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Abstract: The application of organic conjugated molecular systems to photocatalysis is based on
the charge transition with different electronegative substituents and the electron–hole separation
behavior of charge transfer under light excitation. In this work, the relationship between the intra-
molecular electrical field and molecular second-order nonlinear optical properties is investigated
theoretically by the sum-of-states (SOS) method. We use substituents with different electron affinity
energy to construct internal electric fields with different properties in similar conjugated systems.
The studies of these systems reveal the intra-molecular electric field strength and mode regulation
of nonlinear optical coefficients and explain its physical mechanism. The intra-molecular charge
recombination caused by the electrostatic potential multipole field of different substituents changes
the transition behavior of one-photon, resulting in the enhancement of nonlinear optical properties
(second-harmonic generation and sum-frequency coefficient) greater than 104.

Keywords: intra-molecular electrical field; second-order nonlinear optical; conjugated molecular
system; sum-of-state; electrostatic potential multipole field

1. Introduction

In recent years, organic molecules with conjugated systems have been widely used
in many electronic devices [1–4]. In perovskite solar cells (PSCs) [5–8], stability can be
increased. In dye-sensitized solar cells (DSSCs) [9–12], the conjugate system is a good
electron transport material [13–15]. Moreover, the widely used two-dimensional material
graphene [16–22] also has a wide range of conjugated systems. A common feature of
these applications is that electrons are strongly delocalized in conjugated systems and can
provide high electron mobility [21–23]. Therefore, the excellent properties of conjugated
systems have potential in the fields of electricity and optics. However, the performance
requirements of applications in different fields are varied. Therefore, in specific applica-
tion scenarios, researchers will make various chemical modifications to these conjugated
molecules or materials. It is embodied in the modification of different functional groups,
which can significantly improve the performance of the material. In the field of optics,
different functional groups can significantly affect the photon-induced charge-transfer
(PICT) properties of the system by improving the natural bond orbits (NBO) and natural
transition orbits (NTO) [24].

In fact, the modification of the optical properties of the system by different functional
group modifications does not stop there. Different functional groups also have a great
influence on nonlinear optical properties. This is because the introduction of functional
groups changes the electric field distribution in the molecule or the system, which causes
a large change in the molecular dipole moment or fragment dipole moment, causing a
change in the nonlinear optical properties. This is because the nonlinear optical properties
are theoretically defined by the sum-of-state (SOS) [25,26] of the system dipole moment
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and transition dipole moment. In other words, the functional group controls the nonlinear
optical parameters of the molecule by changing the dipole electric field and the multipolar
electric field in the molecule. Therefore, it can also be said that it is the nonlinear optical
property which is controlled by the electric field in the molecule. In this work, we used
different functional groups and the same conjugated core combination to explore the ability
of this intra-molecular electric field to control the nonlinear optical properties, especially
the second-order nonlinear optical properties. In addition, through theoretical calculations,
we reveal the physical mechanism of this regulation. This mechanism will be beneficial to
nonlinear optical microscopes, especially second-harmonic generation (SHG) microscopes,
which provide new theoretical guidance to the performance of the electronic devices
described above.

2. Results and Discussion
2.1. Molecular Structure, Linear and Nonlinear Optical Properties

In this theoretical work, we chose a molecular system with a strong conjugated
anthracene and carbon–carbon triple bond as the core, see Figure 1. This part of the
conjugate center can serve as a bridge for electron transmission. However, different
electronegative substituents are used at both ends of the conjugate core. These substituents
can provide different push–pull functions for electrons. In fact, the electronic push–pull
properties are determined by the electrostatic forces in the four basic interactions. Therefore,
in combination with conjugated cores and substituents, intra-molecular electric fields of
different sizes and directions will be formed in the molecule, and this internal electric field
will have a regulatory effect on the nature of the electron transition.
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Figure 1. The optimized molecular geometry structures of different substituent group conjugated 
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Figure 1. The optimized molecular geometry structures of different substituent group conjugated
systems of -H (a), -COOH (b), -CN (c) and -NO2 (d).

The transition energy of electrons is reflected in the position of the absorption peak in
the absorption spectrum. As shown in Figure 2a, the excitation energy of the absorption
spectrum of different substituent molecular systems is hugely different. When there is
no substituent, this is the case when H is used as a substituent. Its absorption peak is
around 450 nm. When replaced with other substituents, the peak position of the absorption
spectrum has a red shift, that is, it moves to a long wavelength. In addition, the degree
of red shift is different due to different substituents. Among them, the absorption peak
wavelength with nitro group has the longest wavelength (560 nm). This is due to the
inconsistent potentials of different substituents. The same nature will be reflected in
the frequency doubling effect. As shown in Figure 2b, the dynamic second-harmonic
generation coefficients with different substituents are shown. First, referring to Figure 2a,
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it can be found that the wavelength corresponding to the strongest SHG coefficient strictly
corresponds to the absorption spectrum peak of the first excited state. This is because
the intensity of the absorption spectrum is determined by the oscillator strength, and the
oscillator strength (f ) is defined as:

f =
2
3

∆ε〈j|µ|i〉 (1)

where the ∆ε is the excited energy and the 〈j|µ|i〉 is the transition dipole moment. Therefore,
the system with higher transition dipole moment will also have a larger SHG coefficient. On
the other hand, the SHG coefficients of molecular systems with different substituents are
hugely different. The highest SHG of the cyano system is only 103 and the SHG coefficient
of the carboxyl system is as high as 107, which differs by four orders of magnitude. The
SHG of H system and nitro system both reached 105. This shows that different substituents
have a great degree of regulation on the SHG coefficient.
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Figure 2. The one-photon absorption spectra (a), frequency-dependent second-harmonic generation
coefficient spectra (b).

Relative to the SHG coefficient, the sum-frequency coefficient is also controlled by
substituents and has the same properties. As shown in Figure 3, the sum-frequency
coefficients of different substituent molecular systems are shown. First, the coordinate axis
in the figure represents the wavelength of the incident light and the color bar represents the
magnitude of the sum-frequency coefficient. The diagonal is the frequency multiplication
factor. Second, the regions with relatively large sum-frequency coefficients constitute
concentric elliptical rings, while the number of elliptical rings of different substituent
molecular systems is different. Third, because the range of the color bars in the figure is
the same, it can be intuitively found that the carboxyl system has a high sum-frequency
coefficient and the cyano system is the lowest.
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2.2. Physical Mechanism and Transition Characteristic

In order to explore the physical mechanism of the regulatory effect of substituents
on molecular systems, we first visually studied the transition characteristics of the first
excited state. As shown in Figure 4, it is the electron–hole pair density analysis and
transition density matrix diagram of the first excited state of different substituent molecular
systems. It can be seen intuitively from the figure that the charge-transfer characteristics
is in the transition process. As shown in Figure 4a, it is the transition characteristics of
the molecular system without substituents. The separation of electrons and holes is not
obvious, indicating a localized excitation. Conversely, the molecular system containing
substituents has a high degree of separation between electrons and holes, which shows
obvious charge-transfer characteristics, see Figure 4b,c. In addition, the hole density of the
carboxyl system and the cyano system is on the conjugated ring, and the electron density is
distributed on the substituent, indicating the charge transfer from the conjugated system
to the substituent. Different from this, the hole density of the nitro system is distributed on
the nitro group and the electron density is distributed on the conjugated ring, indicating
that the charge transfer is excited from the nitro group to anthracene, see Figure 4d.
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molecular systems. The green and blue isosurface represent the hole and electron density, respectively.

In summary, the reason for the absorption peak red shift, SHG peak shift and sum-
frequency ellipse ring shift is due to the charge transfer caused by the different elec-
tronegativity of the substituents in the molecular system. However, changes in SHG and
sum-frequency coefficients are not significantly related to charge transfer. Because the
SHG and sum-frequency coefficients of the carboxyl group and the cyano system are very
different but the charge-transfer situation is almost the same, the charge transfer is not
the main reason for the change of the nonlinear optical coefficient. On the other hand,
different substituents indicate different push–pull functions for electrons. The definition of
the second-order nonlinear optical coefficient is:

βABC(−ωσ; ω1, ω2) = P̂[A(−ωσ), B(ω1), C(ω2)]∑
i 6=0

∑
j 6=0

µA
0iµ

B
ijµ

C
j0

(∆i −ωσ)
(
∆j −ω2

) (2)

where the µA
ij =

〈
i
∣∣µ̂A

∣∣j〉, µA
ij = µA

ij − µA
00δij, ωσ = ∑

i
ωi is the transition dipole moment

of each excited state, where A, B and C denote one of directions, respectively. The µA
00

is the permanent dipole moment of molecule. The electrostatic properties of different
substituents can significantly affect the molecular dipole moment, which can significantly
enhance this dipole moment. Therefore, the electrostatic potentials and extreme points of
the molecular system with different substituents are shown in Figure 5. It can be seen from
the figure that the electrostatic potential distribution of molecules without substituents is
very uniform. This uniformly distributed electrostatic potential has a small permanent
dipole moment and therefore has a low nonlinear optical coefficient. The substituents of the
carboxyl system have the strongest positive electrostatic potential around 51.34 kcal/mol
and 53.42 kcal/mol, see Figure 5b. Although the nitro system has a lower electrostatic
potential value than the carboxyl system, it has multiple electrostatic potential maximum
points, and the conjugated ring in the middle of the molecule constitutes a large intra-
molecular electric field, see Figure 5d. For the cyano system, although its electrostatic
potential value is not small, there are both minimum and maximum values with similar
values near the substituent. This can offset the effect of the permanent dipole moment in
the nonlinear optical coefficient. Therefore, it can be said that the nitro system constitutes
a long-range internal electric field in the molecule and the conjugated ring. However,
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carboxyl and cyano systems constitute a small range of intra-molecular electric fields near
the substituents. The difference is that the two internal electric fields of the cyano system
cancel each other out. This difference in internal electric field is the main reason for the
second-order nonlinear optical coefficient changes.
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The above discussion of the transition density matrix (TDM) and electron–hole pair
density in S1 of the molecular system is a qualitative analysis. In order to obtain quantitative
information on charge-transfer characteristics of molecular systems. We use the transition
index of the wave function to investigate the electronic excitation characteristics. First, the
degree of overlap between electrons and holes is defined:

Sm(r) = min[ρhole(r), ρele(r)] (3)

Sm(r) =
√

ρhole(r)ρele(r) (4)

where ρhole(r) represents the hole density and ρele(r) represents electron density. Sm(r) is
the minimum of holes and electrons, Sr(r) is the geometric mean and Sr(r) is greater than
Sm(r), which has a better mathematical meaning with better image effect. By plotting these
two functions, we can clearly understand which areas have electrons and holes overlapping
more significantly.

The quantitative description of the distribution characteristics of these two functions
in the whole space is:

Smindex =
∫

Sm(r)dr =
∫

mim[ρhole(r), ρele(r)]dr (5)

Srindex =
∫

Sr(r)dr =
∫ √

ρhole(r)ρele(r)dr (6)

The range of the two indexes is [0, 1]; the larger the index, the higher the degree of
overlap between holes and electrons. On the contrary, according to the distance between the
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centroids of the electron and the hole, the D index, which measures the distance between
the centroid of the hole and the electron, is defined:

DX = |Xele − Xhole|
DY = |Yele −Yhole|
DZ = |Zele − Zhole|

(7)

Dindex =

√
(DX)

2 + (DY)
2 + (DZ)

2 (8)

where Xhole is the X coordinate of the hole centroid, which can be obtained by multiplying
the function by the coordinate variable and integrating in the whole space. In addition to
the overall investigation of the hole–electron characteristics, it is also necessary to further
investigate the hole–electron density difference, so the σ is defined. The three components,
X, Y and Z, are equivalent to the root mean square deviation (RMSD) of the distribution of
holes or electrons in the X, Y, Z directions, which reflects the breadth of hole and electron
distribution. Where σ for the X component of the hole is defined as:

σhole,x =

√∫
(x− Xhole)

2ρhole(r)dr (9)

The transition index of different substituents in S1 is shown in Table 1. It can be clearly
seen that the electron–hole overlap degree of the molecular system with substituents is
smaller than that of the molecular system without substituents. Since the D index that
measures the distance between the electron–hole centroids of the cyano group and the
nitro group has the same value, this charge transfer cannot be regarded as a unidirectional
charge-transfer excitation. It is also necessary to consider the difference in the overall
spatial distribution of electrons and holes ∆σ. It is defined as follows:

∆σλ = σele,λ − σhole,λ λ = {x, y, z}
∆σindex = |σele| − |σhole|

(10)

where ∆σλ is the difference in the spatial distribution of electrons and holes in the direction.
The molecular system with substituents is significantly larger than the molecular system
without substituents. This is because charge transfer can proceed in multiple directions
when electrons are excited, and electron distribution tends to be centrosymmetric, which
can be clearly seen on the electron–hole pair density map.

Table 1. Transition indices of molecular systems with different substituents in S1.

Substituent -H -COOH -CN -NO2

Excited energy
[eV] 2.771 2.424 2.255 2.207

Sm 0.576 0.544 0.501 0.459
Sr 0.876 0.806 0.776 0.749

D [angstrom] 0.005 0.176 0.000 0.000
∆σ −0.097 0.678 0.773 1.107

3. Materials and Methods

The molecular structure is optimized by using the B3LYP functional [27] in DFT [28]
method in combination with the 6–31 G(d) basis set [29] with Gaussian 16 A03 [30]. Using
the optimized structure, TDDFT [31] was used to combine the CAM-B3LYP functional [32]
and the 6–31 G(d) basis function group for the excited state calculation, and all configuration
coefficients were output. The ground-state optimization and excited-state calculations use
different functionals. This is because the excited-state calculation uses range-separation
functionals to take full account of the remote effects in the charge-transfer process. In
the TDDFT calculation, the program first performs a ground state self-consistent field
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calculation to determine the ground state. The first hyperpolarizability needs to find the
third derivative of the energy E. The DFT method is used to calculate the third-order
analytical derivative, and the second-harmonic generation coefficient SHG is obtained by
the keyword polar = DCSHG. Therefore, the use of different functionals is theoretically
necessary and reasonable. Based on this, the Multiwfn program [33] is used for electron–
hole analysis, TDM and other electron excitation index and drawing using the VMD
program [34].

4. Conclusions

In this work, we calculated the linear and nonlinear optical properties of four different
substituents through theoretical calculations. Through the electron–hole pair analysis
and the molecular surface electrostatic potential, the physical mechanism between the
intra-molecular electric field and nonlinear optical properties was studied. First, the intra-
molecular electric field can induce the occurrence of charge transfer to shift the absorption
spectrum peak, SHG peak and the radius of the sum-frequency coefficient elliptic ring.
Second, the direction and magnitude of the electric field in the molecule will effectively
regulate the magnitude of the nonlinear optical coefficient by adjusting the permanent
dipole moment. The degree of adjustment is above 104. This conclusion can be applied
to nonlinear optical microscopy to distinguish the surface modification of some organic
electronic devices and the distribution of different types of substituents.
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