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Abstract: As a kind of solid waste from coal chemical production, the disposal of coal gasification
fine slag poses a certain threat to the environment and the human body. It is essential for gasification
slag (GS) to realize rational utilization. GS contains fewer combustible materials, and the high
heating value is only 9.31 MJ/Kg, which is difficult to burn in combustion devices solely. The
co-combustion behavior of the tri-fuel blends, including bituminous coal (BC), gasification slag (GS),
and bamboo residue (BR), was observed by a thermogravimetric analyzer. The TGA results showed
that the combustibility increased owing to the addition of BC and BR, and the ignition and burnout
temperatures were lower than those of GS alone. The combustion characteristics of the blended
samples became worse with the increase in the proportion of GS. The co-combustion process was
divided into two main steps with obvious interactions (synergistic and antagonistic). The synergistic
effect was mainly attributed to the catalysis of the ash-forming metals reserved with the three raw
fuels and the diffusion of oxygen in the rich pore channels of GS. The combustion reaction of blending
samples was dominated by O1 and D3 models. The activation energy of the blending combustion
decreased compared to the individual combustion of GS. The analysis of the results in this paper can
provide some theoretical guidance for the resource utilization of fine slag.

Keywords: coal gasification fine slag; co-combustion; catalytic interaction; reaction kinetic

1. Introduction

Coal gasification is a core technology for the clean and effective utilization of coal.
Coal gasification fine slag, a type of solid waste, is produced in the gasification process.
The amount of fine slag adds up to hundreds of millions of tons per year [1,2]. Currently,
the disposal of gasification fine slag is mainly by stacking and landfilling [3], which not
only causes an increase in transportation expense but also soil and water pollution caused
by the leachate from fine slag [4]. Consequently, it is highly imperative and significant
for fine slag to achieve quantity reduction, harmless treatment, and resource utilization.
The scale utilization of coal gasification fine slag on construction materials and ecological
treatment is hindered owing to the high carbon content of fine slag. In terms of resource
utilization, researchers have paid extensive attention to the development and utilization of
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carbon materials, and the preparation of ceramic materials and aluminum/silicon-based
products [5]. However, large-scale consumption and utilization, and the high-value-added
conversion of large quantities still lack engineering experience; they are all still in the stage
of laboratory research or expanding tests. Shang et al. pointed out that the utilization
as blended combustion with circulating fluid-bed raw material was the most popular
approach for slag utilization [6]. Dai et al. investigated the co-combustion characteristics
of gasification fine slag with bituminous coal, and they concluded that the co-combustion
of two fuels showed a nonnegligible synergistic effect. With the increasing blending
proportion of bituminous coal, the overall combustion characteristics rose [7]. Wang et al.
concluded that Shenhua raw coal blended with a different percent of fine slag could
improve the overall combustibility of mixed coal to some extent [8]. Guo et al. studied the
physicochemical properties of the residue carbon from froth flotation and indicated that the
comprehensive combustion performance was improved with the addition of sawdust char,
and the interaction (antagonistic and synergistic) was discovered in the binary blending
combustion [9].

Bamboo residues have been discarded during felling and processing. There are many
resourceful uses of bamboo residue, for example, wood-based panels, bamboo-plastic
composites, bamboo charcoal, bamboo vinegar, and bamboo extracts [10]. Bamboo residue
has the advantages of high volatile matter, low nitrogen and sulfur content, and high heat
value. If bamboo residues can be fully developed and utilized as green biomass energy,
it can largely alleviate the problems of energy shortage in China. Moreover, compared
with traditional energy sources, biomass energy is low cost, green, and environmentally
friendly, and it can meet the requirements of green development. Direct co-combustion
is the simplest, cheapest, and most common option for biomass energy utilization [11].
Christopher et al. studied the potential of co-combustion rice husk and bamboo with
coal, and it was noted that the much higher volatile matter content in the biomass fuels
played a key role in improving the combustion performance in the system [12]. Hu et al.
investigated the combustion behavior of three bamboo residues, and the relatively high
HHV and lower N/S contents of the three bamboo residues pointed to their great potential
as a clean and renewable feedstock for energy generation [13].

Gasification fine slag cannot be normally burned in the boiler alone, as a result of high
water content, low volatile matter, and poor combustion performance [14]. Bamboo residue
exhibits excellent combustion features, and co-combustion with fine slag can compensate
for the combustion characteristics of fine slag. Wu et al. confirmed that the inorganic
constituents (Ca-Fe and Fe oxides) in gasification fine slags could exert a prominent catalytic
action on the carbon gasification [15]. Alkali and alkaline earth metal (AAEM) species are
the main components of the ash of biomass, and the AAEMs could serve as the catalyst
and would affect the combustion of biomass and coal during the co-firing process [16,17].
Zhang et al. adopted a single-particle combustion method, studied the effects of K, Na,
Ca, and Mg on the combustion characteristics of pine sawdust and bituminous coal, and
found that K played the strongest promotion effect in co-combustion [18]. Economically
and environmentally, co-combustion coal with other sources of energy is regarded as
a prospective and attractive choice [19,20]. The previous research has predominantly
concentrated on binary blending [21–26]. Few studies have focused on the combustion
features of tri-blending. Wang et al. investigated the combustion characteristics and
kinetics of bituminous coal with pyrolyzed semi-coke and gasified semi-coke [27]. Liao
et al. conducted the tri-combustion process for coal, biomass, and polyethylene. The
kinetic analysis showed that co-combustion mechanisms followed the diffusion model.
The synergy between the tri-fuel was deemed to be governed by the catalytic influence of
biomass and the initial exothermic release of energy and free radicals from three fuels [28].
Similarly, the research of tri-blending has also been reported [29–31].

In this paper, we proposed the blending of coal gasification fine slag with bamboo
residue and bituminous coal to improve the combustion characteristics of fine slag. This is
also beneficial for the direct combustion of bamboo residue as it has a low heating value.



Catalysts 2021, 11, 1152 3 of 14

This is beneficial for the sole energy reliability for coal combustion, as BR can be used as
an additive. In addition, parts of ash-forming metals reserved in the three raw materials
can exert a catalytic effect in the co-combustion process and promote the combustion
performance, aiming to change the blending ratio of GS in the process of cyclic sintering.
This paper demonstrates the co-combustion characteristics of tri-blends by TG-DTG. It can
help to further understand the reaction mechanism and kinetic behavior of co-combustion
using the Coats–Redfern model.

2. Results and Discussion
2.1. Physical and Chemical Characteristics of Samples
2.1.1. Basic Properties

The basic characteristics of the samples are presented in Table 1. The GS has a
high carbon content, indicating that GS contains abundant unburned carbon and has the
potential to burn as fuel. Nevertheless, GS cannot maintain normal combustion, due to its
high ash, low volatile matter, and low HHV. It has been suggested that the high-efficiency
utilization of carbon resources be realized by cyclic mixing combustion [32]. Vd/(Vd + FCd)
is defined as the volatile fuel ratio. BR has a higher value than BC and GS do in the volatile
matter and volatile fuel ratio, showing that BR behaves well in combustibility. BR can
reduce the release of nitrogen oxides and sulfur dioxide due to the low nitrogen and sulfur
content, and it can be considered as a clean fuel. The high H/C and O/C are favorable
for ignition and combustion intensification. The whole combustion performance may be
improved by blending the high-quality fuel (BC and BR) into GS.

Table 1. Basic properties of samples.

Samples
Proximate Analysis (wt%) Ultimate Analysis (wt%)

HHV (ad, MJ/kg)
Mad Ad Vd FCd Cdaf Hdaf Odaf * Ndaf St,d

BC 1.62 9.33 21.89 68.77 89.23 4.78 3.85 1.48 0.61 32.83
GS 3.48 71.95 3.81 24.23 93.54 0.81 3.07 0.33 0.63 9.31
BR 6.57 3.35 80.67 15.98 54.84 5.74 38.81 0.54 0.07 21.47

Notes: d: dry basis; ad: air-dry basis; daf: dry ash-free basis; *: by difference.

2.1.2. Ash Chemical Compositions

Ash chemical compositions of GS, BC, and BR are listed in Table 2. The alkali metals,
alkali earth metals, and transition metal oxides of samples in BR account for 75.93%.
According to the previous study [15,33,34], the AAEMs and transition metal oxides in
biomass can contribute a catalytic effect to the blending combustion process. In addition,
the Fe and Ca oxides of GS and the alkali metals of coal can also show catalysis and promote
the combustion process. The melting characteristics of the inorganic components in GS are
correlated with the separation and utilization of the residue carbon. The high ash melting
temperature is not conducive to full decomposition and combustion of the carbon fraction,
so GS cannot be used for blending sintering. The total amount of metals with catalytic
effect in BC and GS in each case was calculated based on 100 g of the blend, as shown in
Table 3.

Table 2. Ash chemical composition of samples (wt%).

Samples K2O Na2O SiO2 Al2O3 Fe2O3 CaO MgO SO3 TiO2 MnO2 P2O5

BC 0.75 0.28 52.52 37.03 3.45 1.56 0.66 1.66 1.66 0.01 0.16
GS 1.26 1.93 46.90 18.81 11.46 11.31 3.88 2.44 0.80 0.21 0.15
BR 58.97 0.46 24.17 2.26 3.11 8.47 4.11 4.42 0.17 0.64 4.07
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Table 3. The amounts of metals with catalytic effect in each case.

Samples 5% 10% 15% 25% 30% 40% 50% 60% 75%

BC + GS 1.71 2.79 3.93 6.21 7.24 9.42 11.64 13.77 17.18
BR 30.37 30.37 26.58 18.98 22.78 22.78 18.98 22.78 11.39

2.1.3. Micromorphology Structure

Figure 1 shows the surface morphologies of BC, GS, and BR. It can be seen in
Figure 1(A1–A3) that the BC surface is covered with scaly particles. GS consists of mainly
some spherical ash particles melted at high temperatures and loose and porous residue
carbon, suggesting that it can provide favorable conditions for oxygen diffusion [35]. As
shown in Figure 1(B3), there are four main distribution relationships between ash particles
and residue carbon: completely separated from the residue carbon, on the surface of the
residual carbon, filled in the pores of the residue carbon matrix, and melted together [36].
Figure 1(C2,C3) demonstrate that numerous bamboo fibers exist in bamboo residue. As
the bamboo shavings are composed of different parts of bamboo, the particles identified
in the bamboo residue sample differ in morphology. They are intertwined with each
other in the form of filaments or rods. Such microscopic morphology poses difficulties
for fragmentation.
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Figure 1. SEM images of bituminous coal (A1–A3), coal gasification fine slag (B1–B3), and bamboo
residue (C1–C3).

2.2. Combustion Characteristic Analysis
2.2.1. Combustion Behavior of Individual Fuel

Combustion characteristic parameters are used to evaluate combustion performance.
The ignition temperature (Ti) reflects the ease of combustion of the sample, and the burnout
temperature (Tb) indicates the temperature and burnout rate of the sample during the
combustion reaction interval, both of which are determined by the tangent method [26].
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The comprehensive combustion index (S) indicates the overall combustion performance. S
is calculated by the following equations [8]:

S =

(
dW
dt

)
max

×
(

dW
dt

)
mean

T2
i × Tb

(1)

where (dW/dt)max is the maximum mass loss rate, (dW/dt)mean is the average mass loss
rate, (dW/dt)mean = [(dW/dt)i + (dW/dt)b]/2, and Tmax denotes the peak temperature.

It could be found from Figure 2A that a mass increase step in the initial stage of BC
combustion is relative to the chemical adsorption of oxygen. The DTG curve of BC shows
a single wide peak, which is caused by the release of volatiles and the char combustion.
The mass loss rate of GS is only about 75%, suggesting that the individual combustion is
characterized by high ignition and burnout temperatures. The combustible fraction of GS
is only unburned carbon and a small amount of volatiles, and then the DTG curve presents
a single peak at around 500–650 ◦C.
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The combustion of BR is mainly classified as the water evaporation stage, the de-
volatilization stage, and the char combustion stage [24]. As can be seen from Figure 2B,
two sharp peaks of weight loss can be observed at around 200–400 ◦C. The peak standing
for the decomposition of hemicellulose in BR is at around 200–350 ◦C. The subsequent
thermal decomposition of cellulose and parts of lignin occurs at about 350–400 ◦C. In stage
380–460 ◦C, the DTG peak is assigned to the combustion reaction of lignin and biochar. The
DTG result is consistent with literature reports [11]. It is obviously found from Table 4 that
BR has lower ignition and burnout temperatures, and a higher comprehensive combustion
index in comparison to BC and GS.

Table 4. Combustion characteristic parameters of raw fuels.

Samples Ti (◦C) Tb (◦C)
Tmax (◦C) (dw/dt)max

(%/min)
(dw/dt)mean
(%/min) S (10−7)

Stage 1 Stage 2

BC 458.64 571.52 520.16 / 8.07 3.25 2.18
GS 540.53 614.23 580.84 / 2.99 1.12 0.19
BR 267.59 401.85 301.29 385.33 12.8 2.93 13.03

2.2.2. Tri-Fuel Co-Combustion Characteristic

The TG-DTG curves for the tri-fuel blends with different proportions are illustrated in
Figure 3A,B. It could be observed that the DTG curves of each blending sample display
a two-stage combustion process. From the result shown in Figure 3B, a slight fluctuation
occurs at around 46–132 ◦C, which is attributed to the dewatering drying process of the
samples. The volatile matter in BC and BR is decomposed in stage 1. Stage 2 takes place at
349–593 ◦C and is caused by the combustion of char and combustible material of GS. With
the rising blending proportion of GS, the mass loss rate gradually follows an increasing
trend, the weight loss peak of the DTG curve appears to shift to higher temperatures from
the overall view, and the peak shape becomes wider and shorter. The datas in Table 5 show
the tri-blending combustion parameters. An increasing percentage of GS diminishes the
comprehensive combustion index S, indicating that with the increase in the addition of GS,
the combustibility and combustion features of blending samples become poor. In terms of
the combustion data of GS and blends, the co-combustion could effectively improve the
individual combustion characteristic.

Table 5. Combustion characteristic parameters of various blended samples.

Samples Ti (◦C) Tb (◦C)
Tmax (◦C) (dw/dt)max

(%/min)
(dw/dt)mean
(%/min) S (10−7)

Stage 1 Stage 2

5% GS 264.17 534.25 290.93 487.98 4.81 2.17 2.84
10% GS 260.08 542.61 299.52 503.74 4.38 1.83 2.18
15% GS 264.99 544.59 296.61 495.54 4.51 1.80 2.12
25% GS 269.54 553.20 301.81 499.58 4.67 1.40 1.63
30% GS 268.68 544.74 303.65 493.78 3.78 1.59 1.50
40% GS 266.40 542.04 308.88 498.33 3.07 1.27 1.02
50% GS 286.61 557.68 316.39 505.07 2.94 1.21 0.78
60% GS 288.27 545.70 318.10 489.40 1.77 1.39 0.54
75% GS 298.37 565.63 319.89 508.61 2.10 0.92 0.38

2.3. Interaction and Synergistic Catalysis of Tri-Fuel Combustion

The study of interactions between tri-fuels is an important step toward a deeper under-
standing of the co-firing process. The interaction of tri-fuel was assessed by the difference
between the theoretical and experimental conversion rates. The relevant formulas are as
follows [9,28,37]:

X =
mi − mt

mi − m f
(2)
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XT = XBRYBR + XGSYGS + XBCYBC (3)

D = XE − XT (4)

In Equations (2)–(4), X is the sample combustion conversion; mi is the initial mass of
the sample; mt is the mass of the sample at time t; mf is the final mass of the sample; XT and
XE represent the theoretical and experimental conversion rates, respectively; D denotes the
deviation. The D value is greater than zero, which means that there is synergy between
the tri-fuel combustion. If D is close to zero or equal to zero, it proves that there is no
interaction in the tri-combustion process, the co-combustion is independent. Then, D is
less than zero, and the tri-fuel co-combustion presents antagonism or weak interaction.
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The difference in the theoretical and experimental conversions and the variations
in interactions within tri-fuel during combustion can be seen clearly in Figure 4A,B. As
depicted in Figure 4A, the difference in XT and XE in tri-fuel combustion shows a greater
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trend with the growing ratio of GS blended. There are both synergistic and antagonistic
effects in the co-combustion process from Figure 4B. When the percentage of GS is 5%, 10%,
15%, and 25%, the co-combustion process is first antagonistic and then synergistic. This
may be explained by the fact that due to the high addition of BR in the first four cases, the
self-combustion of BR and reaction of the alkali metal and alkaline earth elements in BR
with the minerals in BC can result in slagging or agglomerating, hindering the volatile
release of BC. The synergistic effect appears after 450 ◦C. The synergistic effect at this
stage is mainly due to the catalytic effect of alkali metals in BC and Fe-Ca oxides in GS.
It can be visualized from Table 3 that the catalytic metal content of BC and GS gradually
increases with the GS ratio. As shown in Figure 4B, the synergistic effect in each case
shows an increasing trend with the increase in the catalytic metal content in the blend,
indicating that synergistic catalysis occupies an important role in the combustion reaction.
Furthermore, the rising addition of GS has a clear enhancement effect for the synergism. In
accordance with the previous study by our group [36], GS is affluent in pores and has a
large specific surface area, which facilitates the diffusion and adsorption of oxygen, thus
causing a synergistic effect in the reaction. When the addition ratio of GS exceeds 25%, the
synergistic effect plays a crucial part in the blending combustion. The synergy between
300 and 400 ◦C is mainly determined by the AAEMs in BR and the pores of GS. BR is rich
in alkali metal and alkaline earth elements. AAEMs could serve as carriers of oxygen,
and further promote the migration of oxygen and the combustion of BC and GS. The
abundant pore channel provides the paths of oxygen transition. Thus far, the interactions
concerning the co-combustion process have no consistent agreement, and the details could
be associated with the material properties and reaction conditions.

2.4. Kinetics Analysis

Kinetics analysis was adopted to study the physical changes of substances and the
rate mechanism of chemical reactions. The model-based method, the Coats–Redfern
method, was applied in this paper to acquire kinetic parameters. The model formula is as
follows [9,28,38]:

ln
[

g(x)
T2

]
= ln

(
AR
βE

)
− E

RT
(5)

where g(x) is the reaction mechanism model function in Table 6, A is the pre-exponential
factor, E is reaction activation energy (kJ/mol), R is the gas constant with the value of
8.314 J/(K·mol), and β is the heating rate (◦C/min). Therefore, a straight line can be
obtained when plotting ln

[
g(x)
T2

]
versus 1/T, the straight line is linearly fitted, and the

mechanism function of the line with the highest correlation coefficient (R2) is considered to
be the reaction mechanism at that stage. The activation energy of the combustion reaction
can be calculated by the slope of the line.

Table 6. The reaction mechanism model function of g(x).

Mechanism and Model g(x)

Reaction order
O1 − ln(1 − x)
O2 (1 − x)−1

O3 (1 − x)−2

Phase boundary controlled reaction
R2 1 − (1 − x)1/2

R3 1 − (1 − x)1/3

Diffusion models
D1 x2

D2 (1 − x) ln(1 − x) + x
D3

[
1 − (1 − x)1/3

]2

D4 1 − 2x/3 − (1 − x)2/3
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Table 7 shows the kinetic analysis of raw fuels based on the Coats–Redfern method.
The order of the chemical reaction (O1 and O3) is the most optimal mechanism for the com-
bustion reaction of BC and BR [39]. The reaction of GS is controlled by the diffusion model
(D3), where D3 is Jander’s equation for the diffusion-controlled reaction in a sphere [40].
In the diffusion reaction, most chemical reactions are accomplished by the transportation
of gases in the solid phase, that is, the oxygen movement in the pore of residue carbon
and GS [9]. The activation energy of the first step of BR is relatively low as a result of the
catalytic effect of abundant alkali metals. The activation energy of GS has a higher value,
showing that there are many obstacles in the combustion reaction. This result reflects
the poor combustibility of GS from the side, which is compatible with the results of the
above analysis.
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Table 7. Combustion kinetic parameters of raw fuels.

Samples Stage E (kJ/mol) g(x) R2

BC S1 43.68 O1 0.9941
GC S1 130.87 D3 0.9718
BR S1 18.14 O1 0.9807

S2 149.37 O3 0.9595

As discussed in Section 3.2.2, the co-combustion process is divided into two main
stages. Each stage should be analyzed and fitted separately to select the most suitable
mechanism function. The kinetic parameters calculated by the subsection calculation
method according to the Coats–Redfern model are detailed in Table 8. The combustion
reaction of the first stage follows the O1 model (R2 > 0.99), which is controlled by first-order
chemical reaction. The reaction of the second stage conforms to the D3 model (R2 > 0.98).
This means that the reaction is considered diffusion-controlled. During the co-combustion
process, the first stage is mainly assigned to the combustion of the volatile fraction in BR
and volatile matter in BC, and then, the combustion of char generated from the previous
reaction and residue carbon in GS takes place in the second stage. The activation energy
of stage 1 tends to decrease, which probably explains that the interactions between the
first four experimental cases are dominated by antagonism in stage 1, the combustion
reaction rate is restrained, and the combustion process is also inhibited; consequently, the
activation energy of the combustion process is increased. It is notable that the activation
energy of stage 2 is higher than that of stage 1. The first stage of the reaction is mainly
the combustion of volatile matter from BR and BC. Alkali/alkaline earth metal elements,
as active carriers of oxidative adsorption, promote the diffusion of oxygen, increase the
oxygen concentration on the surface of carbon atoms, and then promote the combustion
reaction [41]. The combustion of BR and BC produces char and molten material, as well as
volatile gases, which may block the pores of residue carbon and impede the diffusion of
oxygen; the decomposition of combustible materials and carbon components is limited.
In addition, the surface of residue carbon is covered by some inorganic minerals melted
at high temperatures in GS, restricting the reaction of carbon and the contact of oxygen.
Comparatively, the second stage has more difficulty in the combustion reaction, and the
activation energy is higher.

Table 8. The optimal combustion kinetic parameters of various blending samples.

Samples
Stage 1 Stage 2

g(x) E (kJ/mol) R2 g(x) E (kJ/mol) R2

5% GS O1 22.88 0.9946 D3 37.45 0.9966
10% GS OI 22.81 0.9935 D3 44.46 0.9906
15% GS O1 21.37 0.9960 D3 37.23 0.9840
25% GS O1 17.37 0.9990 D3 41.82 0.9865
30% GS O1 16.02 0.9826 D3 34.42 0.9909
40% GS O1 17.96 0.9980 D3 30.87 0.9838
50% GS O1 16.15 0.9991 D3 31.32 0.9843
60% GS O1 17.88 0.9965 D3 20.44 0.9946
75% GS O1 13.56 0.9967 D3 35.73 0.9909

For further illustrating the catalytic role of iron in the co-combustion process, SEM-
EDS images of 5% GS, 30% GS, and 75% GS cases are provided in Figure 5. It can be seen
that the activation energy decreases gradually for 5%, 30%, and 75% cases from Table 8. The
EDS results of the blending samples show a sequential increase in Fe content. The catalytic
effect on the combustion process is strengthened with the increase in Fe content [42]. The
electron-donating effect of Fe is transferred to the carbon ring or chain by oxygen, making
it unstable and cracking, accelerating the process of carbon gasification and improving the
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reaction rate of combustion. Therefore, the activation energy shows a decreasing trend due
to the catalytic effect of Fe [43].
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3. Materials and Methods
3.1. Material Preparation

Coal gasification fine slag (GS), produced in the process of coal to liquids, was obtained
from an entrained-flow gasification unit in State Energy Group Shenhua Ningxia Coal In-
dustry Group Co. Ltd. Bituminous coal (BC) and bamboo residue (BR) were collected from
Binzhou City, Shangdong Province and Yibin City, Sichuan Province in China, respectively.
BRs are composed of bamboo branches and bamboo nodes generated in the process of
cutting and utilizing. Before testing, GS and BC were dried at 105 ◦C in a vacuum-drying
oven for 3 h. BR was dried at 85 ◦C for 3 h. The feedstock materials were pulverized and
sieved to particle sizes less than 0.075 mm. The three samples were proportionally well
blended in a ball mill at 400 r/min. The blending proportions are listed in Table 9.
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Table 9. Experimental conditions.

GS Mass Fraction/% BR Mass Fraction/% BC Mass Fraction/%

5 40 55
10 40 50
15 35 50
25 25 50
30 30 40
40 30 30
50 25 25
60 30 10
75 15 10

3.2. Analysis Methods
3.2.1. Sample Properties

The basic properties of samples were detected by proximate analyses, ultimate analy-
ses, and high heating values. The operation process was conducted based on the China
National Standards GB/T 212-2008, GB/T 476-2008, and GB/T 213-2008, respectively.

3.2.2. Ash Composition Analysis

The ash chemical compositions of samples were determined by XRF with the standard
procedures of ASTM D4326. Prior to XRF analysis, the raw materials were ashed using a
muffle furnace held for 1 h at 815 ◦C (BC and GS) and 550 ◦C (BR).

3.2.3. Micromorphology Analysis

The microscopic morphology of the samples was tested through scanning electron
microscopy (SEM, TESCAN VEGA COMPACT). Before the test, the sample was ultrasoni-
cally dispersed in anhydrous ethanol and then dropped on a slide. After the sample was
completely dried, the sample powder was evenly adhered to the slide with conductive
tape, and gold was sprayed to enhance the conductivity of the samples.

3.2.4. Thermogravimetric Analysis

Thermogravimetry was widely used to study the thermochemical behaviors of solid
fuels. The combustion of samples was evaluated using TGA (Netzsch STA 449 F5 Jupiter).
Before testing, approximately 10 mg of the samples was placed in a corundum crucible.
The samples were subjected to thermal decomposition at a heating rate of 10 ◦C/min from
room temperature to 900 ◦C, and the total airflow rate was set to 20 mL/min.

4. Conclusions

In this paper, thermogravimetric analysis was applied to evaluate the co-combustion
characteristics of BC, GS, and BR. It was found that the addition of BC and BR can improve
the combustion performance of GS compared with individual combustion. The comprehen-
sive combustion index S decreased gradually with the increase in GS added, suggesting that
the combustibility of blends became worse. Notably, there were interactions between the
tri-combustion process, both synergistic and antagonistic, via comparing the experimental
and theoretical conversion. The synergistic effect was mainly caused by the catalysis of
metals in the raw material. The interactions varied with different blending percentages of
GS. The kinetic analysis indicated that the tri-combustion reaction was determined by the
chemical reaction order and diffusion model (O1 and D3). The co-combustion active energy
was lower than that of the individual combustion of GS. According to the activation energy
of the first and second stages in the tri-blending combustion reaction and the synergistic
effect, the blending ratio of 60% GS-30% BR-10% BC was recommended.
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