

The Hydrothermal Stability and the Properties of Non- and Strongly-Interacting Rh Species over Rh/ γ , θ -Al₂O₃ Catalysts

Guanghao Cheng ¹, Gurong Shen ², Jun Wang ¹, Yunhao Wang ¹, Weibo Zhang ¹, Jianqiang Wang ¹ and Meiqing Shen ^{1,3,4,*}

- Key Laboratory for Green Chemical Technology of State Education Ministry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China; ghcheng@tju.edu.cn (G.C.); wangjun@tju.edu.cn (J.W.); bokman@tju.edu.cn (Y.W.); zhangwbo@tju.edu.cn (W.Z.); jianqiangwang@tju.edu.cn (J.W.)
- ² School of Materials Science and Engineering, Tianjin University, Tianjin 300350, PR China; gr_shen@tju.edu.cn (G.S.)
- ³ Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300350, PR China.
- ⁴ State Key Laboratory of Engines, Tianjin University, Tianjin 300350, PR China.
- * Correspondence: mqshen@tju.edu.cn; Tel.:+86-022-2740-7002

Figure S1. The N₂ physical adsorption and desorption analysis results for fresh and aged catalysts: (a) the isothermal plots and (b) pore size distributions.

Table S1. The physical properties of fresh and aged Rh/ $\gamma,\theta\text{-Al}_2O_3$ catalysts.	
---	--

Samples	BET (m²/g)		Pore volume (cm³/g)		
	Fresh	Aged	Fresh	Aged	
Rh/y-Al2O3	139	91	0.54	0.48	
Rh/0-Al ₂ O ₃	83	72	0.47	0.44	

Table S2. Quantification of Rh (3d5/2) signals of Rh/ γ , θ -Al₂O₃ catalysts.

Samples	Binding energy of Rh 3d _{5/2}			Rh%Rh	Rh ³⁺ /R	Rh4+/Rh
		(eV)				
	Rh^0	Rh ³⁺	Rh4+	(%)	(%)	(%)
fresh Rh/y-Al ₂ O ₃	307.4	309.4	310.4	11.9	56.4	31.7
fresh Rh/θ-Al2O3	307.4	309.3	310.5	15.5	50.0	34.5
deactivated Rh/y-Al2O3	-	-	310.4	0	0	100
deactivated Rh/0-Al2O3	-	-	310.3	0	0	100

Figure S2. The profiles of (a) CO, (b) C₃H₆, (c) NO conversion, and (d) N₂O formation over deactivated and aged Rh/ γ , θ -Al₂O₃ after acid-treated (HCl-KBr) under TWC reaction condition. Feed stream: 1% CO, 1000 ppm HCs (C₃H₆:C₃H₈ = 2:1), 1000 ppm NO, 0.917% O₂, 12% CO₂, 3% H₂O, N₂ balance.

Figure S3. XRD patterns of catalyst supports.