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Abstract: The market for industrial enzymes has witnessed constant growth, which is currently
around 7% a year, projected to reach $10.5 billion in 2024. Lipases are hydrolase enzymes naturally
responsible for triglyceride hydrolysis. They are the most expansively used industrial biocatalysts,
with wide application in a broad range of industries. However, these biocatalytic processes are usually
limited by the low stability of the enzyme, the half-life time, and the processes required to solve these
problems are complex and lack application feasibility at the industrial scale. Emerging technologies
create new materials for enzyme carriers and sophisticate the well-known immobilization principles
to produce more robust, eco-friendlier, and cheaper biocatalysts. Therefore, this review discusses the
trending studies and industrial applications of the materials and protocols for lipase immobilization,
analyzing their advantages and disadvantages. Finally, it summarizes the current challenges and
potential alternatives for lipases at the industrial level.

Keywords: lipase; immobilization; support; protocol; biocatalysis; co-immobilization; biocatalyst;
enzyme; novel techniques

1. Introduction

The continuous interest of the market and the academy in biotechnological alternatives
to the waste of byproducts and power attached to conventional industrial processes are
opening and exploring new study fields in biocatalysis. However, there are still many
potentials to be exploited in this subject [1–4]. The enzyme market is growing by around
7% a year, relying on new ways of cheapening their use and the well-known advantages
of mild reaction conditions, specificity, reduced byproduct formation, product separation,
biodegradability, and high efficiency [5–8].

Lipases are triacylglycerol ester hydrolases (EC 3.1.1.3) that act on a wide variety
of substrates such as triacylglycerides, esters of fatty acids, and lipids from synthetic or
natural oils [9–19]. Their natural action involves the hydrolysis of triglycerides to free
fatty acids and glycerol. However, acyl transfer reaction on the hydrolysis of ester bonds
can also create C–C bonds, acting in a wide range of solvents, making them one of the
most widely used enzymes in industrial processes [6,20]. Their main biotechnological
applications are in the biotransformation of oils and fats in food, pharmaceutical, cosmetic,
and power production industries [21–34]

Lipases can be from animal, microbial, and plant sources, with varying
properties [12,21,35]. However, almost 50% of the commercial volume of lipases is pro-
duced only from yeasts and filamentous fungi [36,37]. Lipase structure is built on the α/β
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hydrolase fold composed of a core of eight predominant parallel β filaments, forming a
twisted central β sheet, surrounded by a variable number of α helices [38,39]. Their cat-
alytic triad is composed of nucleophilic serine, histidine, and glutamate or aspartate [38,39].
They also have an oxyanion orifice responsible for stabilizing the oxygen ion formed as an
intermediate reaction during catalysis [35,40]. Lipases usually have a chain of hydrophobic
amino acids that covers the active site called the lid, which acts to control the access of
the substrate to the active site of the lipase, giving it an open–closed shape, which can be
conformationally changed by the presence of a polar–nonpolar interface [38,41].

Despite the presented advantages, lipase production suffers from non reproducibility
and low yields in their cultivation stage [42,43]. Furthermore, regarding their application,
free-state lipases (or free enzymes in general) have limitations such as sensitivity to the
reaction medium and low operational stability, making their industrial use practical only
by their immobilization [44–46]. Immobilization methods are good alternatives that can
favor enzyme activity, facilitate biocatalyst recovery, modulate its selectivity and specificity,
and improve resistance to inhibitors [44–59].

Meeting with the current public policies for green and sustainable development, the
interest in using immobilized lipases in industrial processes results in increased funding
for the studies thereof, causing new support materials and immobilization processes to
be discovered and improved [60–68]. In this sense, this study presents the latest research
trends in the production of lipase biocatalysts and their optimized industrial applications.

2. Novel Techniques for Lipase Immobilization

Physical and chemical interactions between supports and enzymes define the linkage
of the immobilized biocatalyst [69–73]. The developed technologies and methods for
this procedure still use one or more basic strategies: adsorption, encapsulation, covalent
bonding, entrapment, and crosslinking. Thus, they may retain their base method’s good
and bad qualities [6,69,74–76].

Adsorption is the simplest method, which requires the use of reactants [77]. The
physical and chemical groups of the matrix interact with the enzyme and retain it [78].
In this way, this method is more susceptible to enzyme leakage [77,78]. Encapsulation
is a method that maintains the enzyme in its original conformation and brings excellent
mechanical and storage stability [79]. On the other hand, the substrate may have difficulty
accessing the enzyme’s active site, leading to mass transfer limitations and reduced yields
of reactions [79,80]. Entrapment is a similar technique, but it uses a different matrix type, is
more accessible, cheaper, and allows for a better substrate diffusion [78]. However, it gener-
ally has low operational stability and higher enzyme leakage [78,81,82]. Covalent bonding
is the most used method, which requires chemical reactants to create functional groups
that will bond with the enzyme [6,69,83–87]. This strategy can offer significant operational
stability and reusability to the biocatalyst, but it may cause conformational changes in the
enzymes during the immobilization procedure, reducing or even extinguishing enzyme
activity [6,74,88]. Using the principles briefly presented in this paragraph, the following
subsections present the trending protocols for lipase immobilization.

2.1. Crosslinked Enzyme Aggregates (CLEAs)

The technique of immobilization by enzymatic aggregates (CLEAs) is characterized
as a helpful and straightforward technique, having such advantages as permanent in-
solubility and excellent thermal stability [89,90]. Using this method, the structure of the
enzyme is conserved, retaining the activity of its catalyst. Furthermore, it allows two or
more enzymes to co-immobilize more quickly than other immobilization protocols [91,92].
Crosslinked enzymatic aggregates are among the recent immobilization methods that do
not use solid supports and have been requested over the past few years for their ease
and robustness, in addition to promoting high specific activity and not requiring highly
purified enzymes [93,94]. It is a protocol that combines different preparation steps, such as
purification, precipitation, and immobilization, in one, making the process simpler and
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faster [95,96]. Thus, they are prepared by enzymatic precipitation to form aggregates,
produced by mixing the protein with precipitating agents (e.g., ammonium sulfate, organic
solvents, or polymers) in aqueous solutions, as shown in Figure 1 [97,98].
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Thus, these enzyme aggregates are crosslinked with a crosslinking agent, usually
glutaraldehyde [99–102]. The crosslinking step generates the covalent bonds between the
amino acids (specific lysines) of the protein molecules, producing an insoluble biocatalyst
with high stability and activity [103]. Different concentrations of glutaraldehyde can influ-
ence the leaching process of the immobilized enzyme. Low concentrations of glutaralde-
hyde make the enzyme fixation process easier [104–106]. In contrast, a higher glutaralde-
hyde concentration enables many aldehyde groups that interact with the enzyme, making
the enzyme immobilization process more efficient and preventing leaching [107–109]. The
presence of glutaraldehyde as a functional binding agent contributes to high stability in
immobilized enzymes. Covalent bonds formed by enzyme amino groups and aldehyde
groups decrease molecular flexibility. This fact suggests positively the increased conforma-
tional stability of proteins and, consequently, excellent thermal stability [90,110–112].

The manufacturing process of CLEAs is cost-effective as it does not require the use of
preexisting expensive carriers and generally affects heterogeneous biocatalysts with high
volumetric activities [113,114]. Furthermore, coaggregation agents (co-feeders) such as
polymers or proteins are suggested to enhance inter-enzyme crosslinking [115]. It has been
successfully applied in the immobilization of several different types of enzymes such as
hydrolases [90], oxidoreductases [116], lyases [117], transferases [118], and isomerases [119]
used in the manufacturing of chemical products, being subject to an increasing number of
analyses [120,121].

In the study by Rehman et al. (2016) [90], a lipase from Penicillium notatum (PNL) was
immobilized through crosslinked enzyme aggregates using glutaraldehyde (GLA) and
ethylene glycol-bis (succinic acid N-hydroxysuccinimide) (EG-NHS) as crosslinking agents.
EG-NHS aggregates showed higher hydrolytic activities and esterification compared to
GLA aggregates. The highest enzyme activity of CLEAs was reached at pH 9.0 and
a temperature of 42 ◦C. Furthermore, there was a significant improvement in thermal
resistance after immobilization. Finally, after ten reuse cycles in aqueous media, GLA
and EG-NHS crosslinked lipase CLEAs preserved 63.62% and 70.9% of their original
activities, respectively, suggesting that this new CLEA lipase demonstrates potential in
many industrial applications [90].

In another study by Jin et al. (2019) [92], the lipase r27RCL from Rhizopus chinensis
was immobilized in octyl-modified microcellular foams (MCFs-C8) using the crosslinking
method. As a result, the crosslinked enzymatic lipase aggregates (CLEAs) exhibited better
esterification activity than their adsorbed form. Furthermore, the biocatalyst exhibited
excellent thermal and mechanical stability and could maintain 69% of the initial activity
after five reaction cycles [92]. More recent work by Muley et al. in 2021 [122] was based
on the preparation of crosslinked enzymatic aggregates (CLEAs) of lipase from Aspergillus
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niger using fractional precipitation with ammonium sulfate and crosslinking with glu-
taraldehyde. In the end, lipase CLEAs showed better thermostability than its free form, in
addition to retaining more than 65% of its activity for up to four cycles, exhibiting good
storage stability for 12 days when stored at 4 ± 2 ◦C. Furthermore, they were successful in
the application for epoxidation of lemongrass oil [122].

2.2. Covalent Organic Frameworks (COFs)

COFs are characterized as porous organic polymeric materials, generally crystalline,
obtained through polymerizing building blocks of organic binders [123–126]. They have
atomically precise porous structures and can have excellent chemical stability in organic
solvents, resisting adverse conditions such as acidic and basic conditions to maintain or-
derly structures and crystallinity [127,128]. In addition, their high stability results from the
purely covalent bond and metal-free structures [127,129]. Due to their excellent properties,
such as high thermal and chemical stability, large surface area, excellent pore properties,
traceable physical and chemical properties, and ease of operation, COFs exhibit excellent
performance in the areas of gas storage and separation, analytical chemistry, catalysis,
electrical and storage devices, optoelectronics and drug detection [130–133]. Sustainability
is one of their most important properties, distinguishing them from other adsorbents; very
stable at 250 ◦C and 450 ◦C in an inert atmosphere [134].

Generally, these COFs are synthesized through a solvothermal method under adverse
conditions, such as high temperature, ranging between 80 ◦C and 120 ◦C, high pressure,
where the reaction is carried out in a Teflon-lined stainless steel autoclave or a sealed Pyrex
tube, and strict deoxidation, where oxygen is removed by freeze-thaw cycling [135–137].
Due to intermolecular interactions, when monomer molecules contain more groups, mate-
rial synthesis can be affected, making it challenging to form regular crystalline materials
this way [138]. Thus, another advantage of COFs is that their organic structure can be
modified to adjust their properties, favoring synthesis [139,140].

In recent years, the application of COFs as supports for enzyme immobilization has
opened new horizons for researchers due to their excellent and unique properties, such
as marked stability, porous and crystalline structure, in addition to a large accessible
surface area [141,142]. The integration of enzymes and COFs can occur through different
possibilities, including physical adsorption and covalent bonding directly between them or
through a binding molecule [143]. Figure 2 shows how this process takes place.

Figure 2. Covalent immobilization of enzymes in COFs.

Catalysts based on COFs have particular advantages over traditional catalysts. Their
structures and compositions projectable by chemical crosslinking provide a better under-
standing regarding the activity and investigation of the catalytic mechanism. In contrast,
the highly uniform and adjustable pore structures and sizes facilitate the mass transfer,
screening, confinement, and access to catalytic sites [144,145]. The high thermal and chemi-
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cal stabilities of COFs ensure that they continue catalytic reaction in various media, which
is problematic for some MOFs and inorganic zeolites [144,146].

Currently, there is still little research related to the immobilization of enzymes in COFs.
However, studies have been carried out with promising results. According to Zhou et al.
(2021) [147], accessible synthesis of a core-shell magnetic COF composite (Fe3O4 @ COF-
OMe) immobilizing Rhizomucor miehei lipase (RML) to allow for its application in biodiesel
production was reported. As a result, the magnetic structure of COF-OMe achieves highly
efficient immobilization and recovery processes and maintains lipase activity to a large
extent. The new biocatalyst performed well in practical applications, while the free lipase
did not. Furthermore, it successfully produced biodiesel from Jatropha curcas oil with a
yield of around 70% under optimized conditions [147].

Finally, the process of enzyme immobilization in COF materials is facilitated by their
porous structure, high stability, ability to modulate, crystalline, flexible surface area, and
the presence of different functional groups [148–152]. These functional groups enable
different interactions via hydrogen bonding, hence their increased molecule adsorption
capacity. In this context, the immobilization of enzymes in COFs via physical adsorption
has an advantage over covalent immobilization. Printing COFs with immobilized enzyme
molecules is possible for producing versatile and selective materials [145,153–157] in
addition to the possibility of multi-enzyme and porous systems for industrial application.

2.3. Metal-Organic Frameworks (MOFs)

Metal-organic frameworks (MOFs), also known as porous coordination polymers
(PCPs), are built with inorganic nodes and possibly metal ions or clusters with organic
ligands [158–160]. This category of materials appears as a promising class with several
unique properties such as high porosity, diverse composition, adjustable pore structure,
and versatile functionality, bringing merit to different applications ranging from catalysis
to storage, separation, purification, and water remediation [161–169].

Opposing traditional inorganic materials, MOFs allow controlling their composition,
morphology, pore properties, and function through the careful selection of construction
units in addition to the incorporation of intelligent functionalities, expanding and improv-
ing their efficiency in specific applications [170–172]. The catalytic activity of MOFs comes
from uncoordinated metal centers or functional groups attached to the structure’s lig-
ands [173]. In addition, catalysts such as nanoparticles, metal complexes, or biomolecules
can be added inside the MOF cage or anchored to its surface as it offers stability to active
catalysts and can act as size-selective catalyst support [174–177].

MOFs with the largest surface area and adjustable porosity properties provide the
loading of more enzymes than conventional carrier materials. In addition, the shielding
effect of their structure allows for stabilization of the enzyme’s conformational structure,
improving its stability [178,179]. Generally, the preparation of enzymes immobilized
in MOFs is based on three strategies: encapsulation, surface immobilization, and pore
trapping with presynthesized MOFs [180]. Enzymes encapsulated in porous materials
such as porous nanoparticles or reversible micelles have better stability under adverse
conditions such as high temperature, organic solvents, or extreme pH [181–183]. Figure 3
presents enzyme encapsulation in MOFs.

In work carried out by Cui et al. (2018) [184], a new MOF–enzyme compound was
produced with high stability and easily reusable features through the encapsulation of
catalase and ZIF-8 nanocrystals in large layers of mesoporous silica. The obtained system
exhibited high activity recovery reaching 81%, and the silica provided a shield to protect the
enzyme from biological and chemical degradation. It exhibited excellent stability against
proteolytic agents and extreme conditions, such as low pH, in addition to the remaining
50% of the original activity after ten cycles [184].
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Figure 3. Enzyme encapsulation in metal-organic frameworks.

The work carried out by Li et al. in 2020 [185] was based on the immobilization of the
thermophilic lipase QLM from Alcaligenes sp. in MOFs through biomimetic mineralization
using zinc acetate and adenine as a metal ion and an organic binder, respectively. The
immobilized enzyme was successful when applied in the preparation of biodiesel through
the transesterification of sunflower oil with methanol, obtaining a conversion more signif-
icant than 60% at a high oil/methanol ratio of 8:1. It also showed excellent recyclability
during biodiesel production, where no changes in morphology and crystal structure were
observed after three cycles. The results proved that the lipase immobilized in bio-based
MOFs provided an economical, environmentally friendly, and viable solution for biodiesel
synthesis [185].

In the context of enzyme immobilization, MOFs stand out for their high specific
surface area, pore-volume, adjustable porosity, high thermal and chemical stability, as well
as adjustable mechanical stability [186–189]. MOFs modulate the properties of enzymes.
That is, they enable different functionalization, sizes, morphology, and different electrostatic
potentials [186–188]. These characteristics are essential to provide excellent stabilization
and activity of enzymes at high temperatures, in the media with high acidity or high
alkalinity, or in the presence of organic solvents [190,191]. The possibility of synergistic
catalysis of MOFs and enzymes is very promising for industrial application [192].

2.4. 3D Printing

In recent years, three-dimensional (3D) printing, also known as additive manufactur-
ing, has emerged as a technology that uses computer-aided design (CAD) for layer-on-layer
fabrication, having many advantages over traditional technologies [193–195]. Low cost
and endless design possibilities have made this approach very interesting for prototyping
in many fields, including process design, aerospace engineering, biomedicine, and catal-
ysis [196,197]. In addition, complex structures with a resolution of up to 0.01 mm can be
quickly produced with various materials ranging from polymers to metals [198].

In order to increase compatibility with biological materials, a variety of methods
and materials for extrusion-based 3D bioprinting can generate custom hydrogel struc-
tures, as shown in Figure 4 [199,200]. These hydrogels can trap enzymes without specific
adaptations, offering protection against organic solvents and modulating the reaction rate
through mass transfer limitations since 3D-printed structures are relatively thick [201,202].
In addition, chemical modification of printed materials has attracted increasing attention,
as by modifying printed carriers, enzymes can be immobilized on them [203].

Enzyme trapping is often applied together with 3D-printed support materials, and,
in addition, trapping in this physical material allows the enzyme to be retained in the
reactor and provides sufficient purification. The applicability of 3D-printed carriers has
been investigated using different enzymes and under different conditions, indicating the
universal performance of these materials and their processes [8,204,205]. Therefore, this
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new immobilization strategy offers an encouraging possibility to extend the useful life of
enzymes [206].

Figure 4. Diagram of the 3D printing process for enzyme immobilization.

The study by Santos et al. (2021) [207] produced network-shaped geopolymers success-
fully prepared by direct ink writing (an additive manufacturing process) to act as carriers
for the immobilization of Candida rugosa lipase (CRL). The biocatalyst was evaluated in
the hydrolysis of residual cooking oil (WCO), a preliminary step for producing biodiesel.
The surface of the geopolymer was successfully modified to allow for the covalent bond
immobilization process of the CRL. The hydrolytic activity reached 847.7 ± 9.7 U/g and
remained more significant than 91% after the first reuse. A free fatty acid content of 75% by
weight was obtained from the hydrolysis of WCO, affirming the immobilization efficiency
and the suitability of network-shaped geopolymers as support for biocatalysts [207].

In another study, Zhang et al. (2021) [206] built an eco-friendly 3D printing macro-
scaffold based on reinforced polylactic acid (PLA) and added phenyl groups with different
bond lengths and anchoring two types of combined groups for bonding Burkholderia
ambifaria lipase YCJ01. The results obtained improved the payload, increased the enzyme
expression, ensured 137.3% activity recovery, and increased the specific activity. The
biocatalyst was applied to the efficient resolution of racemic 1-indanol (267 mM) using a
binary solvent system with high stereoselectivity. In the end, it presented good operational
stability with repetitive use for nine cycles, being beneficial to obtain a pure product with
high enantiomeric value by viable separation without rigorous operation [206].

In this way, the immobilization of lipases and other enzymes with 3D structures
opens up several possibilities. The possibility of pre-casting these structures with different
pore sizes, such as microstructures and porous membranes, is a reality [208–210]. These
structures with different groups, receptors, sensitivity to perform immobilization, and
production and low-cost materials to achieve these goals make the material produced more
competitive for industrial applications [211–215].

2.5. Electrospinning

Immobilization techniques have become a rational project subject due to the nature
of enzymes and the functionality of immobilization [216–218]. The improvement and
innovation in enzyme immobilization techniques made it possible to overcome some
common limitations [216–220]. Electrospinning is a practical, simple, and highly effi-
cient technological tool for synthesizing ultrafine fibers with diameters in the range of
nanometers [216,219,221,222]. The fundamental principle of this technology is based on
the electrostatic forces for the production of nanofibers. High voltage is applied to a
polymer solution and the sample collector to produce electric field jets supporting the
formation of fibers through solvent evaporation during the process [222,223]. The use
of the technique focuses on the main discussions intrinsically connected with the area;
it is interpreted as an innovative, effective technique with low cost and versatility that
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can be applied in several industrial fields [220,224–226]. The electrified nanofibers have
attracted the attention of enzyme engineering and biocatalysis, being considered a po-
tential tool because of their numerous advantages: high surface area, multiple fixation
points to the support, high porosity, interconnectivity, high thermal resistance, pH stabil-
ity, and several solvents [216,220,222,223,227]. The process of immobilizing enzymes in
electrified fibers usually promotes the retention and improvement of biological catalytic
activity and allows for the easy separation of the enzyme from the proposed reaction
environment [216,223,224,228,229].

Note that the surface fixation process refers to the physical adsorption or fixation of
enzymes in pure or functionalized nanofibrous supports chemically or physically, and encap-
sulation means electrospinning of the enzyme and the polymer mixture [219,222,223,228,229].
Electrofused nanofibers have a great potential to overcome dispersion problems, mass
transfer limitation, and low recyclability and can be used as suitable supports for the im-
mobilization of several enzymes [216,218,221]. In summary, the notoriety attributed to
electrification as an innovative technique is directly connected with the qualification of
nanofibers [220,225,227,230]. Aspects such as the diversity of polymers that can be elec-
trophile, high porosity, and chemical interaction of the electrophile support give them a mini-
mal impediment to mass transfer in addition to their industrial usability [216,219,223,225,230].
However, each enzyme interacts differently with the support, so when this technique is
chosen, one should pay particular attention to the physical characteristics of the enzyme and
the support, always looking at the congruence and adequacy of the size of the enzyme and
the pore of the support [216,219,220,223,227,230]. Figure 5 shows how the process of enzyme
immobilization by electrospinning occurs.

Figure 5. Electrospinning enzyme immobilization method. In this process, the enzyme is dispersed
in the solution in which the process of physical/covalent adsorption and encapsulation of the enzyme
in nanofibers occurs through the electrospinning process, producing a heterogeneous biocatalyst.

Several studies have reported different proposals to immobilize enzymes in elec-
trophile nanofibers [216,219,223–228]. These proposals mainly include binding the enzyme
on the surface of nanofibers and enzyme encapsulation [216,219,223,228].

In this sense, Kuang et al. (2020) [231] reported the development of lipases of Burkholde-
ria cepacia (BCL)–SiO2 (NFM) nanofiber membrane bioreactors prepared through combined
electrospinning and enzymatic immobilization strategies. The lipase loading capacity
increased drastically, and a certain favoring in the thermal and solvent stability of the
biocatalyst formed by electrospinning was noticed, highlighting the technique as efficient
for this protocol. Activity remained above 80% after five cycles [231]. In contrast, Isik et al.
(2019) [232] synthesized PVA/Zn2

+ nanofibers using electrospinning and then successfully
mobilized the lipase into electrospun nanofibers. The results obtained showed the efficiency
of the protocol through the improvement of the immobilization parameters of the formed
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biocatalyst. Interpreting the immobilization results, the catalytic derivative formed had an
increase in the stability properties of the enzyme, such as thermal stability, pH stability, and
reusability. Furthermore, it is noteworthy that the immobilized nanoelectrospun biocatalyst
protected 90% of the catalytic activity after 14 reuses [232]. This indicates that the recovery
of heterogeneous biocatalysts formed using electrospinning protocols is desirable for ap-
plications in wastewater treatment industries, drug production, and the field of cosmetic
production [231,232].

In summary, the immobilization method by electrospinning has proved to be a poten-
tial alternative to overcome several daily limitations resulting from the scarcity of natural
resources to synthesize new enzyme immobilization matrices. In addition, the versatility
of this method provides its wide industrial application.

2.6. Electrospraying

The electrospraying technique, popularly known as electrohydrodynamic atomiza-
tion (EHDA), is a potential technology similar to electrospinning to synthesize polymeric
nanoparticles or bioactive fiber-based materials used in various processes [233–235]. Clas-
sically, the electrospraying technique is defined as atomizing the liquid through electrical
forces [236–239]. The fundamental difference between electrospraying and electrification
is the alteration of the properties of the solution, such as solvent concentration, viscosity,
and process parameters such as flow rate, distance from the needle tip to the collector,
and, mainly, the voltage used [236,237,240]. Moreover, when the concentration of the
solution is high, the Taylor cone jet is stabilized, and elongation occurs by the mechanism
of whip instability. It is noteworthy that during the process of tailor cone jet formation
in electrospraying, changes in parameters can result in the cleavage of the jet in drops,
resulting in the formation of particles of different sizes and shapes [234,236,240]. This
process forms micro- and nanoparticles with high loading power and regular particle size
distribution [233,234,236,237,239,240].

A few years ago, coaxial electrospraying emerged as an innovative technology for synthe-
sizing products with two miscible or immiscible core and wall materials [233,238,239,241,242].
Coaxial electrospraying is a more convenient one-step method for manufacturing nanopar-
ticles in dry form, thus expanding its industrial applications [233–238]. One of the main
advantages of this technique for the immobilization of enzymes is the possibility of design-
ing and adjusting the shape and size of nanoparticles only by modifying the experimental
conditions [233,238,239]. This aspect reaffirms the potential of this technique for the enzyme
stabilization process in solid matrices [233,237,239,242]. In this sense, electro-pulverized
nanoparticles act as a support structure for enzyme immobilization [234,236–238]. A benefit
of enzyme crosslinking for particles submitted to electrospraying is excellent residual activity
justified by the considerable increase in surface area and porosity [234,236,238,241,243]. In
addition, reducing the size of the carrier matter can also improve the efficiency of immobilized
enzymes. Thus, the catalytic capacity of enzymes is usually optimized [235,238–240]. How-
ever, despite all these advantages mentioned above, there is a scarcity of studies related to
this area specifically, to a large degree justified by its only recent discovery [235–238]. Figure 6
below shows the simple process of electrospraying enzyme immobilization.

Liu et al. (2018) [244] immobilized lipases on electrospray fibers with some rein-
forcement materials such as P(GMA-co-MA)-g-PEO (poly(glycidyl methacrylate-co-methyl
acrylate)-g-polyethylene oxide). It is noteworthy that the activity and stability of the
derivative were improved, and consequently, the derivative became more versatile, able
to be applied in various fields. In summary, the researchers reported that the results
showed that the immobilized lipase has good thermal stability, reusability, and stability
in organic solvents. The good stabilities of the immobilized lipase revealed that the elec-
trospray fibrous membrane P(GMA-co-MA)-g-PEO is an exceptional carrier for enzyme
immobilization [245].
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Figure 6. Electrospraying enzyme immobilization method. First, iron nanoparticles stop by electro-
spraying, then they are activated with glutaraldehyde, and then the enzymes bind to the electro-
spraying nanoparticles by physical/covalent adsorption or encapsulation depending on the size of
the enzyme.

In summary, the electrospraying method has become increasingly recurrent in re-
search because it presents advantages different from those commonly highlighted by other
classical protocols of enzyme immobilization. In addition, both studies above present the
versatility of enzyme immobilization in electroplated supports, perceiving the different
areas in which the authors applied their biocatalysts. Despite the great potential of the
electrospraying technique for immobilizing lipases and other enzymes, further studies
must improve this strategy. It mainly concerns the reproducibility of scale-up methods,
economic feasibility, and design of new equipment for the production of nanoparticles by
electrospraying, making them competitive for industrial applications [246].

2.7. Hybrid Nanoflowers

Hybrid nanoflowers (UFHs) are compounds consisting of organic and inorganic com-
ponents with a hierarchical three-dimensional nanostructure similar to a flower [247]. Since
their inception, these materials have been desirable and desirable for various industry sec-
tors due to their characteristic features such as rapid and eco-friendly synthesis [247–249].
Their high thermal stability, mechanical resistance, and wide surface area constitute their
main advantages, enabling these matrices for enzyme immobilization [247,250]. The het-
erogeneous biocatalysts derived from these preparations are generally veritable and can
be applied in several fields: biocatalysis, chemical, and biological analyses, synthesis of
chemicals, treatment of pollutants, among many other possibilities [251–253].

It is noteworthy that the increase in the enzyme’s thermal stability is usually one of the
limiting factors for using free enzymes in high-impact industrial processes [249,254,255].
In addition to this aspect, there is usually an increase in enzyme tolerance by various
reactional media, such as organic solvents, and also the primary foundation of immobi-
lization facilitated reuse of the biocatalyst in several reactions cycles [247,248,250]. The
synthesis of hybrid nanoflowers is usually straightforward, composed of a reaction of
active organic enzymes/molecules and metal ions in aqueous phosphate buffer, usually
at pH 7 and 25 ◦C, generating a hierarchically structured compound with a wide surface-
to-volume ratio, retaining a large part of the biomolecules without severe mass transfer
limitations [249,250,256]. The preparation typically takes three to five days. However, in a
recent study using sonication as an accelerator mechanism, An et al. (2015) [253] reduced
this time to just 5 minutes. Many authors used this method to confirm the proposed
protocol’s efficiency and efficacy [253,254,256–258]. Figure 7 shows how the process for
enzyme immobilization by hybrid nanoflowers occurs:
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enzymatic biocatalyst of magnetically responsive hybrid nanoflowers.

Li et al. (2020) [247] reported the effective production of lipase–inorganic hybrid
nanoflowers (NF–lipase) using Ca3(PO4)2 as the inorganic component and lipase from
Aspergillus oryzae as the organic component. The generated biocatalyst was analyzed
using physicochemical analyses that confirmed the immobilization of the lipase in the
produced nanoflower. Furthermore, the catalytic derivative showed high catalytic activity,
maintaining activity above 50% after seven consecutive reaction cycles. Furthermore, it is
noteworthy that the HNF–lipase exhibited increased stability against high temperature and
denaturants, obtaining good storage stability and reusability [259]. Liu et al. (2020) [260]
immobilized the thermophilic lipase QLM from Alcaligenes sp. successfully in hybrid inor-
ganic nanoflowers based on Cu3(PO4)2 through biomimetic mineralization. The catalytic
derivative showed high thermal stability, maintaining catalytic activity above 70% after
eight reaction cycles at temperatures between 65 ◦C and 70 ◦C [260]. In these examples, the
efficiency of this new immobilization strategy is noticeable, primarily when researchers
aim mainly to maintain the catalytic activity at high temperatures.

The preparation of biocatalysts via an HNF–lipase requires a better understanding
of their molecular interactions. Interactions of ions with lipases must be understood
to modulate enzyme activity and increase stability. Thus, the controlled production of
these enzymatic biocatalysts would be improved. Furthermore, enabling and reusing
these biocatalysts in continuous and efficient processes is a challenge to overcome for
industrial applications.

2.8. Pickering Emulsion Enzyme Encapsulation

The emulsion process in chemistry is characterized as a mixing of two or more liquids,
in which one of them must be present in the form of microscopic droplets dispersed by the
other liquid [261–263]. Emulsions are spontaneously synthesized. However, mechanical
agitation, ultrasound, and other physical tools are used to accelerate the process [263–265].
It is worth remembering that there are several types of emulsions in chemistry, characteriz-
ing this technique as one of the most versatile; it can be applied in many fields such as the
food industry, pharmaceuticals, and cosmetics [263,266,267].
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Specifically, a Pickering emulsion makes use of solid particles used alone as stabilizers,
which accumulate at the interface between two immiscible liquids and stabilize the droplets
against coalescence [266–269]. The reactional process of heterogeneous catalysis has gained
much attention due to several aspects such as product–particle facilitated separation, min-
imal particle toxicity, and high catalytic activity process [262,264,268,269]. In addition,
current studies show the very high tolerance of this emulsion to organic reactional environ-
ments (hexane, methanol, acetonitrile, tetrahydrofuran, among others) [262,263,265,269].
To improve the understanding of the Pickering emulsion enzyme encapsulation method,
Figure 8 explains each step in greater detail.

Figure 8. Enzyme-decorated nanoparticle-stabilized Pickering gel emulsion for biphasic biocatalysis
or Pickering high internal phase emulsions (HIPEs). In step 1, an enzyme-decorated polymeric
nanoparticle is prepared to stabilize oil-in-water HIPEs by emulsion copolymerization without a
styrene surfactant and glycidyl methacrylate. Then, the second step is adding the Pickering gel
system of the enzyme decorated in the nanoparticle. Then, the emulsion is homogenized to increase
the interaction of the nanoparticle with the emulsion. Subsequently, standing occurs and finally
forms an emulsified biocatalyst using the Pickering method.

In this perspective, the area of enzymatic biocatalysis has been very interested in this
process, given the low costs of developing protocols and the high catalytic response offered
by the emulsified catalytic derivative [264,269–271]. This vehemence comes from the large
“oil–water” interface area that allows biphasic reaction systems to have high efficiency in
optimizing hydrogenation, oxidation processes, and enzymatic reactions [269,270,272–275].
Wang et al. (2017) [268] presented a simple strategy for immobilization of the lipase of
Candida sp. at the oil/water interface of Pickering emulsions via covalent enzyme coupling
with CHO-JNPs for organic/aqueous biphasic catalysis [268]. Sun et al. (2020) [267]
demonstrated a protocol similar to that of Wang et al. (2017) [268]. However, Sun et al.
(2020) [267] performed the ultrasound-assisted process to optimize the immobilization
process, in addition to having used the lipase from Candida rugosa (CRL) as an enzyme [267].
In this sense, Sun obtained a more active catalytic derivative with 177 mg/g of activity
while Wang—only 23.3 U/mL. In addition, Wang’s derivative retained this activity further,
maintaining the catalysis power at 88.6% after 10 cycles, while Sun maintained only
75% after nine reactional cycles [267,268]. That said, it is noticeable that ultrasound as
an optimization tool in these circumstances is exceptional because it usually allows the
enzyme to have more contact with the water/oil interface [263,266,268,269,272,275].

Therefore, Jiang et al. (2020) [276] presented a new Pickering interfacial biological
catalysis platform with efficient encapsulation of the lipase of Candida sp. composed
of binary particles and high catalytic performance. The enzymatic derivative showed
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excellent stability, structural integrity, and exceptional reuse [276]. This approach has
allowed overcoming one of the main limitations of Pickering emulsions, which is easy
leaching. The authors highlight that the use of reinforcement particles is fundamental
to improving the interaction of the enzyme with the emulsion interface, offering more
significant surface area and greater affinity for the active functional groups of the emulsion
with the inactive region of the enzyme [266,268,276].

In summary, this new strategy of enzyme immobilization has gained increasing
interest from large industries due to its low-cost processes and numerous additional
advantages, prioritizing the latent possibility of its development on the industrial scale
almost without operational limitations. The production of enzymatic lipase biocatalysts via
Pickering emulsions needs to overcome some challenges. In this context, stability, activity,
and durability must be improved. It will be possible to produce them within a large-scale,
reproducible, and economically viable industrial application.

2.9. Peptide-Guided Immobilization

Enzyme immobilization aims to enhance the catalytic characteristics of these enzymes,
and thus different immobilization methodologies are currently being developed [277].
Therefore, peptides are being applied in these processes to increase the efficiency of im-
mobilization. These peptides have hydrophobic characteristics that allow their use in
aqueous or polarized media and such media as oils or bio-solvents that do not feature
polarization [278]. In addition, peptides can be modified as their side chains to define
their hydrophobic and hydrophilic properties more specifically [279]. These modifications
in the chains of a peptide guarantee its application on more substrates, regardless of its
polarity [280]. In simulations and analysis, it was possible to verify that most peptides tend
to present an α-helical shape in nonaqueous (polarized) environments [281].

Another way to use peptides in enzyme immobilization would be to combine proteins
with peptides, thus performing a specific and oriented binding appropriately [282]. This
combination can preserve the enzyme’s binding to the support and maintain its biological
activity. Peptide-guided immobilization was used with the Escherichia coli biofilm as
support and kept the catalytic properties of the enzymes unchanged [283]. In this case,
a differential would be the possibility of undoing the connection when using low pH
solutions, thus allowing the use of the materials in other future applications [284]. Figure 9
allows the visualization of peptide-guided immobilization at different pH levels.

Figure 9. Peptide-guided bonds where different enzymes are immobilized on the same support that
has regions with different pH.
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Such applications and characteristics presented by peptides and polypeptides reinforce
that its application as a guide for enzymatic immobilization is possible. Furthermore,
their properties adapt well to different environments. Therefore, studies with peptides
resulted in more application possibilities and more efficient immobilization processes.
One of the most promising strategies for lipase immobilization is the technique of using
peptides. They can be obtained from different materials and have facilitating characteristics
for immobilization systems, such as size and sequences. However, understanding the
interaction mechanics between peptides and proteins in the immobilization process is
necessary to obtain active and stable enzymatic biocatalysts. Optimizing these systems to
make them economically competitive for the industry is another challenge to be overcome.

3. Novel Carriers for Immobilization

Several support materials of different origins can be used for enzyme immobilization.
Many desirable characteristics influence the choice of enzyme carriers, like the functional
groups and charge on the surface, homogeneous particle size, pore size distribution, high
surface area, biocompatibility, low cost, inertness towards the enzyme and all the compo-
nents of the reaction media, microbial resistance, thermal stability, and mechanical stability
for continuous production in reactors [79,285–287]. Regarding enzyme immobilization,
the carrier’s surface functional groups and charges determine its interaction with the en-
zyme [288–290]. The surface area and porosity of the matrix are the parameters of influence
on the amount of the enzyme that can be immobilized [291–293]. Recent research into new
materials has contributed to new supports for immobilizing lipases with better features.
As shown in Figure 10, these new materials include waste biomaterials, nanomaterials,
synthetic resins, mesoporous and electrospun materials. Table 1 also contains detailed
information from recent studies [81,294–296].
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Table 1. Novel research in lipase immobilization.

Support Lipase Source Application Immobilization
Technique Ref.

Virus-like mesoporous
organosilica nanoparticles

Lipase B from
Candida antarctica

Synthesis of levulinate
esters Covalent bonding [297]

LifetechTM

methacrylic
synthetic resins

Thermomyces lanuginosus Biodiesel synthesis Physical
adsorption [298]

MIL-101(Cr)
MOFs Candida rugosa Hydrolysis of p-nitrophenyl

palmitate Covalent bonding [299]

Chitosan–mesoporous silica
hybrid nanomaterials Porcine pancreatic PPL Triacetin hydrolysis Covalent bonding [300]

Magnetic multiwalled
carbon nanotubes Candida rugosa Synthesis of fruit flavors Covalent

bonding [301]

3D-printed carbon
fiber-reinforced polylactic

acid scaffolds
Burkholderia ambifaria Hydrolysis of p-nitrophenyl

palmitate Adsorption [203]

Inorganic hybrid nanosheets on
sulfonated macroporous resins Candida rugosa Hydrolysis of the olive

oil emulsion Encapsulation [302]

Nanocellulose-fused
polypyrrole/graphene oxide

nanocomposites
Candida rugosa Synthesis of fruit flavors Adsorption [303]

Poly(carboxybetaine
methacrylate)-grafted silica

nanoparticles
Candida rugosa Hydrolysis of p-nitrophenyl

acetate Covalent bonding [304]

Spherelike bacterial cellulose Rhizopus chinensis Hydrolysis of the olive oil
emulsion

Covalent bonding and
physical adsorption [305]

Electrospun nanofibrous
membranes containing epoxy

groups and a hydrophilic
polyethylene oxide chain

Lipase B from
Candida antarctica Hydrolysis of olive oil Covalent bonding [244]

Pyrolyzed sugar industry waste Aspergillus sp. lipase Synthesis of 2-phenylethyl
butanoate Adsorption [306]

Octyl Sepharose crosslinked
with dextran

aldehyde polymers

Thermomyces lanuginosus,
Rhizomucor miehiei, and

lipase B from
Candida antarctica

Hydrolysis of p-nitrophenyl
butyrate Covalent bonding [307]

Colloidal lignin particles Lipase M from Mucor
javanicus Synthesis of butyl butyrate Entrapment [308]

Chitosan/nanocellulose
biocomposites Candida rugosa Synthesis of butyl butyrate Covalent bonding [309]

Magnetic rice straws Thermomyces lanuginosus Synthesis of biodiesel Covalent bonding [310]
Diethylenetriamine-modified

magnetic cellulose beads
Lipase B from Candida

antarctica Synthesis of biodiesel Covalent bonding [311]

Chitosan–chitin nanowhiskers Rhizomucor miehei Synthesis of eugenyl benzoate Covalent bonding [312]

Biopolymers can offer low cost, easy modification, high surface area, and various
functional groups to stabilize lipase conformation [286,294]. As for drawbacks, it can be
mentioned that their poor mechanical stabilities often make them unsuitable for indus-
trial applications in bioreactors [313,314]. Chitosan, a trending biopolymer, also has low
chemical and long-term stability [294]. The problems of enzyme leaching and stability of
biopolymers have been addressed by using crosslinking agents and by the combinations of
biopolymers to produce biocomposites [315,316]. The use of crosslinking agents requires
attention to the possible adverse effects on lipase conformation, which can cause loss of
activity. Concerning the formulation of biocomposites for lipase carriers, it is necessary
to be careful with the produced biocomposites’ hydrophilicity since it can also reduce the
activity of the biocatalyst [317]. Current research often identifies new crosslinking agents
and biocomposites that have properties superior to the existing materials [28,318,319].

Biopolymers and biocomposites are used to produce different types of lipase matrices,
conjugated or not, with a broad range of ligands of distinguished properties and nature,
as mentioned in recent studies: membranes, resins, nanofibers, beads, nanoparticles,
nanotubes, scaffolds, colloidal particles, and nanowhiskers [203,244,298,305,308,309,312].
In the study of Elias et al. (2018) [309], the biocatalyst consisting of a biopolymer carrier of
nanocellulose/chitosan was prepared by extraction of nanocellulose from palm oil frond
leaves, followed by consecutive crosslinking with chitosan and the Candida rugosa lipase,
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both using glutaraldehyde as crosslinking agent [309,320]. The prepared biocatalyst was
applied in butyl butyrate synthesis, showing good thermal stability, and retained about
50% of its initial activity through seven consecutive recycles [309].

In another study, spatially confined biocatalysts upon self-assembly and drying-driven
aggregation of Lipase M from Mucor javanicus cationic lignin nanosphere (c-CLP) complexes
were prepared in the calcium alginate hydrogel [308]. This innovative procedure showed
retained activity superior to the commercially available immobilized biocatalysts in the
same conditions in butyl butyrate synthesis [308].

Another possible strategy is to incorporate inorganic materials to produce hybrid
biocatalysts with unique properties [297,300,303,310,311]. Similarly, inorganic materials can
be conjugated with organic or inorganic substances to produce other hybrid biocatalysts,
as mentioned for many kinds of nanomaterials, metal-organic frameworks, mesoporous
and ceramic materials [81,295,296,299,301,302,304].

In the work of Jiang et al. (2019) [297], a novel matrix for lipase immobilization
was produced [297], hydrophobic virus-like organosilica nanoparticles (VOSNs) with a
spherical core formed by mesoporous organosilica surrounded by epitaxial perpendic-
ular nanotubes. They were made using the epitaxial growth method with hexadecyl
trimethyl ammonium bromide as a template (CTAB) and tetraethyl orthosilicate (TEOS)
and 1,2-bis(triethoxysilyl)ethane (BTSE) as silica sources. In a typical synthesis, CTAB was
dispersed in deionized water under stirring. Then, an aqueous sodium hydroxide solution
was added to the water solution and stirred for two hours at 60 ◦C. After that, a solution
of TEOS and BTSE in cyclohexane was added dropwise. The reaction was continued by
stirring the mixture at 60 ◦C for forty-eight hours. The product was collected by centrifu-
gation, washed several times, and dispersed in acetone for refluxing treatment at 80 ◦C
for thirty-six hours to remove the CTAB template. After that, the surface was modified
by 3-aminopropyl triethoxysilane (APTES) activated with glutaraldehyde and covalently
bonded with lipase B from Candida antarctica. The prepared biocatalyst exhibited suitable
pH, thermal, organic, and storage stability. It was also demonstrated that the prepared
biocatalyst exhibited superior reusability compared with free and immobilized lipases in
virus-like silica nanoparticles [297].

Zare et al. (2018) [299] studied the effect of different chemical modifications of the
MOF chromium terephthalate (MIL-101(Cr)) for immobilization of the Candida rugosa
lipase [299]. Amino, trichlorotriazine amino, and glutaraldehyde amino were the groups
added to the carrier surface, and the last two showed higher pH, thermal, and storage
stability, although all the preparations significantly lost activity in the reusability tests.
According to the authors, these results were related to the biocatalyst contamination by the
substrate, meaning that the biocatalyst could potentially use other types of substrates [299].

For 3D-printed materials, the fused deposition modeling (FDM) technology is based
on extrudable thermoplastics, having the advantages of being low-cost and straightforward.
In addition, the used fibers are cheap and easy to recycle, therefore reducing the operational
costs [321]. In the work of Ye et al. (2019) [203], carbon fiber-reinforced polylactic acid
3D-printed scaffolds of different structural shapes were used to create integrated reactors
carrying four types of enzymes including the Burkholderia ambifaria lipase, showing great
recovery activity [203].

4. Concluding Remarks

Nanotechnology is occupying even more space in biocatalysis. This tool makes it
possible to create carriers with specific features to improve operational stability, immobiliza-
tion, and reaction yields. Still, it is necessary to reduce biocatalyst production costs, which
are the main issue for their industrial applications. The use of waste materials is an exciting
alternative since they are cheap and meet the growing environmental needs of the market.
Other trending research focuses on genetic manipulation of lipases, co-immobilizing multi-
ple lipases on the same matrix, and hybrid materials. Those increase process complexity
and costs and can be further employed for the industrial use of immobilized lipases.
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As for new immobilization techniques, it is essential to emphasize that the choice of the
method, support, and enzyme directly influences the process and is dependent on several
factors. The various examples cited throughout the work demonstrate the results obtained
by several researchers from the use of different conditions, involving not only these three
factors but many others (temperature, pH, reaction time). For the choice of lipase, it is
essential to know the factors that influence its activity and the desired characteristics for
its final application. At the same time, in choosing the method, it is essential to consider
issues such as regeneration and deactivation of the enzyme, the cost of the process, and the
toxicity of the reagents.
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