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Abstract: Peat is a resource used for heat and energy, particularly in countries where peat is abundant
and conventional fuels are not available. Some countries have made extensive use of peat resources
to produce electricity and heat in addition to light hydrocarbons. By doing so, they were able to
reduce the cost of importing fossil fuels. To the best of our knowledge, there is a lack of a detailed
description of the peat oxidation process in the presence of other substances. Herein, the process of
peat oxidation was studied in-depth by means of thermal analysis in the presence of iron tallate acting
as a catalytic agent. Differential scanning calorimetry and thermogravimetric analysis demonstrated
an oil-like oxidation behavior during the combustion of the used peat. The process of peat oxidation
includes two main regions: low-temperature oxidation (LTO), which occurs during the oxidation of
light hydrocarbons, followed by the so-called high-temperature oxidation (HTO), which includes the
oxidation of the obtained coke-like product. Moreover, the application of non-isothermal kinetics
experiments based on the isoconversional and model approach principle have confirmed the role
of 2% iron tallate in peat mass by improving the oxidation rate at low- and high-temperature
oxidation (HTO) regions. The results obtained from this study have proven that the added catalyst
improves efficiency with regards to the energy activation in the process by leading to its significant
decrease from 110.8 ± 7.8 kJ/mol to 81.8 ± 7.5 kJ/mol for LTO and from 157.8 ± 19.1 kJ/mol to
137.6 ± 9.3 kJ/mol for HTO. These findings clearly confirm the improvement in the rate of the process
by shifting the LTO and HTO peaks to lower regions in the presence of the catalyst. These results
further emphasize the possible impact which could be generated by the application of thermally
enhanced oil recovery methods on peat development and exploitation.

Keywords: unconventional resources; peat; oxidation; thermal analysis; catalysts; iron oxide nanopar-
ticles; DSC; TG; non-isothermal kinetics

1. Introduction

Peat is among the most commonly discussed types of fossil fuel alternatives for
improving the world’s production of hydrocarbons and fuels due to the shortage of uncon-
ventional hydrocarbon reserves [1–6]. Furthermore, the last two decades have witnessed
a huge growth in fossil fuel demand and consumption which has resulted in insufficient
supply from the oil market. In order to face the issues resulting from fossil fuel use and
shortages, alternative energy sources such as peat are of particular importance [7–10]. Al-
though researchers have widely shown interest in peat production and exploitation, there is
still much work to be carried out regarding the mechanism of peat thermal degradation and
energy transfer from these resources [11,12]. Tons of peat mass is produced annually from
different marine and urban solid wastes, and yet, the mechanism of peat combustion has
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been poorly studied. Industry, agriculture, and forests are, therefore, decaying, resulting in
environmental problems and toxic gas emissions [13,14].

Peat is used in different sectors, such as medium-scale combined heat and power
plants, which generate electricity and heat for industrial processes [15–17]. Moreover, peat
represents a potential source of hydrocarbons that can be extracted by applying methods
to enhance oil recovery. Enhancing oil recovery (EOR) methods is attracting considerable
interest in the petroleum scientific community which deals with the different sources of
energy exploitation. EOR consists of a set of methods that could be applied for recovering
hydrocarbons from unconventional resources [18]. EOR is classified into chemical [19,20],
physical [21,22], and thermal methods [23,24] depending on the applied technique. Among
these methods, thermal enhanced oil recovery methods are attracting great interest in
terms of recovery and economy. Perhaps the most attractive method is in situ combustion.
It is based mainly on burning a part of the hydrocarbons in order to generate additional
heating into the reaction medium due to exothermic reactions associated with the process
of oxidation [25]. Today, the commonly accepted model for in situ oxidation consists of
three main regions which are known as LTO, the fuel deposition region, and HTO [26,27].
The LTO region leads to the formation of oxygenated hydrocarbons as a result of oxygen
combined with the oil components. The fuel deposition step transforms the obtained
oxygenated hydrocarbons into gas hydrocarbons and coke-like products. Finally, the HTO,
which is believed to be the key element for a successful application of in situ combustion,
leads to the oxidation of the obtained coke-like product and releasing a high amount
of heat due to the exothermic nature of the process [28]. Regardless of the promising
perspectives expected from the application of in situ combustion for EOR from oil reservoirs,
or enhancing hydrocarbon generation in industrial plants from peat, this method is still
suffering from a lack of kinetic and thermodynamic studies which mostly leads to its
unsuccessful application [29]. However, an increasing number of recent works have
reported that the use of catalysts may result in the successful application of the latter [30–32].
In our previous works, we have studied the effect of different oil-soluble catalysts [33,34],
in addition to the effect of manganese oxide nanoparticles [35], on the heavy oil oxidation
process by means of thermal analysis. It has been found that the use of a catalyst decreases
the activation energy in the process, especially in the HTO region. Therefore, the novelty of
the present work lies in the use of different catalysts for improving the kinetics of oxidation
reactions of peat which may lead to better hydrocarbon content. In the present study,
the oxidation kinetics behavior of peat in the absence and the presence of iron tallate
catalysts was investigated in order to highlight the process features for further study and
application by differential scanning calorimetry and thermogravimetric analysis.

2. Results
2.1. Experimental
2.1.1. Materials

To study the characteristics of peat oxidation, a sample of high-quality peat with
a low degree of decomposition (less than 65% humidity, more than 90% organic matter
content, less than 10% ash content, and an acidity of 2.5%) was been obtained from the
Greko-Ushakovskoye field. The obtained peat comprised a complex chemical composition
(Table 1) which was determined by the conditions of genesis, the variety of peat-forming
plants, and the degree of decomposition. Iron tallate was synthesized by using a set of
organic solvents (purer than 99.5%), which were obtained from Component Reactive and
used without additional purification. Moreover, the used inorganic salts were purchased
from Sigma-Aldrich (St. Louis, MO, USA).
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Table 1. The main components contained in the Greko-Ushakovskoye field peat.

Component Composition of Peat Organic Matter Mass Fraction in the Composition, %

Cellulose 4–10
Humic acids 15–50

Lignin 5–20
Easily hydrolyzable compounds 20–40

Water-soluble substances 1–5

2.1.2. Iron Tallate Preparation

The synthesis of the iron tallate catalyst was performed according to a well-known
procedure [36]. The distilled tall oil (DTO) was used as a precursor, which resulted in iron
carboxylate by inorganic iron salt exchange reactions with DTO sodium salt. The procedure
had two main steps starting with saponification of fatty acid as follows:

C17H33COOH + NaOH→ C17H33COONa + H2O (1)

The next step was to include the carboxylate interaction with iron sulfate at a higher
temperature as follows:

2C17H33COONa + FeSO4 → (C17H33COO)2Fe + Na2SO4 (2)

To investigate the process of peat oxidation, 2 wt% of iron tallate was mixed with a
peat sample and then used in thermal analysis experiments.

2.1.3. Thermal Analysis

The STA 449 F1 Jupiter (Netzsch) thermoanalyzer was adopted for investigating
the oxidation process of peat by means of differential scanning calorimetry (DSC) and
thermogravimetric (TGA) analyses at a temperature range from 30–600 ◦C with a heating
rate of 5, 10, 15, 20 ◦C ×min−1 and 50 mL ×min−1 airflow. The Proteus Analysis v5.2.1,
NETZSCH Peak Separation (version 2010.09), and NETZSCH Thermokinetics 3.1 (version
06.08.2014) program package was used for obtaining data.

The heterogeneous oxidation processes are considered complex and hard to study
because of the nature of the reaction medium, which contains the gaseous, liquid, and solid
states, and the occurrence of diffusion processes that should be considered as well. There-
fore, many experts in the field of heterogeneous kinetics recommend describing the kinetics
of such processes in their function of conversion degree and oxygen partial pressure as:

dα

dt
= k(T)Pa

O2
(1− α)b (3)

where α is the conversion degree and could be calculated by differential scanning calori-
metric and thermogravimetric data, b is the reaction order, and PO2 is the oxygen partial
pressure. The rate constant k(T) is expressed by Arrhenius law as presented by Equation (4):

k(T) = Ae−
E

RT (4)

For the sake of simplicity, the process of peat oxidation was approached in the same
way as oil oxidation due to the similar nature of both substances which mainly consists of
hydrocarbons. Hence, the oil oxidation reaction order was assumed to be equal to 1 relative
to oil concentration and oxygen partial pressure [37,38]. In addition, the oxygen partial
pressure was considered constant during DSC/TG analysis since the thermal analysis was
based mainly on small samples sizes and they were provided in a large furnace with high
airflow. Thus, Equation (3) transforms into:

dα

dt
= ke f f (1− α) , where ke f f = kPO2 (5)
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2.1.4. Kinetic Analysis

The aim of the present study was to reveal the oxidation behavior of peat from a
kinetic analysis perspective. Consequently, the isoconversional and model approaches of
non-isothermal kinetics [39,40], in addition to the Kissinger method [41], were selected to
study the kinetic behavior of the peat oxidation process as recommended by the Kinetics
Committee of the International Confederation for Thermal Analysis and Calorimetry
(ICTAC) [39].

The isoconversional principle is based on the idea that the reaction rate is only a func-
tion of temperature at a constant conversion. Therefore, in this study we chose Kissinger’s
method (ASTM E2890) [42], Friedman’s analysis [43], and the Kissinger–Akahira–Sunose
method for finding out the kinetic parameters of peat oxidation.

To choose the model associated with the oxidation of peat we adopted the approach
of minimizing the difference between the experimentally measured and calculated data
on the reaction rate [39]. The models used during the process of approaching a model are
presented in Table 2. Moreover, the prediction of conversion times at different degrees
of conversion [44,45] led to the evaluation of the catalyst’s efficiency on the process of
peat oxidation.

Table 2. Model methods for calculating kinetic parameters.

Model. Equation

Reaction of nth order (Fn) f = (1 − α)n

Two-dimensional phase boundary (R2) f = 2(1 − α)1/2

Three-dimensional phase boundary (R3) f = 3(1 − α)2/3

N-dimensional nucleation according to
Avrami-Erofeev (An) f = n·(1 − α)·[−ln(1 − α)](n−1)/n

Expanded Prout–Tompkins equation (Bna) f = (1 − α) n·αAutocatOrder

Reaction of nth order with m-Power
autocatalysis by product (Cnm)

f = (1 − α)n·(1 + AutocatOrder ·αm)

2.2. Discussion
2.2.1. Thermal Analysis

Thermal analysis has beneficial applications in studying thermal degradation pro-
cesses such as peat oxidation. Moreover, this analysis has a more practical solution
for studying hydrocarbon oxidation processes in terms of its simplicity, being less time-
consuming, and costing less. The changes in peat oxidation behavior were identified using
thermogravimetric analysis in correlation with differential scanning calorimetry. The ther-
mogravimetric results obtained at different heating rates in addition to their differential
data are illustrated in Figure 1.

The thermogravimetric and differential thermogravimetric analysis curves highlight
that the process of peat oxidation includes two main stages as illustrated by the three-step
character of mass loss in thermogravimetric curves in the presence and the absence of the
catalyst. Moreover, there was a significant correlation between thermogravimetric and
differential thermogravimetric curves regarding these zones of the oxidation process. Both
data exhibit two main peaks at each heating rate as shown on both curves. The afore-
mentioned zones are well-studied in the literature and are generally described to be the
LTO region (250–350 ◦C) and the HTO region (390–500 ◦C). Previous studies of the peat
oxidation process have been limited by the choice of the appropriate methods allowing a
detailed description of its oxidation mechanism and the rate at which it occurs. Moreover,
these studies have failed to consider the impact of applying transition metal-based catalysts
to improve the process of peat oxidation. However, the thermogravimetric results obtained
during this study proved the impact of iron tallate as an effective catalyst in the process of
peat oxidation as it led to peak temperature shifting of the LTO and HTO regions as shown
in Figure 1 and illustrated by Figure 2.
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Figure 1. Thermal gravimetric and differential thermal gravimetric curves of the non-catalytic (a) and
catalytic (b) processes of peat oxidation.
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Figure 2. Differences between the peak temperatures (∆Tp) of non-catalytic and catalytic peat
oxidation for LTO and HTO regions at different heating rates obtained from thermogravimetric and
differential thermogravimetric analysis.

As well as thermogravimetric and differential thermogravimetric analysis, differential
scanning calorimetric (DSC) study confirmed the observed effect of the use of the catalyst
in decreasing the temperature at which the process of the LTO and HTO of the studied peat
occurs (Figure 3).
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Figure 3. DSC curves for non-catalytic (a) and catalytic (b) peat oxidation.

The most striking results that emerged from the DSC data were the presence of
two main peaks and the influence of the catalyst presence in the process of oxidation.
In other words, Figure 3 highlights two main oxidation regions related to the LTO and
HTO processes. In addition, the catalyst adopted for this study improved the process rate
by shifting the peak temperatures at which the reactions of LTO and HTO occurred in the
lower regions. In order to confirm the impact generated by the addition of the catalyst
in the process, the difference in peak temperature shifts from the obtained DSC data was
calculated as illustrated in Figure 4.
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Broadly speaking we found a significant correlation between thermogravimetric,
differential thermogravimetric analysis, and differential scanning calorimetric results,
which point toward the efficiency of the catalyst on the peat oxidation process by decreasing
the peak temperature shifts at different heating rates. Interestingly, the obtained data
show an oil-like oxidation behavior for peat. These results have further strengthened
our hypothesis about the possibility of peat development and exploitation via thermally
enhanced oil recovery methods such as in situ combustion. Given that our results are based
only on a simple observation of thermal analysis data which led to highlighting the oil-like
oxidation behavior of the peat oxidation process, we should, thus, further use these data to
describe the kinetic aspect of the associated process for the in-depth study of the energy of
activation for each step of oxidation.

2.2.2. Kinetic Study

In order to confirm the results of thermal analysis, the isoconversional and model
approach principle was applied for calculating the kinetic parameters of the processes of
peat oxidation in the presence and the absence of iron tallate. Figure 5 shows the Kissinger
curves which allow for calculating the energy of activation and the pre-exponential factor
associated with the LTO and HTO of peat in the presence and the absence of the iron tallate
catalyst. The energy of activation and the pre-exponential factor obtained by Kissinger’s
method for each oxidation region are classified in Table 3.
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Table 3. Kinetic parameters of peat oxidation processes.

Non-Catalytic Catalytic

LTO HTO LTO HTO

Ea, kJ/mol 110.8 ± 7.8 157.8 ± 19.1 81.8 ± 7.5 137.6 ± 9.3
log10A,

A in min−1 11.2 ± 1.53 16.0 ± 3.2 6.7 ± 1.47 12.9 ± 1.6

Furthermore, we applied the KAS and Friedman methods to understand the behavior
associated with peat oxidation in the presence and absence of iron tallate. Activation energy
dependency on the conversion degree is used as a reliable tool to explain the different
phases of the peat oxidation path. Figure 6 shows the peat oxidation energies of activation
at different conversion degrees.
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Figure 6. Peat oxidation activation energy dependency on conversion degree in the presence and 
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Figure 6 indicates a significant variation in activation energy values at different conver-
sion degrees with the presence of the so-called “shoulder” which witnesses the multistep
nature of the peat oxidation process either in the presence of iron tallate or in its absence.
The obtained curves are quite similar to those obtained in the literature for the process
of heavy oil oxidation. Likely, the two main regions present in the obtained shoulder of
each curve for both the catalytic and non-catalytic oxidation of peat are associated with
the LTO and HTO regions. These regions generally describe the process of the heavy oil in
the in situ oxidation process where LTO includes the formation of oxygenated compounds
such as alcohols, aldehydes, and ketones. Meanwhile, HTO refers to the oxidation of the
obtained coke-like product from the previous stage (LTO).

Broadly speaking, experts in the field of heterogeneous catalysis recommend the use
of the model approach to confirm the obtained data by the isoconversional approach for
estimating the effective reaction rates in both LTO and HTO, and, thereby, the effect of
catalysts on these oxidation regions. For this reason, we have applied the model approach
on LTO and HTO to assess the effect of iron tallate on these oxidation regions. The model
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processing was established by selecting 32 two-step models for each stage of peat oxidation
in the presence and absence of iron tallate. So that we would be able to select the adequate
model we have referred to the aforementioned modes in Table 2. Moreover, the selection
of the optimal model for the processes of peat oxidation was performed by means of the
F-test [46]. Table 4 shows the models obtained by the application of the F-test value of 1.000.
A detailed consideration of each of the calculated models is presented in (Supplementary
Materials Table S1). Figure 7 presents the DSC curves of the obtained peat oxidation models
in the absence and presence of the catalyst.
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Table 4. Kinetic parameters of peat model oxidation processes.

Models
Please indicate LTO and HTO

Peat Catalytic Oxidation Peat Oxidation

An:
Ea = 75.8 kJ·mole−1,

LgA = 4.1 s−1,
Dimension n = 0.78

Fn:
Ea = 76.3 kJ·mole−1,

LgA = 4.1 s−1,
ReactOrder n = 1.45

Bna:
E = 116 kJ·mole−1,

LgA = 6.4 s−1,
ReactOrder n = 1.51,
AutocatOrder 0.206

Bna:
E = 132.2 kJ·mole−1,

LgA = 7.7 s−1,
ReactOrder n = 1.48,
AutocatOrder 0.254

R2 0.99715 0.99833
F-test 1.000 1.000

The obtained models were established as autocatalytic reactions of type: An for the
catalytic LTO of peat; Fn for the non-catalytic LTO of peat; Bna for the catalytic and non-
catalytic HTO. The selected models demonstrated the same behavior of kinetic parameters
as in the case of the isoconversional approach results and Kissinger method data. In other
words, the obtained models witnessed a slight decrease in the activation energy in the LTO
while manifesting a significant decrease in activation energy in the HTO; this reflects the
effect of the adopted catalyst in this region which is widely believed to be the key to a
successful application of in situ oxidation.

3. Peat Oxidation Rate Constant Calculation

As expected from TG/DSC curves, there was strong evidence from the obtained
kinetic parameters about the impact of using a catalytic agent such as iron tallate for
improving the LTO and HTO of peat. The obtained results highlight a decrease in energy
of activation in the presence of the catalyst from 110.8 to 81.8 kJ/mol (for LTO) and from
157.8 to 137.6 kJ/mol (for HTO). In our view, these results emphasize the validity of the
adopted catalyst in improving the peat oxidation process. However, the obtained pre-
exponential factor values for the LTO and HTO of peat demonstrated an opposite effect of
the adopted catalyst. The pre-exponential factor values decreased in the presence of the
catalyst from 11.2 to 6.7 min−1 (for LTO) and from 16 to 12.9 min−1 (for HTO). Taken as
a whole, the energy of activation and pre-exponential factors demonstrated a noticeable
disagreement about the effect of iron tallate on the process of peat oxidation. The energy
of activation and the pre-exponential factor were inversely proportional to the effective
reaction rate expressed by the Arrhenius equation. Therefore, to evaluate the total effect of
these two parameters on the peat oxidation process in the presence and absence of iron
tallate, we calculated the effective oxidation rate constants within a large temperature
range where these processes occur. The effective reaction rate constants of the LTO and
HTO of peat are provided in Figure 8.

Figure 6 shows higher effective rate constants in both regions for the LTO and HTO
processes in the presence of iron tallate compared to the non-catalytic processes. It is
fundamental to note that the influence of the catalyst is obvious especially in the LTO
region, which generates oxygenated compounds through partial oxidation. The correlation
between TG/DSC data and the obtained kinetic results is noteworthy because it reveals
the importance of the catalyst’s role in enhancing the peat oxidation process, especially in
generating oxygenated compounds and hydrocarbon as a promising alternative source
of biofuels. Although our investigations so far have only been on a small scale, we still
believe that iron tallate exhibits different oxidation states during the peat oxidation process
and it transforms into iron oxide nanoparticles at higher temperatures. These nanoparticles
possess a strong catalytic effect on the process of peat oxidation due to a higher surface
area due to the adsorption of the generated hydrocarbon from peat on its surface, and,
thus, performing the catalytic action in a short time. Our findings and hypotheses appear
to be well-supported by our previous work on heavy oil oxidation [33–35]. We are aware
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that our research may contain limitations, such as the lack of other physical methods for
confirming our hypotheses about catalyst transformation during the peat oxidation process.
Nevertheless, to the best of our knowledge, we believe that there is limited study on non-
isothermal kinetics for such a valuable alternative source of energy as peat. The present
work could be used to generate the interest of other researchers to undertake investigations
into peat in future research.
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4. Kinetic Predictions

It is worthy to note that the model approach values obtained for the pre-exponential
factor followed the same pattern of change as those values obtained by means of the
isoconversional principle or by the Kissinger method. The pre-exponential factor values
decreased in the presence of iron tallate, which may have affected the overall reaction rate
since the pre-exponential factor and activation energy were inversely proportional to the
reaction rate according to the Arrhenius equation.

Therefore, to evaluate the total effect of these two parameters on the peat oxidation
process in the presence and absence of iron tallate, we calculated the oil conversion time
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versus temperature for different degrees of conversion (Figure 9) using the models obtained
from Table 4. The calculated oxidation times of peat in the presence and absence of catalysts
at 10%, 50%, and 90% oxidation conversion are presented in Figure 9.
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Figure 9 shows less conversion time in both regions at the LTO and HTO processes
in the presence of iron tallate compared to non-catalytic processes which witness a high
reaction rate in the presence of iron tallate. It is fundamental to note that the influence of
the catalyst is obvious especially in the HTO region, which is considered the main region
for a higher generation of a combustion front, which, consequently, leads to the pyrolysis
of the adjacent amount of peat, and, which, in turn, releases light hydrocarbons and gases.
The correlation between TG/DSC data and the obtained kinetic results is noteworthy
because it revealed the importance of the catalyst’s role in enhancing the peat oxidation
process, especially in generating the considerable amount of needed heat on large scales
for improving hydrocarbon generation from such potential resources like peat. Although
our investigations so far have been on a small scale, we still believe that iron tallate exhibits
different oxidation states during the peat oxidation process and it transforms into iron
oxide nanoparticles at higher temperatures. These nanoparticles possess a strong catalytic
effect on the process of peat oxidation due to higher surface area due to the adsorption of
the generated hydrocarbons from peat on its surface, and, thus, performing the catalytic
action in a short time on the resulting coke. Our findings and hypotheses appear to be
well-supported by our previous works on heavy oil oxidation [33–35]. We are aware that
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our research contains limitations; nevertheless, to the best of our knowledge, few works
have applied non-isothermal kinetics based on the isoconversional and model approach
principles for studying such valuable alternative sources of energy such as peat. We hope
that the present work could be used to generate the interest of other researchers into
developing investigations into peat in further research.

5. Conclusions

This work describes the behavior of the peat oxidation process in addition to its kinetic
aspect by means of thermogravimetric and differential scanning calorimetric analysis.
The evidence from this study points toward the idea that the peat oxidation process has
oil-like oxidation behavior. In general, these results suggest that the peat oxidation process
includes two main oxidation regions: LTO and HTO processes. Our research underlined
the importance of using iron tallate as an effective catalyst for the peat oxidation pro-
cess. The comprehensive results demonstrated that iron tallate decreases the energy in
the activation of the LTO and HTO of peat. Moreover, the findings of this study support
the idea that iron tallate effectively increases the peat oxidation process rate in both the
LTO and HTO regions which results in increased light hydrocarbon generation during the
LTO region on larger scales. These findings add to the growing body of the literature on
peat development and exploitation as alternative sources of energy for future generations.
Our work has limitations. Despite this, we believe our work could be a springboard for
further analysis and studies about the kinetic behavior of peat in the presence of catalysts
in addition to the investigation of their mechanism during their application. In our view,
these findings present an excellent initial step towards developing and exploiting peat for
generating energy in different industrial plants by means of in situ combustion, which
is widely considered an economically effective method for generating hydrocarbons and
energy. We are currently in the process of investigating the effect of different catalysts with
different characteristics on the kinetic behavior of peat oxidation and pyrolysis processes.
However, it is recommended that further research should be undertaken in thermody-
namics and the mass and energy transfer associated with peat oxidation to validate our
findings by utilizing a larger sample size. Another important aspect that should be taken
into consideration is the electrochemical analysis of the processes of peat oxidation which
is possible due to the generation of electrons through oxidation.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/catal11111344/s1, Table S1: Kinetic parameters of peat oxidation process in the presence and
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