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Abstract: The one-pot hydrolysis-dehydration of activated microcrystalline cellulose was studied in
pure hydrothermal water at 453 K over ZrO2 catalysts produced by thermodegradation, microwave
treatment, mechanical activation, and sol–gel methods and spent without any co-catalyst. ZrO2

prepared by microwave treatment was more active compared to ones derived by other methods.
The catalyst calcination temperature also impacted reactivity. The cellulose conversion increased
simultaneously with acidity and SBET, which in turn were set by the preparation method and
calcination temperature. Phase composition did not affect the activity. Yields of glucose and 5-HMF
reaching 18 and 15%, respectively, were over the most promising ZrO2 prepared by microwave
treatment at 593 K. To our knowledge, this ZrO2 sample provided the highest activity in terms of TOF
values (15.1 mmol g−1 h−1) compared to the pure ZrO2 systems reported elsewhere. High stability
of ZrO2 derived by microwave irradiation was shown in five reaction runs.

Keywords: cellulose; glucose; 5-Hydroxymethylfurfural; one-pot hydrolysis-dehydration;
zirconium oxide

1. Introduction

Cellulose is well known to be the most abundant natural plant polymer. In recent years,
it has been proposed for use as a raw material for chemical and material sciences [1–3].
Significant interest in cellulose transformations has been affected by the serious negative
influence of traditional fossil resources such as oil and coal on the environment and human
health. New catalytic approaches have been developed for the production of various
chemicals and biofuels from inedible cellulose [4–14]. 5-Hydroxymethylfurfural (5-HMF)
is one of the main platform molecules which can be obtained from cellulose.

5-HMF and its derivatives can become an alternative feedstock which could replace
non-renewable sources. Applying 5-HMF in the production of polymers, motor oils,
solvents, fuel additives, drugs and chemical reagents seems to be promising [13,15–17].
In 2014, the commercial production of 5-HMF via the acid-catalysed dehydration of fructose
was established [18]. Another perspective compound for industry is glucose. Nowadays, it
is traditionally produced by enzymatic or acid hydrolysis of starch or sucrose [19–21].

Traditional homogeneous catalysts have some disadvantages in the synthesis of glu-
cose and 5-HMF. Thus, catalyst recycling and separation from reaction mixtures is quite
challenging. Mineral acids could have a corrosive effect. The use of heterogeneous cata-
lysts makes it possible to overcome the most serious drawbacks of homogeneous catalytic
systems. Moreover, some solid systems, such as oxides of zirconium (IV) or titanium
(IV), are quite stable under hydrothermal conditions, which are applied when processing
water-insoluble cellulose. The crystal structure of this polysaccharide makes the use of
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harsh conditions inevitable [22,23]. Nowadays, a number of heterogeneous catalysts have
been proposed for the depolymerization of cellulose in an aqueous medium such as carbon
materials [23–29], noble metals supported on carbon materials [30], polymer resins [31],
oxides [31–34], zeolites [33,35], and caesium salts of heteropoly acids [36,37]. However,
the development of heterogeneous catalysts for the hydrolysis-dehydration of cellulose
into glucose and 5-HMF that are effective and stable under hydrothermal conditions is a
very urgent task for the efficient processing of plant raw materials.

Therein, zirconium dioxide appears to be a most promising catalyst due to high
stability in hot compressed water. Table 1 presents data on the processing of cellulose
and cellulose-containing biomass in the presence of catalysts based on ZrO2. In general,
in the presence of the proposed catalytic systems, the yields of glucose and 5-HMF can
reach 12.7 and 20.6%, respectively, at temperatures of 453–523 K [38–45]. The use of a co-
catalyst such as sulfuric acid can improve the efficiency of the dual catalyst system. [46,47]
reported glucose yields up to 62.3–91.0% in the presence of two-component system of
ZrO2 + H2SO4. However, the authors did not discuss the formation of 5-HMF. It should
be emphasized that the catalysts reported elsewhere were prepared by various methods
such as precipitation [40,45], calcination [44], the sol–gel method [40], hydrolysis followed
by calcination [43], and precipitation in combination with mechanical activation [46].
Commercial ZrO2 was also used [41,47]. Various precursors of ZrO2 (zirconyl chloride,
zirconium dioxide hydroxide, zirconium propoxide) were applied.

Table 1. Activity of ZrO2 catalysts in hydrolysis-dehydration of plant biomass and cellulose.

Catalyst Substrate Reaction Conditions Glucose Yield/
Selectivity, (%)

5-HMF Yield/
Selectivity, (%) Ref.

Si/Zr/O Softwood 423 K, autogenic pressure - 8.2 a/- [42]

ZnO-ZrO2 Cotton Cellulose 463 K, 1.4 MPa 6.01/- 3.76/- [45]

ZrO2
Microcrystalline

Cellulose 453 K, 3 MPa -/~2.3 -/~20.6 [41]

m/c-ZrO2
Glucose

473 K, 2.5 MPa
- ~5.4/- b

[44]
Fructose ~2.3/- ~15/-

Zr-P-773 c

Sugarcane bagasse 523 K, 34.5 MPa

~1.8/- ~4.2/-

[40]

Zr-P-873 ~1.8/- ~3.4/-
Zr-P-973 ~1.2/- ~2.5/-
Zr-S-773 ~1.2/- ~3.4/-
Zr-S-873 ~0.9/- ~3.3/-
Zr-S-973 ~0.7/- ~3.2/-

ZrO2 Cellulose 433 K
[H2SO4] = 0.04 mol·L−1 65.2/- d n/d [47]

ZrO2-1 e

Cellulose
433 K

[H2SO4] = 0.04 mol L−1

62.3/- d n/d

[46]
ZrO2-2 93.6/- d n/d
ZrO2-3 ~64.9/- d n/d
ZrO2-4 ~80.3/- d n/d
ZrO2-5 ~91.0/- d n/d

ZrO2 Cellulose 453 K, 1 MPa 12.7/- 13.3/- [43]
a Total yield 5-HMF + Furfural + Levulinic acid; b means data revealed from figures published; c Zr-P-773—zirconium dioxide prepared
by precipitation and calcined at 773 K; Zr-S-973—zirconium dioxide prepared by sol–gel method and calcined at 973 K; d Total reducing
sugars yield (TRS), %; e ZrO2-1—amorphous ZrO2, ZrO2-2—amorphous ZrO2 after ball milling, ZrO2-3—ordinary ZrO2 particles,
ZrO2-4—ordinary ZrO2 particles after ball milling, ZrO2-5—nano ZrO2.

The aim of this work was to investigate the impact of catalyst design by different
techniques (thermodegradation, microwave heating, mechanical activation, and sol–gel
method) on the catalytic properties of ZrO2. The influence of acidity, phase composition,
and textural properties, which depended on the preparation method on the catalytic
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activity of ZrO2 were studied in the hydrolysis-dehydration of cellulose to glucose and
5-HMF. The efficiency of zirconia catalytic systems was revealed in pure water without any
co-catalysts. The best synthesis method was proposed.

2. Materials and Methods
2.1. Materials

Tetraisopropoxide Zr (IV) (Acros Organics, Belgium) (70% solution in 1-Propanol),
zirconyl nitrate monohydrate ZrO(NO3)2·H2O (Acros Organics, Geel, Belgium) and
ZrCO3(OH)2·xH2O (Acros Organics, Belgium) were used as ZrO2 precursors. Microcrys-
talline cellulose spent in the experiments was purchased from Vekton (Saint-Petersburg,
Russia) [24–26]. 5-Hydoxymethylfurfural (Sigma-Aldrich, St. Louis, MO, USA), D-cellobiose
(Alfa Aesar, MA, USA), D-fructose (Sigma-Aldrich), D-mannose (Sigma-Aldrich, USA),
D-glucose (Reahim, Moscow, Russia), and levulinic acid (Acros Organics, Belgium) were
purchased to be used as standards of HPLC analysis. Milli-Q water (Millipore, Molsheim,
France) was applied for preparing all the solutions.

2.2. Catalyst Preparation

Information on ZrO2 synthesis techniques and parameters can be found in Table 2.

Table 2. Synthesis of ZrO2 catalysts.

Synthesis
Method a Catalyst Sample Precursor of ZrO2 Synthesis Conditions

TD
ZrO2-T-723 ZrO(NO3)2 Thermodegradation at 723 K for 4 h
ZrO2-T-873 ZrO(NO3)2 Thermodegradation at 873 K for 4 h

MW

ZrO2-W-1 ZrO(NO3)2 9 min microwave treatment at 35 W (T = 523 K)

ZrO2-W-3 ZrO(NO3)2
Total treatment 18 min, microwave irradiation 9 min,
35–60 W (T = 523 K)

ZrO2-W-4 ZrCO3(OH)2
Total treatment 11 min, microwave irradiation 3 min,
105 W (T = 603 K)

ZrO2-W-5 ZrO(NO3)2
Total treatment 16 min, microwave irradiation 9 min,
80 W (T = 573 K) followed by 7 min, 150 W (T = 873 K)

ZrO2-W-6 ZrO(NO3)2
Total treatment 48 min, microwave irradiation 24 min,
1000 W (T = 873 K)

ZrO2-W-7 ZrO(NO3)2
Total treatment 30 min, microwave irradiation 15 min,
1000 W (T = 593 K)

MA + MW ZrO2-MA-W ZrO(NO3)2

Mechanical activation of ZrO2-T-873 2 min, followed by
MW (total treatment 30 min, microwave irradiation
15 min, 1000 W (T = 593 K)

MA
ZrO2-MA-C ZrCO3(OH)2

Mechanical activation 2 min followed by calcination at
723 K during 4 h

ZrO2-MA-N ZrO(NO3)2
Mechanical activation 2 min followed by calcination at
723 K during 4 h

SG ZrO2-SG Tetraisopropoxide Zr(IV) Sol–gel method followed by calcination at 873 K during
8 h

a TD—thermodegradation, MW—microwave treatment, MA—mechanical activation, SG—sol–gel method.

2.2.1. Thermodegradation (TD)

ZrO2 samples ZrO2-T-723 and ZrO2-T-873 were prepared by therodegradation of
ZrO(NO3)2·xH2O during 4 h at 723 K and 873 K, respectively. The synthesis was carried
out in a muffle furnace (Nabertherm, Lilienthal, Germany).

2.2.2. Microwave Treatment (MW)

To prepare zirconia materials by microwave treatment, 1.5 g of ZrO(NO3)2·H2O or
ZrCO3(OH)2·xH2O precursor were placed into a quartz cell and exposed to a microwave
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irradiation in a microwave oven PYRO (Milestone, Sorisole (BG), Italy). Treatment time
and oven power were varied to prepare different ZrO2 samples [48] (Table 2).

2.2.3. Mechanical Activation (MA)

To prepare ZrO2-MA-N and ZrO2-MA-C samples, ZrO(NO3)2·H2O or ZrCO3(OH)2·xH2O
were exposed to mechanical activation in a planetary mill APF-5 according to the tech-
nique described by [49]. Conditions of mechanical activation were the following: 2 min,
precursor/ball ratio = 1/10 (g/g), precursor mill feeding 15 g, acceleration 40 g (Table 2).
The calcination of activated samples was carried out at 723 K for 4 h.

2.2.4. Microwave Heating Combined with Mechanical Pre-Activation (MW + MA)

ZrO2-MA-W sample was prepared by microwave treatment (total treatment 30 min,
microwave irradiation 15 min, 1000 W (T = 593 K)) of ZrO(NO3)2·xH2O preliminarily
activated in a planetary-type mill according to the technique described in Section 2.2.3.

2.2.5. Sol–Gel Method (SG)

To prepare the ZrO2-SG sample, zirconium hydroxide was precipitated from a solution
of zirconium (IV) tetraisopropoxide in anhydrous isopropyl alcohol by dropwise addition
of ethanol (96%) under Ar atmosphere. The precipitate was kept for 7 days under the liquor,
then separated by decantation and calcined at 873 K for 8 h.

2.3. Catalyst Characterization

The texture properties of the catalysts were revealed by low-temperature nitrogen
adsorption at 77 K (ASAP-2400, Micromeritics, GA, USA). The X-ray of the catalysts were
carried out using a Bruker D8 Advanced diffractometer diffractometer (Bruker, Germany)
with Cu-Kα (λ = 1.5418 Å) radiation. The POLYCRYSTAL program package was used
to determine the unit lattice constants by the least squares method [50]. Inductively
coupled plasma-atomic emission spectroscopy (ICP-AES) applied for chemical analysis was
carried out using a PERKIN-ELMER OPTIMA 4300 instrument. Catalyst characterization
techniques are described in detail in our previous papers [24–26].

To evaluate the acidic properties of the catalysts, the pH values of the mixtures of
catalyst with water were determined. To evaluate this parameter, a 100 mg of ZrO2 sample
were added to Milli-Q water (10 mL) purged with argon for 10 min; then the glass cell was
closed. The pH values were measured with an Anion 4100 pH-meter (Anion, Novosibirsk,
Russia) under vigorous stirring and constant argon blowing until a constant pH value
was reached.

2.4. Mechanical Activation and Characterization of Cellulose

Cellulose was treated in a planetary mill Pulverizette 5 (Fristch, Germany) to activate
the substrate. Optical microscope Zeiss-Axiostar plus (Zeiss-Axiostar, Germany) and XRD
diffractometer Bruker D8 Advanced (Bruker, Germany) were used to evaluate a particle
size and crystallinity degree of the polysaccharide, respectively. The average length of
activated cellulose particles was 13 ± 6 µm, crystallinity index was 35–55%. Cellulose
activation and characterization techniques are presented in our previous works [24,36,51].

2.5. Catalytic Tests

Testing the stability of ZrO2 catalysts was carried out under hydrothermal conditions
in a high-pressure autoclave purchased from Autoclave Engineers, USA. The treatment
conditions were 453 K, 1 MPa of argon and vigorous stirring of 1000 rpm. A weighed
portion of the catalyst equal to 10 g·L−1 was added to 45 mL of Milli-Q water placed into
the reactor. The reactor was purged with argon, heated to 453 K, and held for 5 h. The Zr
content in the reaction medium after hydrothermal treatment was measured by an ICP-AES
spectrometer Optima 4300 DV (PerkinElmer Inc., Shelton, CT, USA).
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Catalytic tests were carried out in a high-pressure autoclave (Autoclave Engineers,
Erie, PA, USA). Cellulose transformation conditions were 453 K, 1 MPa of Ar, 1000 rpm.
To control the composition of the reaction mixtures by HPLC, a ~1 mL portion of the reaction
solution was collected in 0, 1, 2, 3, 5 and 7 h. The volume of the reaction mixture samples
did not influence on the cellulose processing. The experimental mixtures were investigated
by HPLC Shimadzu Prominence LC-20 (Shimadzu, Kyoto, Japan). HPLC apparatus was
equipped by RI detector, Rezex RPM-Monosaccharide Pb2+ and Rezex ROA-Organic Acids
columns (Phenomenex, Torrance, CA, USA), 300 × 5.0 mm) thermostated at 343 and 313 K,
respectively. Total organic carbon balance (TOC) was controlled using Multi N/C 2100S
TOC equipment (Analytik Jena, Jena, Germany). More detailed information about cellulose
hydrolysis-dehydration experimental techniques, as well as analytic methods of reaction
mixtures by HPLC and TOC can be found in our previous papers [23,24,36,52].

Product yields were revealed by the formula [26]:

Y =
CprV

NC(
mCell
Mgly

)
· 100% (1)

where Y—a product yield, mol%, Cpr—a product concentration, mol·L−1, V—the reaction
mixture volume, L, Nc—ratio of carbon in a product and glucose unit (1—for glucose,
fructose, 5-HMF, etc.), Mgly—molar weight of glucose unit in cellulose, 162 g·mol−1, mCell—
cellulose weighted, g.

3. Results and Discussion
3.1. Catalyst Characterization

The samples of ZrO2 catalysts were prepared from different precursors by thermod-
egradation (TD), microwave treatment (MW), mechanical activation (MA), microwave
treatment combined with mechanical activation (MA + MW), and the sol–gel method (SG).
A description of the catalyst synthesis methods can be found in Section 2.2 and Table 2.

Two samples were prepared by thermal decomposition at 723 K (ZrO2-T-723) and
873 K (ZrO2-T-873). Zirconium dioxide samples prepared by microwave treatment differ in
microwave irradiation power and processing temperature from <523 K to 873 K (samples
ZrO2-W-x where x = 1–7). When synthesizing ZrO2-W-4 sample, the ZrO2 precursor
was ZrCO3(OH)2·xH2O, for other five samples zirconyl nitrate monohydrate was used.
Samples ZrO2-MA-C and ZrO2-MA-N both prepared by mechanical activation differ in
the precursors of zirconium oxide: ZrCO3(OH)2·xH2O and ZrO(NO3)2·H2O, respectively.

The textural parameters of the catalysts were determined by low temperature nitrogen
adsorption (Table 3). In general, the prepared catalysts were characterized by the absence
of micropores and an insignificant volume of mesopores (except for ZrO2-T-723, ZrO2-W-7,
ZrO2-MA-W, and ZrO2-MA-N). The specific surface area varied in a wide range of 6–134
m2·g−1. Specific surface area and total pore volume decreased linearly with increasing
temperature of calcination (Table 3, lines 1 and 2). Samples ZrO2-T-873, ZrO2-W-5, ZrO2-
W-6, ZrO2-MA-W, and ZrO2-SG, which were subjected to thermal or microwave treatment
at 873 K, have a low specific surface area of 6–14 m2·g−1.

The phase composition of the catalysts was studied by XRD. Dependence on the catalyst
preparation method is observed (Table 3). Thus, zirconium oxides ZrO2-MA-C and ZrO2-
MA-N prepared by mechanical activation contain a tetragonal phase, the phase composition
does not depend on the zirconium oxide precursor (Table 3, lines 10 and 11). ZrO2-MA-W
prepared by mechanical activation, followed by microwave treatment has a monoclinic
structure (Table 3, line 9). Sample ZrO2-T-723 (Table 3, line 1) prepared by thermal decom-
position contains equal proportions of monoclinic and tetragonal ZrO2 phases. It should
be noted that the monoclinic structure is more thermally stable than the tetragonal one.
Samples prepared by microwave treatment turned out to be X-ray amorphous (Table 3,
lines 3–8). Complement studies were carried out on the ZrO2-W-7 sample, which was
additionally calcined for 1 h at 723 K and 853 K. During this heat treatment, recrystallization
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accompanied by an increase in the crystallite size occurs. The X-ray diffraction pattern
of the additionally calcined sample shows lines of tetragonal and monoclinic zirconium
oxide (Supplementary Information, SI, Figure S1). The content of the monoclinic phase is
38% and 56%, and the tetragonal phase is 62% and 44% when ZrO2-W-7 sample calcined
at 723 K and 853 K, respectively. We assume that pristine ZrO2-W-7 sample prepared by
microwave treatment at 593 K could contain small monoclinic structures.

Table 3. Textural properties, phase composition of ZrO2 catalysts.

No. Catalyst Sample Synthesis
Method a

Texture Properties Phase Composition b

pHZrO2SBET
(m2·g−1)

VΣ

(cm3 g−1) Main Admixture

1 ZrO2-T-723 TD 88 0.24 50% M
50% T - 7.7

2 ZrO2-T-873 TD 14 0.11 n.d. n.d. 6.0
3 ZrO2-W-1 W n.d. n.d. A M 6.5
4 ZrO2-W-3 W 12 0.06 A - 1.0
5 ZrO2-W-4 W 85 0.18 A - 2.1
6 ZrO2-W-5 W 13 0.04 A - 7.4
7 ZrO2-W-6 W 13 0.08 A - 6.0
8 ZrO2-W-7 W 134 0.37 A - 2.2
9 ZrO2-MA-W MA + MW 10 0.39 M - 5.8

10 ZrO2-MA-C MA 22 0.06 T M 7.2
11 ZrO2-MA-N MA 116 0.24 T M 7.5
12 ZrO2-SG SG 6 0.02 n.d. n.d. 8.7

a TD—thermodegradation, W—microwave treatment, MA—mechanical activation, SG—sol–gel method; b Phase composition: T—
tetragonal, A—X-ray amorphous, M—monoclinic.

The acidic properties of zirconium oxide catalysts were estimated by measuring
the pH of the mixtures of ZrO2 with water (pHZrO2) (Table 3). Previously, a correlation
between total amount of acidic groups on the surface of solid catalysts and the pH at
point of zero charge, as well as the pH of aqueous catalyst slurry was demonstrated [53].
The catalysts prepared by thermodegradation (Table 3, lines 1, 2) and mechanical activation
(Table 3, lines 10, 11) showed moderate acidity values; pHZrO2 was in the range of 6.0–7.7.
pHZrO2 varied in a wider range for the samples prepared by microwave treatment. ZrO2-
W-1 sample made using short processing time and lower microwave irradiation power
had a pH value of 6.5 (Table 3, line 3). On the other hand, the increase in preparation
time and micro-oven power (Table 3, lines 4, 5, 8) turned out to increasing catalyst acidity
(pHZrO2 1.0–2.2). However, if the calcination temperature reaches 873 K (samples ZrO2-W-5,
ZrO2-W-6, ZrO2-MA-W, Table 3, lines 6, 7, 9), pHZrO2 gains significantly up to 5.8–7.4.
The sample ZrO2-SG prepared by the sol–gel method had a weakly alkaline pHZrO2 value
of 8.7 (Table 3, line 12).

3.2. Cellulose Hydrolysis-Dehydration in the Presence of ZrO2 Catalysts

The process of depolymerization of cellulose in an aqueous medium requires the use of
rather harsh conditions, namely high temperatures and pressures. Therefore, solid catalysts
are required to be highly stable in the hydrothermal reaction medium. To determine
the stability of the prepared catalysts, they were subjected to hydrothermal tests at 453 K
for 5 h. The amount of dissolved Zr revealed by ICP turned out to be insignificant. The
values of zirconium dissolved after hydrothermal treatment were in the range of ≤1.3 ×
10−4–1.3 × 10−3%. However, 1.3% of Zr dissolved in the case of processing ZrO2-W-1 and
ZrO2-W-3 samples. These tests confirm high stability of the ZrO2 catalysts.

Hydrothermal hydrolysis-dehydration of cellulose polysaccharide in the presence
of ZrO2 catalysts was carried out at 453 K under inert argon atmosphere. The results
are shown in Table 4. Activity of ZrO2 samples was studied in pure water without any
co-catalysts. Glucose and 5-HMF were the major reaction products. Mannose and fructose
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formation during isomerization of glucose was confirmed by HPLC. Formic and levulinic
acids derived during the decomposition of 5-HMF, as well as furfural produced by the side
transformation of fructose were also observed by HPLC analysis (Scheme 1). The total yield
of all identified by-products did not exceed 5%. The only exception was the 14.6% yield of
levulinic acid achieved in the presence of ZrO2-W-7 in 7 h of reaction. The formation of
humins was also observed under hydrothermal reaction conditions.

Table 4. Glucose and 5-HMF yields and cellulose conversion achieved during cellulose hydrolysis-dehydration in the
presence of ZrO2 catalysts a.

Entry
No.

Catalyst
Sample

X b,
%

TOF
c

Glucose Yield, % 5-HMF Yield, %

0 h 1 h 2 h 3 h 5 h 7 h 0 h 1 h 2 h 3 h 5 h 7 h

1 ZrO2-T-723 37.4 0.12 0.0 0.5 0.6 1.3 1.4 1.4 0.0 0.3 1.0 2.4 3.0 3.8

2 ZrO2-T-873 16.0 0.02 0.3 0.1 0.3 0.4 0.5 0.5 0.0 0.2 0.7 1.0 1.9 2.8

3 ZrO2-W-1 37.8 0.09 0.0 0.5 0.2 1.4 1.9 0.3 0.0 0.5 n/d 2.6 3.9 0.9

4 ZrO2-W-3 45.0 1.79 14.3 3.0 1.0 0.4 0.1 0.1 0.7 4.5 3.4 2.5 1.4 1.1

5 ZrO2-W-4 50.1 0.62 8.1 9.1 8.8 7.9 4.5 2.8 2.2 4.0 6.2 7.0 7.5 7.4

6 ZrO2-W-5 24.3 0.06 0.0 0.0 0.1 0.2 1.1 1.7 0.0 0.2 0.3 0.6 1.6 3.3

7 ZrO2-W-6 16.1 0.02 0.0 0.1 0.2 0.4 0.6 0.7 0.0 0.2 0.5 0.7 1.6 2.4

8 ZrO2-W-7 62.4 0.70 5.2 n/d 6.9 4.1 1.4 0.6 0.4 5.0 3.9 2.9 1.8 1.3

9 ZrO2-MA-W 22.6 0.03 0.0 0.1 0.2 0.3 0.5 0.7 0.0 0.2 0.6 1.0 2.2 3.5

10 ZrO2-MA-C 24.2 0.02 0.0 0.5 0.6 0.7 0.8 0.9 0.0 0.0 0.2 0.4 0.8 1.8

11 ZrO2-MA-N 27.3 0.01 0.0 0.1 0.1 0.1 0.4 0.8 0.1 0.2 0.4 1.0 1.8 2.8

12 ZrO2-SG 30.3 0.21 0.0 0.9 2.6 4.6 7.0 7.9 0.0 0.5 1.4 2.9 5.7 8.2
a Reaction conditions: initial concentrations of cellulose and catalyst 10 g·L−1, reaction volume 45 mL, 453 K, PAr 1 MPa, 1000 rpm, reaction
time 7 h; b Cellulose conversion revealed by TOC at 7 h of the reaction; c mmol (5-HMF + Glu)·g−1·h−1.
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It is interesting to compare cellulose conversion values with both pHZrO2, specific
surface values and phase composition of ZrO2 samples (Figure 1).

Note that pHZrO2 and SBET depend on preparation techniques. Thus, samples
ZrO2-T-873, ZrO2-W-5, ZrO2-W-6, ZrO2-MA-W, ZrO2-MA-C and ZrO2-SG which has low
SBET values of 6–14 m2·g−1 and high pHZrO2 in the range of 5.8–8.7 demonstrated moderate
activity in cellulose depolymerization (16.0–30.3%) (Figure 1, Table 1 lines 2, 6, 7, 10 and
12). The increase in specific surface area of ZrO2 up to 88–116 m2·g−1 without significant
changing of pHZrO2 (7.5–7.7) did not improve actives of zirconia (samples ZrO2-MA-N
and ZrO2-T-723, Figure 1, Table 1 lines 1 and 11). On the other hand, ZrO2-W-3, which
has low SBET value of 12 m2·g−1 and high pHZrO2 equal to 1.0 let one to reach 45.0% of
cellulose conversion (Figure 1, Table 1 line 4). The highest activities have been demon-
strated by ZrO2-W-4 and ZrO2-W-7 samples prepared by microwave treatment, which
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has both significant specific surface areas and pHZrO2 values of 2.1–2.2. 50.1 and 62.4%
cellulose conversions have been achieved in the presence of ZrO2-W-4 and ZrO2-W-7,
respectively (Figure 1, Table 1 lines 5, 7, and Table 4 lines 5, 8). Interestingly, both ZrO2-W-4
and ZrO2-W-7 were more active compared to ZrO2-W-3, characterized by higher acidity
but lower SBET value. Thus, activity of ZrO2 significantly increases with increasing catalyst
acidity and density of acid sites, which depends on a specific surface area. The highest
cellulose depolymerization value equal to 62.4% have been demonstrated for ZrO2-W-7.
Interestingly, the increasing temperature of microwave treatment causes decreasing ac-
tivities of ZrO2-W series due to diminishing both acidity and SBET value. It should be
emphasized, that catalysts prepared by different techniques and having similar parameters
of pHZrO2 and SBET show compatible values of the polysaccharide conversion, for example
ZrO2-T-873 and ZrO2-W-6 as well as ZrO2-MA-C and ZrO2-W-5 (Figure 1).
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Figure 1. Dependence of the cellulose conversion on pHZrO2 and specific surface area of catalysts. 
Reaction conditions: initial concentrations of cellulose and catalyst 10 g L−1, reaction volume 45 mL, 
453 K, PAr 1 MPa, 1000 rpm, reaction time 7 h. 
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Figure 1. Dependence of the cellulose conversion on pHZrO2 and specific surface area of catalysts. Reaction conditions:
initial concentrations of cellulose and catalyst 10 g L−1, reaction volume 45 mL, 453 K, PAr 1 MPa, 1000 rpm, reaction time
7 h.

The phase composition of ZrO2 could also influence the catalytic properties of zir-
conia [40]. However, in our study, the phase composition of ZrO2,which had similar
pHZrO2 and SBET parameters, did not affect cellulose conversion significantly. For example,
depolymerization degrees of the polysaccharide were 24.2–24.3% for ZrO2-MA-C with
tetragonal phase and X-ray amorphous ZrO2-W-5 catalysts. Precursors of ZrO2 could also
affect the textural and acid properties of the catalysts. Thus, ZrO2-MA-C and ZrO2-MA-N
were prepared from ZrCO3(OH)2·xH2O and ZrO(NO3)2·H2O, respectively, under equal
conditions of mechanical activation. Specific surface area and pore volume of ZrO2-MA-
N (116 m2·g−1, 0.24 cm3 g−1) were 4–5 times higher compared to ones of ZrO2-MA-C
(22 m2·g−1, 0.06 cm3 g−1). However, both ZrO2-MA-C and ZrO2-MA-N demonstrated
moderate activity in terms of cellulose conversion due to similar acidity 7.2–7.5 (Table 3,
lines 10,11, Table 4, lines 10,11).

Watanabe et al. [44] and Chareonlimkun et al. [40] previously reported that catalytic
activity depended on both acid and base properties of catalysts. Acid centres are responsible
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for hydrolysis, while base sites catalyse isomerization of glucose to fructose, facilitating
5-HMF formation [40]. According to our results shown on Figure 2, the initial reaction
rates (R) of glucose and 5-HMF formation depended on pHZrO2. The decrease in pHZrO2
gains both initial rates of glucose and 5-HMF formation. However, ZrO2-SG samples with
pHZrO2 value of 8.7 demonstrated notable activity to glucose dehydration to 5-HMF. This
may indicate that both acid and base sites of ZrO2 are involved to reaction.
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Summarizing the above section, the proposed catalyst ZrO2-W-7 was prepared by
microwave treatment under low temperature. Thus, such a synthesis approach can be
assumed to be the most promising. This catalyst preparation technique provides high
acidity and specific surface areas which supply high catalytic efficiency.

3.3. Perspectives of ZrO2 Catalysts

As mentioned above, the yields of glucose and 5-HMF can reach 12.7 and 20.6%,
respectively, over ZrO2 catalysts [38–45]. The main results published previously are cap-
tured in Table 1. Gliozzi et al. [42] showed 8.2% total yield of 5-HMF and furfural from
softwood in the presence of silica-zirconia catalyst at 423 K. Biomass conversion was 34%.
Yang et al. [45] transformed cotton cellulose over mixed ZnO–ZrO2 under hydrothermal
conditions. 5-HMF yield reached 3.76% at 1.4 MPa autogenic pressure, 463 K and cellulose
conversion 52.18%. Gavilà et al. [41] reported transformation of microcrystalline cellulose
to 5-HMF at 453 K, pressure 3 MPa. The selectivity of the target product was ~20.6%.
Watanabe et al. [44] investigated transformation of glucose and fructose in the presence of
oxide catalysts at 473 K. 5-HMF yields were ~5.4% and ~15% from glucose and fructose,
respectively, over zirconium oxide. Chareonlimkun et al. [40] used TiO2, ZrO2 and mixed
TiO2–ZrO2 catalysts prepared by co-precipitation, sol–gel and physical mixing methods
when processing different biomass resources (sugarcane, bagasse, rice husk and corn cob).
ZrO2 catalyst derived via precipitation demonstrated higher activity; 4.2 and 1.8% yields
of 5-HMF and glucose were reached at 523 K and 34.5 MPa. Qiao et al. [46,47] investigated
cellulose hydrolysis under microwave heating in the presence of oxides at 433 K. The
highest total yield of reducing sugars (TRS) was 93.6% in the presence of amorphous ZrO2.
It should be noted that 0.04 mol L−1 H2SO4 co-catalyst was applied for the activity of solid
ZrO2 based catalysts to be gained. Hydrolysis-dehydration of microcrystalline cellulose
over NbOx/ZrO2 and pure ZrO2 catalysts was reported by [34]. Experiments were carried
out at 453 K under 1 MPa pressure of Ar. Maximum yields of 5-HMF and glucose were
12.7 and 13.3%, respectively, in the presence of ZrO2.

According to the data obtained in this work, the most promising catalyst is ZrO2-W-7
prepared by microwave treatment of zirconyl oxynitrate for 3 min. High activity of the
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catalyst is confirmed by significant cellulose conversion degree equal to 62.4% and notable
yields of glucose and 5-HMF (Table 3, line 8). Influence of ZrO2-W-7 catalyst loading was
also investigated. Catalyst: cellulose ratio equal to 1:20 was found to be the optimum one
(Table 5 and Figure 3).

Table 5. One-pot depolymerization of cellulose to glucose and 5-HMF in the presence of ZrO2-W-7 at [Cat]/[Cell] ratios 1:1
and 1:20 g·g−1 a.

Catalyst
Sample [Cat]/[Cell] pHZrO2 X c (%)

R,
(mol·L−1·s−1·107)

Maximum Yields of the Products (%)

YGlu τ, h Y5-HMF τ, h

ZrO2-W-
7

1:1 2.2 62.4 12.4 6.2 2 5.0 1

1:20 b 3.4 53.1 18.6 18.0 7 15.0 7
a Reaction conditions: initial concentrations of cellulose and catalyst 10 g L−1, reaction volume 45 mL, 453 K, PAr 1 MPa, 1000 rpm, reaction
time 7 h; b [Cat]/[Cell] = 1:20 g·g−1. Catalyst loading 0.5 g·L−1; c Cellulose conversion revealed by TOC at 7 h of the reaction.
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of ZrO2-W-7 catalyst. Reaction conditions: initial concentration of cellulose 10 g L−1, initial catalyst
loading 10 (0.5) g L−1, reaction volume 45 mL, 453 K, PAr 1 MPa, 1000 rpm, reaction time 7 h.

Catalyst: cellulose = 1:1 caused a decrease in yields of glucose and 5-HMF due to
significant transformation of the target products into side products in the presence of an
excess of active sites in the reaction medium; 18 and 15% yield of glucose and 5-HMF were
achieved under the optimum ratio of cellulose:ZrO2-W-7 = 20:1 (Table 5).

To compare the efficiency of ZrO2 catalysts, TOF values were calculated according to
the following equation [26]:

TOF =
CGlu+5−HMF

mcat · t
(2)

where TOF is the turnover frequency, mmol·g−1·h−1, CGlu+5-HMF is amount of glucose and
5-HMF formed, mmol, mcat is the catalyst amount, g, and t is the reaction time, h.

The most promising ZrO2 catalyst studied in this work (TOF value 15.1 mmol·g−1·h−1)
was significantly more active than the systems reported elsewhere (Table 6).
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Table 6. TOF of ZrO2 catalysts in cellulose hydrolysis-dehydration.

Reaction Conditions TOF,
(mmol·g−1·h−1) Ref.

T, P Cell:H2O:Cat a

463 K, 1.4 MPa 1:100:1 0.10 [45]

453 K, 3 MPa 4:250:1 3.5 × 10−5 [41]

453 K, 1 MPa 1:100:1 0.83 [43]

453 K, 1 MPa 20:2000:1 15.1 This work
a Cell:H2O:cat—ratio of cellulose (g)—water (mL)—catalyst (g).

To reveal the stability of zirconia catalytic systems, ZrO2-W-7 was tested in five runs
of cellulose hydrolysis-dehydration reaction. After each cycle, the catalyst spent was
separated by centrifugation, washed several times with Milli-Q water, dried at 333 K, and
reused in a new cycle. Figure 4 shows the results of catalyst reuse experiments. In five
cycles, the yields of glucose and 5-HMF decreased by 5%.
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