatalysts

XRD measurements were conducted to identify the phase structures of the thermally
treated Ti2O3 and Ti2O3/TiO2 (hereinafter denoted as mTiO) catalysts (Figures 2 and 3).
The diffraction peaks at 2θ = 23.823◦ (012), 33.040◦ (104), 34.836◦ (110), 40.219◦ (113), 48.786◦

(024), 53.692◦ (116), 61.42◦ (214) and 62.64◦ (300) were attributed to Ti2O3 (JCPDS No. 00-
043-1033). With the increase in treatment temperature, the intensity of all characteristic
peaks corresponding to Ti2O3 became weaker in both Ti2O3 and mTiO samples. As the
temperature further increased to 750 ◦C, no typical peaks of Ti2O3 were observed, indicating
the complete transformation of Ti2O3 to rutile TiO2 (JCPDS No. 00-021-1276) [50,51].
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In the Ti2O3-550 sample (Figure 2), apart from the diffraction peaks of TiO2 rutile,
peaks attributed to the anatase phase of TiO2 (JCPDS No. 00-021-12-72) also appeared
at 2θ = 25.3◦ (101) and 48.028◦ (200). These findings reveal that the transformation of
Ti2O3 into TiO2 anatase also took place. The results are in good agreement with previously
reported ones [52]. These peaks almost completely disappeared at 900 ◦C, suggesting the
transformation of TiO2 anatase into TiO2 rutile.

The composition of the catalysts was further investigated by Raman spectroscopy
(Figures 4 and 5). The Raman peak at around 143 cm−1 justified the existence of the TiO2
anatase phase in both types of catalysts. For treated Ti2O3 (Figure 4), this peak became more
intense with the increase in treatment temperature to 750 ◦C, confirming the successful
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transformation of Ti2O3 into TiO2 anatase. In addition, low-intensity peaks corresponding
to the TiO2 anatase phase were observed at 196.85 cm−1, 399.57 cm−1 and 514.54 cm−1

in the spectra of Ti2O3-650 and Ti2O3-750, while a further increase in temperature to
900 ◦C led to an increase in the TiO2 rutile phase. However, no peaks were observed
corresponding to Ti2O3, which could be attributed to the low intensities of the Raman
bands of the Ti2O3 structure.
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Compared to untreated mTiO, mTiO-900 exhibited a negative shift at 143 cm−1

(Figure 5), indicating the association of Ti2O3 with TiO2, while, for mTiO-550 and mTiO-
650, a positive shift in this peak could possibly be attributed to the introduction of Ti3+

and oxygen vacancies into the TiO2 lattice as a result of the thermal treatment [53]. In
the photocatalytic process, the presence of such structural defects in TiO2 can inhibit the
recombination of charge carriers and thus improve the photocatalytic activity.

The results from Raman spectroscopy are in general agreement with the ones obtained
from XRD analysis, with the exception of the TiO2 anatase phase, which was detected only
with the first technique for the catalysts treated at 900 ◦C.

The textural properties of all catalysts were evaluated by BET N2 adsorption/desorption
measurements. As presented in Figures 6 and 7, all the catalysts revealed a typical type-III
isotherm according to the classification of the international union of pure and applied
chemistry (IUPAC). Interestingly, Ti2O3 and mTiO catalysts heated at 650 ◦C exhibited the
highest N2 adsorption capacity and pore volume (Vp). In general, larger values of Vp can
be beneficial for the photocatalytic reaction through providing ionic diffusion and charge
transfer on the surface of the photocatalyst [54].

Some other characteristics obtained from the BET analysis are displayed in Table 1,
which shows that the treatment temperature had a significant effect on the microstructure
of thermally treated Ti2O3 and mTiO, particularly on the BET surface area (SBET) and pore
volume (Vp). It could be noticed that the SBET of treated Ti2O3 was relatively low compared
to that of mTiO. The SBET of treated Ti2O3 catalysts increased gradually as the treatment
temperature increased from 550 ◦C to 750 ◦C, which could be likely associated with the
formation of a better crystalline framework. However, a further increase in the treatment
temperature to 900 ◦C caused a drastic decrease in SBET due to the phase transformation of
TiO2 anatase to TiO2 rutile [55].



Catalysts 2021, 11, 1379 6 of 20

Catalysts 2021, 11, x FOR PEER REVIEW 6 of 20 
 

 

Figure 5. Raman spectra of treated mTiO catalysts. 

Compared to untreated mTiO, mTiO-900 exhibited a negative shift at 143 cm−1 (Figure 
5), indicating the association of Ti2O3 with TiO2, while, for mTiO-550 and mTiO-650, a pos-
itive shift in this peak could possibly be attributed to the introduction of Ti3+ and oxygen 
vacancies into the TiO2 lattice as a result of the thermal treatment [53]. In the photocata-
lytic process, the presence of such structural defects in TiO2 can inhibit the recombination 
of charge carriers and thus improve the photocatalytic activity. 

The results from Raman spectroscopy are in general agreement with the ones ob-
tained from XRD analysis, with the exception of the TiO2 anatase phase, which was de-
tected only with the first technique for the catalysts treated at 900 °C. 

The textural properties of all catalysts were evaluated by BET N2 adsorption/desorp-
tion measurements. As presented in Figures 6 and 7, all the catalysts revealed a typical 
type-III isotherm according to the classification of the international union of pure and ap-
plied chemistry (IUPAC). Interestingly, Ti2O3 and mTiO catalysts heated at 650 °C exhib-
ited the highest N2 adsorption capacity and pore volume (Vp). In general, larger values of 
Vp can be beneficial for the photocatalytic reaction through providing ionic diffusion and 
charge transfer on the surface of the photocatalyst [54]. 

 
Figure 6. N2 adsorption/desorption of treated Ti2O3 catalysts. Figure 6. N2 adsorption/desorption of treated Ti2O3 catalysts.

Catalysts 2021, 11, x FOR PEER REVIEW 7 of 20 
 

 

 
Figure 7. N2 adsorption/desorption of treated mTiO catalysts. 

Some other characteristics obtained from the BET analysis are displayed in Table 1, 
which shows that the treatment temperature had a significant effect on the microstructure 
of thermally treated Ti2O3 and mTiO, particularly on the BET surface area (SBET) and pore 
volume (Vp). It could be noticed that the SBET of treated Ti2O3 was relatively low compared 
to that of mTiO. The SBET of treated Ti2O3 catalysts increased gradually as the treatment 
temperature increased from 550 °C to 750 °C, which could be likely associated with the 
formation of a better crystalline framework. However, a further increase in the treatment 
temperature to 900 °C caused a drastic decrease in SBET due to the phase transformation of 
TiO2 anatase to TiO2 rutile [55]. 

The increase in treatment temperature continuously decreased the SBET of treated 
mTiO. The lowering of SBET can be attributed to the increase in particle size as a result of 
aggregation [56]. 

Table 1. BET surface area and pore volume of as-prepared catalysts. 

Photocatalyst SBET (m2/g) Vp (cm3/g) 
Ti2O3-550 1.629 0.009 
Ti2O3-650 1.985 0.017 
Ti2O3-750 2.733 0.014 
Ti2O3-900 0.974 0.012 
mTiO-550 23.012 0.255 
mTiO-650 20.894 0.347 
mTiO-750 5.593 0.134 
mTiO-900 3.443 0.029 

Figure 7. N2 adsorption/desorption of treated mTiO catalysts.



Catalysts 2021, 11, 1379 7 of 20

Table 1. BET surface area and pore volume of as-prepared catalysts.

Photocatalyst SBET (m2/g) Vp (cm3/g)

Ti2O3-550 1.629 0.009
Ti2O3-650 1.985 0.017
Ti2O3-750 2.733 0.014
Ti2O3-900 0.974 0.012
mTiO-550 23.012 0.255
mTiO-650 20.894 0.347
mTiO-750 5.593 0.134
mTiO-900 3.443 0.029

The increase in treatment temperature continuously decreased the SBET of treated
mTiO. The lowering of SBET can be attributed to the increase in particle size as a result of
aggregation [56].

The morphology of the prepared catalysts was examined by SEM and TEM. As can be
seen from Figure 8, untreated Ti2O3 particles exhibited an irregular shape with a smooth
continuous morphology. In contrast, heating under different temperatures resulted in
the formation of a much rougher surface of Ti2O3, which could be associated with the
phase transformation from Ti2O3 to TiO2 rutile. Such an increase in surface roughness can
increase the surface area of the catalyst and further influence the catalytic activity of the
material. These results are consistent with the findings obtained from BET analysis, where
the heating of Ti2O3 up to 750 ◦C was accompanied by an increase in SBET.

SEM images of treated mTiO catalysts clearly revealed that thermal treatment caused
a particle size growth in TiO2, well-distributed on the surface of Ti2O3 (Figure 9). The
increase in the size of TiO2 particles may have resulted in the decrease in SBET.

A UV–VIS absorption study was carried out to assess the light-harvesting ability of
the prepared samples (Figures 10 and 11). It can be seen that the temperature variation
influenced the light absorption properties of all prepared catalysts. The rise in treatment
temperature for Ti2O3 catalysts from 550 ◦C to 650 ◦C extended the light absorption to the
visible region (400–550 nm), while a further increase in the treatment temperature to 900 ◦C
lowered the visible light absorption capacity (Figure 10).

In contrast, all prepared mTiO catalysts demonstrated a good light absorption ability
within the wavelength range of 300−400 nm, although to different extents (Figure 11).
Specifically, catalysts heated at lower temperatures demonstrated stronger absorption,
which is in accordance with the expectations based on the color change of the catalysts. At
the same time, mTiO-550 and mTiO-650 were found to be absorbing in the 400–550 nm
region. This phenomenon may be attributed to the transformation of Ti2O3 to TiO2 rutile,
containing Ti3+ (oxygen vacancies) sites [50,56]. It is noteworthy that the light absorption
of mTiO-650 in the visible region was substantially enhanced compared with mTiO-550,
as a result of the higher concentration of oxygen vacancies in the lattice of TiO2. Such an
enhancement in the light absorption is favorable for improving the photoactivity of the
material. On the other hand, the intensities at wavelengths higher than approximately
550 nm gradually weakened for mTiO-550 and mTiO-650.

Moreover, the band gap values of the prepared catalysts were estimated using the
Kubelka–Munk equation and the corresponding Tauc plots. As illustrated in Figure 12,
the calculated direct band gap energies were found to be 1.76, 1.75, 1.79 and 2.69 eV for
Ti2O3-550, Ti2O3-650, Ti2O3-750 and Ti2O3-900, respectively. Similar variations in band
gap energies were obtained for mTiO catalysts, where mTiO-650 had a lower band gap
of 2.01 eV compared to mTiO-550, mTiO-750 and mTiO-900 (Figure 13). These results
reveal the possible application of the prepared catalysts in solar-light-driven photocatalytic
reactions.
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2.2. Photocatalytic Degradation of 4-t-BP in Aqueous Solution

The photocatalytic activity of all the prepared catalysts was evaluated by the pho-
todegradation of 4-t-BP under solar light irradiation, and the results are shown in Figure 14.
In the absence of a catalyst, the decomposition of 4-t-BP observed after 150 min of irradia-
tion was only 8.3%.
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Treated Ti2O3 showed low photocatalytic activity and approximately 13%, 12.7%,
10.5% and 14% of 4-t-BP was decomposed by Ti2O3-550, Ti2O3-650, Ti2O3-750 and Ti2O3-
900, respectively, after 150 min of irradiation. In contrast, mTiO exhibited much higher
photocatalytic degradation efficiency. Among mTiO catalysts, mTiO-650 showed the high-
est photocatalytic activity, achieving 89.8% of 4-t-BP degradation. These findings are
consistent with the results obtained from physico-chemical characterization, where mTiO-
650 exhibited better optical properties and a lower band gap and pore volume as compared
to mTiO-550, mTiO-750 and mTiO-900, indicating the importance of the treatment tempera-
ture on the optical properties and photocatalytic activity of the catalyst [57].

The mineralization efficiency of a photocatalyst is an important indicator for assessing
its practical application. Thus, the mineralization of 4-t-BP was evaluated via total organic
carbon (TOC) measurements (Figure 15). As in the case of 4-t-BP photodegradation, the
treated mTiO catalysts exhibited higher TOC removal than Ti2O3 catalysts. In particu-
lar, 54.2% of TOC removal was obtained in 150 min using mTiO-650 under solar light
irradiation. In the same reaction time, 32.5%, 12.4%, 12.2%, 11.2%, 10%, 7.8% and 5.4%
of TOC removal was obtained for mTiO-550, mTiO-900, mTiO-750, Ti2O3-750, Ti2O3-900,
Ti2O3-650 and Ti2O3-550. The observed photocatalytic efficiency of the catalysts tested for
TOC removal was in accordance with the 4-t-BP photodegradation results.
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2.3. Effect of HA and Coexisting Ions (CO2−
3 , NO−3 , Cl− and HCO−3 ) on the Degradation

of 4-t-BP

The widespread water constituents in wastewater, including natural organic matter
(NOM) and inorganic ions (CO2−

3 , NO−3 , Cl− and HCO−3 ), could significantly affect the
performance of the reaction system towards the degradation and mineralization of the
target pollutants [58,59].

NOM is considered an integral part of natural water bodies and wastewater, and it is
mainly composed of humic compounds and proteins [60,61]. In this study, HA was used
as a model NOM compound and the effects of different concentrations of HA (1 mg/L, 5
mg/L and 10 mg/L) on the degradation of 4-t-BP were investigated. As shown in Figure
16, the presence of HA in the mTiO-650/solar light system could promote or hinder the
degradation of 4-t-BP, depending on its concentration. The presence of a relatively low
concentration (1 mg/L) of HA increased the degradation efficiency of 4-t-BP from 89.8% to
92.4%, while higher concentrations (5mg/L and 10 mg/L) of HA decreased the degradation
efficiency of 4-t-BP to 84.6% and 70.8%, respectively. The enhanced degradation of 4-t-BP
in the presence of HA was also observed for the degradation of Bisphenol A [62] and
dimethoate [63] by TiO2 photocatalytic degradation. The positive effect of HA at low
concentrations might be ascribed to the photosensitization of HA, which would produce
extra electrons, leading to an improvement in the photocatalytic degradation of organic
pollutants [62,64,65]. On the other hand, at higher concentrations, HA adsorbed on the
surface of the catalyst could compete with 4-t-BP for active sites, resulting in a reduction in
degradation efficiency [66,67].
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The presence of CO2−
3 , NO−3 , Cl− and HCO−3 anions in the concentration of 100 mg/L

had dual effects on the degradation of 4-t-BP over mTiO-650. CO2−
3 and NO−3 ions resulted

in a certain degree of negative effect with respect to the degradation of 4-t-BP. As shown in
Figure 17, the 4-t-BP degradation decreased from 89.8% to 87.3% and 70.3% in the presence
of nitrate and carbonate, respectively. The inhibition effect of CO2−

3 and NO−3 was due
to: (1) the quenching of oxidizing species, such as hydroxyl radicals (OH.), and positive
holes (h+) by anions (Equations (1)–(3)); (2) anions could compete with 4-t-BP molecules
for the available active sites of the catalyst surface, which further affects the degradation
process [68–71]. Several studies have highlighted that NO−3 ions are usually weakly
adsorbed on the surface of the catalyst and, thus, they slightly inhibit photodegradation
reactions [69,72].

CO2−
3 + OH. → OH− + CO−3 (1)

NO−3 + h+
VB → NO.

3 (2)

NO−3 + OH. → NO.
3 + OH− (3)

It is noteworthy that both Cl− and HCO−3 accelerated the degradation of 4-t-BP by mTiO-
650. The addition of Cl− and HCO−3 to the system resulted in 92.5% and 100% degradation
after 150 min of solar light irradiation. Cl− anions reacting with hydroxyl radicals can
produce ClOH.− and subsequently transform into Cl. (Equations (4) and (5)) [73]. The gen-
erated active chlorine species can selectively attack electron-rich organic compounds [74].
The complete 4-t-BP degradation in the presence of HCO−3 could be most likely attributed
to the generated alkaline condition or the formation of more selective radicals (CO.−

3 ) by
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the reaction of HCO−3 with OH. (Equation (6)), which can promote the degradation of
4-t-BP [69,75].

Cl− + OH. → OH− + ClOH.− (4)

H+ + ClOH.− → Cl. + H2O (5)

HCO−3 + OH. → CO.−
3 + H2O (6)
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3. Materials and Methods
3.1. Materials

The 4-t-BP (99%), titanium (IV) oxide (TiO2, nanopowder, 21 nm primary particle size,
purity ≥ 99.5% trace metals basis, P25), titanium (III) oxide (Ti2O3, 100 mesh, 99.9% trace
metals basis), Na2CO3, NaNO3, NaCl, NaHCO3 and HA were purchased from Sigma Aldrich.
All chemicals were of analytical grade and used as purchased. All aqueous solutions were
prepared with ultrapure water (UPW) using a Milli-Q System (18.2 MΩ. cm).

3.2. Preparation of the Photocatalysts

The preparation process was the same for both Ti2O3 alone and mTiO. At first, Ti2O3
or a mixture of Ti2O3 and TiO2 was crushed into a fine powder and then heated in a muffle
furnace at 550 ◦C, 650 ◦C, 750 ◦C or 900 ◦C for 3 h in air. For mTiO, the weight ratio between
Ti2O3 and TiO2 was 1:1. The final products were denoted as Ti2O3-X and mTiO-X (with
X being the temperature of the thermal treatment), respectively. The detailed synthesis
process is illustrated in Figure 18.
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3.3. Characterization of the Photocatalysts

The crystallographic properties and XRD patterns of the prepared catalysts were
acquired at 2θ of 20–80◦ on an X-ray diffraction (XRD, Rigaku Smartlab) system. Ra-
man spectra were recorded with the help of a Raman spectrometer (Horiba, LabRam HR
evolution) and excitation energy was λ = 532 nm. Textural properties, including specific
surface area (SBET) and pore volume (Vp), were measured using an automated gas sorption
analyzer (Autosorb iQ, Quantachrome, Boynton Beach, FL, USA) by the Brunauer–Emmett–
Teller (BET) and Barrett–Joyner–Halenda (BJH) method, respectively. Surface morphology
was observed by a Scanning Electron Microscope (SEM, Auriga CrossBeam 540, Carl
Zeiss) and Transmission Electron Microscope (TEM, JEOL JEM-1400 Plus). UV–VIS spec-
troscopy of samples was implemented on a Thermo Scientific Genesys 150 UV–Visible
spectrophotometer.

3.4. Photodegradation Tests

The photocatalytic performance of the prepared catalysts was evaluated through the
experiments of 4-t-BP degradation under simulated solar light irradiation. First, 100 mg of
catalyst was added to 500 mL 4-t-BP (5 mg/L) aqueous solution. Prior to irradiation, the
mixture was kept in the dark for 15 min under stirring to reach the adsorption/desorption
equilibrium. Then, while stirring, the suspension was exposed to the simulated solar
irradiation produced by a 100 W Xenon lamp with an AM1.5G filter (LCS-100 solar sim-
ulator). During the experiment, 20 mL of reaction solution was extracted at regular time
intervals and filtered by a 0.22 µm Millex syringe filter to remove the photocatalyst for
further analysis.

The concentration of 4-t-BP was analyzed by a high-performance liquid chromatogra-
phy instrument (HPLC, Agilent 1290 Infinity II, Santa Clara, CA, USA) equipped with an
SB-C8 column (2.1 mm × 100 mm, 1.8 µm). The mobile phase composition was methanol
and UPW (50:50, v/v), which were mixed to compose the mobile phase. The mineralization
of 4-t-BP solution was monitored from the decay of TOC content, measured by a TOC
analyzer (Multi N/C 3100, Analytic Jena, Jena, Germany).

4. Conclusions

In summary, Ti2O3 and mTiO photocatalysts were prepared via a one-step synthesis
method and further characterized by different tests. The effect of treatment temperature on
the physicochemical properties and photocatalytic performance of the prepared catalysts in
the degradation of 4-t-BP under simulated solar light irradiation was investigated. Based
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on the results obtained, the increase in treatment temperature from 550 ◦C to 650 ◦C
caused an increase in the pore volume and enhanced light absorbance in the visible region
(400–550 nm) for both Ti2O3 and mTiO photocatalysts. The improved textural and optical
properties related to the anatase to rutile ratio and specific surface area contributed to the
enhanced performance of mTiO-650, which exhibited the highest photocatalytic activity at
the dosage of 0.2 mg/L, achieving 89.8% degradation and 54.2% mineralization of 4-t-BP
after 150 min. The effect of treatment temperature on the catalytic performance of the
treated Ti2O3 catalysts was almost negligible and resulted in 13%, 12.7%, 10.5% and 14%
4-t-BP degradation by Ti2O3-550, Ti2O3-650, Ti2O3-750 and Ti2O3-900, respectively. In
addition, the effects of the presence of HA and various inorganic ions, including CO2−

3 ,
NO−3 , Cl− and HCO−3 on the photodegradation of 4-t-BP by mTiO-650 were also studied.
At relatively low concentrations, HA could act as a photosensitizer and therefore promoted
the degradation of 4-t-BP, whereas higher concentrations inhibited the degradation. The
presence of Cl− and HCO−3 exhibited a positive influence on 4-t-BP degradation, resulting
from the favorable formation of additional reactive species, while the presence of NO−3 and
CO2−

3 slightly inhibited the reaction.
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