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Abstract: Tafel analysis of electrocatalysts is essential in their characterization. This paper analyzes
the application of Tafel-like analysis to the four-electron nonelectrochemical oxidation of water by
the stoichiometric homogeneous 1-electron oxidant [Ru(bpy)3]3+ to dioxygen catalyzed by homoge-
neous catalysts, [Ru4O4(OH)2(H2O)4(γ-SiW10O36)2]10− (Ru4POM) and [Co4(H2O)2(PW9O34)2]10–

(Co4POM). These complexes have slow electron exchange rates with electrodes due to the Frumkin
effect, which precludes the use of known electrochemical methods to obtain Tafel plots at ionic
strengths lower than 0.5 M. The application of an electron transfer catalyst, [Ru(bpy)3]3+/2+, in-
creases the rates between the Ru4POM and electrode, but a traditional Tafel analysis of such a
complex system is precluded due to a lack of appropriate theoretical models for 4-electron pro-
cesses. Here, we develop a theoretical framework and experimental procedures for a Tafel-like
analysis of Ru4POM and Co4POM, using a stoichiometric molecular oxidant [Ru(bpy)3]3+. The
dependence of turnover frequency (TOF) as a function of electrochemical solution potential created
by the [Ru(bpy)3]3+/[Ru(bpy)3]2+ redox couple (an analog of the Tafel plot) was obtained from
kinetics data and interpreted based on the suggested reaction mechanism.

Keywords: Tafel; polyoxometalate; water oxidation; stopped-flow; kinetics; catalyst comparison

1. Introduction

Tafel slope analysis has become increasingly popular in this era of solar fuels research
and photoelectrochemistry [1–6]. This study addresses the possibility of constructing Tafel
plots for homogeneous catalytic multielectron redox processes and the usefulness of this
approach. The model homogeneous reaction we have chosen for this study is the oxidation
of water in Equation (1).

2 H2O−4 e− → O2 + 4 H+ (1)

2 H+ + 2 e− → H2 (2)

2 H2O→ O2 + 2H2 (3)

Equation (1) is very unfavorable thermodynamically and requires an external source
of energy such as electricity or light (e.g., solar). The overall reaction of water splitting,
Equation (3), includes two half-reactions, water oxidation and reduction, Equations (1) and
(2), respectively, which proceed in spatially separated sites:

The reverse reaction in Equation (3) takes place in fuel cells to directly convert chemical
energy into electricity.

In electrochemistry, the potential applied between the cathode and anode and the
current is measured. Commonly, the empirically formulated Tafel relation in Equation (4)
is used to compare the electrocatalytic activities:

η = a + b log(i) (4)

where η = E − E0 is the difference between the electrode and standard potentials, i is the
current density, and b is the Tafel slope.
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The utility of Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for
energy conversion has been reported [1,2]. However, numerous simplifications and as-
sumptions in the derivation of Equation (4) leads to an incomplete description of the actual
surface kinetics and makes the applicability of Tafel analysis questionable [2,3,7,8]. In many
cases, homogeneous systems are simpler and easier experimentally for understanding
the reaction mechanism. Therefore, we developed a protocol to construct Tafel-like plots
for homogeneous reactions and studied the usefulness of such plots to better understand
the reaction mechanism. In addition, while extensive mechanistic analyses of molecular
redox systems have been conducted previously, many aspects still need to be precisely
addressed [9]. Generally speaking, the Tafel-like plot is one among multiple approaches
that link the kinetic and thermodynamic properties of such a catalytic system.

Both half reactions, Equations (1) and (2), are complex multielectron processes cat-
alyzed by transition metal complexes. Each one is routinely studied individually [6,10–12].
Stable homogeneous molecular catalysts are ideally suited for studies of the reaction mecha-
nism and the relationship between reaction kinetics and thermodynamics. Indeed, previous
studies on redox and chemical catalysts in different catalytic systems have already pro-
vided theoretical tools for mechanistic analyses [9]. More recently, Costentin and Savéant
thoroughly analyzed the applicability of the Tafel equation to the homogeneous molecular
catalysis of electrochemical CO2 and O2 reduction [13]. In this work, we describe a protocol
for deriving a Tafel-like plot based on theoretical and experimental grounds to relate the
reaction rate with the solution electrochemical potential for homogeneous water oxida-
tion by [Ru(bpy)3]3+, catalyzed by the stable molecular tetraruthenium polyoxometalate
[Ru4O4(OH)2(H2O)4(γ-SiW10O36)2]10−, Ru4POM. This POM was the first fully inorganic
(carbon-free), thus oxidatively robust, water oxidation catalyst (WOC), which is also hy-
drolytically stable over a wide pH range (pH 1–9) [14,15]. Detailed electrochemical studies
of this complex showed that the rates of electron exchange between an electrode and the
complex is sluggish under typical catalytic turnover conditions [14,16]. As a result, neither
the Tafel plot nor the exchange current density, i0, can be measured experimentally. At the
same time, the catalyst shows excellent activity in homogeneous aqueous solutions when
stoichiometric oxidants such as Ce(IV) or [Ru(bpy)3]3+ are used. The question was posed
as to whether data collected in homogeneous multielectron processes can be used to obtain
a Tafel-like plot. This study addresses that question and aims to focus on the adaptation of
an analog of traditional Tafel plots to the four-electron water oxidation process specific to
homogeneous species.

2. Results and Discussion
2.1. Theoretical Considerations

Here, we assume that water oxidation in homogeneous conditions proceeds through
four fast Nernstian reversible electron transfer steps followed by the irreversible O2 forma-
tion step, Equations (5–8), where C0 is the resting oxidation state of the catalyst, C, and
C1–C4 are the one- to four-electron oxidized forms of the catalyst.

C0 − e
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C0 − e ⇄ C1  Eo1 (5)

C1 − e ⇄ C2  Eo2 (6)

 C2 − e ⇄ C3    Eo3  (7)

C3 − e ⇄ C4   Eo4 (8)

C4 + 2 H2O ⟶ C0 + O2 + 4 H+ ko (9)

If the equilibria are fast, then an applied and electrochemical solution potential, E, is 
linked via the Nernst equation, Equation (10): 

C1 Eo
1 (5)

C1 − e
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C2 Eo
2 (6)

C2 − e

Catalysts 2021, 11, x FOR PEER REVIEW 2 of 11 
 

 

where η = E − E0 is the difference between the electrode and standard potentials, i is the 
current density, and b is the Tafel slope. 

The utility of Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for 
energy conversion has been reported [1,2]. However, numerous simplifications and as-
sumptions in the derivation of Equation (4) leads to an incomplete description of the ac-
tual surface kinetics and makes the applicability of Tafel analysis questionable [2,3,7,8]. In 
many cases, homogeneous systems are simpler and easier experimentally for understand-
ing the reaction mechanism. Therefore, we developed a protocol to construct Tafel-like 
plots for homogeneous reactions and studied the usefulness of such plots to better under-
stand the reaction mechanism. In addition, while extensive mechanistic analyses of mo-
lecular redox systems have been conducted previously, many aspects still need to be pre-
cisely addressed [9]. Generally speaking, the Tafel-like plot is one among multiple ap-
proaches that link the kinetic and thermodynamic properties of such a catalytic system. 

Both half reactions, Equations (1) and (2), are complex multielectron processes cata-
lyzed by transition metal complexes. Each one is routinely studied individually [6,10–12]. 
Stable homogeneous molecular catalysts are ideally suited for studies of the reaction 
mechanism and the relationship between reaction kinetics and thermodynamics. Indeed, 
previous studies on redox and chemical catalysts in different catalytic systems have al-
ready provided theoretical tools for mechanistic analyses [9]. More recently, Costentin 
and Savéant thoroughly analyzed the applicability of the Tafel equation to the homoge-
neous molecular catalysis of electrochemical CO2 and O2 reduction [13]. In this work, we 
describe a protocol for deriving a Tafel-like plot based on theoretical and experimental 
grounds to relate the reaction rate with the solution electrochemical potential for homo-
geneous water oxidation by [Ru(bpy)3]3+, catalyzed by the stable molecular tetraruthe-
nium polyoxometalate [Ru4O4(OH)2(H2O)4(γ-SiW10O36)2]10−, Ru4POM. This POM was the 
first fully inorganic (carbon-free), thus oxidatively robust, water oxidation catalyst 
(WOC), which is also hydrolytically stable over a wide pH range (pH 1–9) [14,15]. Detailed 
electrochemical studies of this complex showed that the rates of electron exchange be-
tween an electrode and the complex is sluggish under typical catalytic turnover conditions 
[14,16]. As a result, neither the Tafel plot nor the exchange current density, i0, can be meas-
ured experimentally. At the same time, the catalyst shows excellent activity in homogene-
ous aqueous solutions when stoichiometric oxidants such as Ce(IV) or [Ru(bpy)3]3+ are 
used. The question was posed as to whether data collected in homogeneous multielectron 
processes can be used to obtain a Tafel-like plot. This study addresses that question and 
aims to focus on the adaptation of an analog of traditional Tafel plots to the four-electron 
water oxidation process specific to homogeneous species. 

2. Results and Discussion 
2.1. Theoretical Considerations  

Here, we assume that water oxidation in homogeneous conditions proceeds through 
four fast Nernstian reversible electron transfer steps followed by the irreversible O2 for-
mation step, Equations (5–8), where C0 is the resting oxidation state of the catalyst, C, and 
C1–C4 are the one- to four-electron oxidized forms of the catalyst. 

C0 − e ⇄ C1  Eo1 (5)

C1 − e ⇄ C2  Eo2 (6)

 C2 − e ⇄ C3    Eo3  (7)

C3 − e ⇄ C4   Eo4 (8)

C4 + 2 H2O ⟶ C0 + O2 + 4 H+ ko (9)

If the equilibria are fast, then an applied and electrochemical solution potential, E, is 
linked via the Nernst equation, Equation (10): 

C3 Eo
3 (7)

C3 − e
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C4 Eo
4 (8)

C4 + 2 H2O→ C0 + O2 + 4 H+ ko (9)
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E − Eo
1 = (RT/F) × ln([C1]/[C0]), E − Eo

2 = (RT/F) × ln([C2]/[C1]), E − Eo
3 = (RT/F) × ln([C3]/[C2]),

E − Eo
4 = (RT/F) × ln([C4]/[C3]),

(10)
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where R is the universal gas constant, T is the temperature, and F is the Faraday constant.
The concentration of the catalyst in oxidation state i = 0 − 4 is described by a distribution
function, Equation (11):

αi = [Ci]/[Ct] × [exp(F(iE − ∑i
0 Eo

i )/RT)]/[1 + exp[F(E − ∑1
0 Eo

j )/RT] + exp[F(2E − ∑2
0 Eo

j )RT]
+ exp[F(3E − ∑3

0 Eo
j )/RT] + exp[(4E − ∑4

0 Eo
j )/RT],

(11)

where [Ct] = total concentration of the catalyst.
If a stoichiometric oxidant is used as a sacrificial electron acceptor, the Nernst law

gives the applied potential equal to the solution potential. Here, we consider the case
when [Ru(bpy)3]3+, Ru3, is an oxidant (Ru2 represents [Ru(bpy)3]2+). The electrochemical
solution potential, E, created by this oxidant is:

E = E′0 + 0.059 × log10 ([Ru3]/[Ru2]) = E′0 + 0.059 × log10 ([Ru3]/([Ru3]o −
[Ru2]+[Ru2]o)),

(12)

where E′0 = 1.26 V (SHE) is the standard reduction potential of the Ru3/Ru2 couple, and
[Ru3]o and [Ru2]o are the initial concentrations of Ru3 and Ru2, respectively.

If the rate limiting step is Equation (9), then the reaction rate (current) is:

−d[Ru3]/dt = 4ko[C4] = TOFapp × [Ct] (13)

and the apparent turnover frequency (TOFapp) with respect to Ru3 consumption is:

TOFapp = 4α4 ko (14)

Here, ko is the rate constant for the oxidation of water. The value of the distribution factor,
α4 is time-dependent and can be determined from Equations (10) and (11), and TOFapp is a
kinetic parameter. The full equation linking TOFapp and apparent potential is complex, but
can be simplified if ko is known and [Ru2]o = 0, Equation (15):

log10(TOFapp) ≈ log10(4ko) + E′0 + 0.059 × log10 ([Ru3]/([Ru3]o − [Ru3])) − 4E (15)

At high applied potentials, [C4] ≈ [Ct] and TOFapp reaches a plateau with the value 4ko.
This value is the maximum turnover frequency (TOF) achievable by a given catalyst. This
is an intrinsic property of a catalyst and its associated turnover activity. However, TOF0
of a certain catalytic system can be achieved at different potentials, ETOF. As a result, the
catalytic activity of two systems cannot be compared by a single number such as TOF0.
Two parameters, TOF0 and ETOF, are required to describe the catalytic activity. The slope of
the Tafel-like plot at moderate potentials is a complex dependence of the catalyst reduction
potentials and the Ru3 concentration. In our homogeneous catalytic system, Ru3 is used
as a stoichiometric electron acceptor. Ru3 can also be generated in situ in a photoinduced
reaction of Ru2 with persulfate, S2O8

2−, or electrochemically.

2.2. Homogeneous Electrochemical Reactions in the Presense of an Electron Transfer Catalyst

As the electron transfer from Ru4POM to the electrode is slow, we attempted to
accelerate the overall reaction with the addition of an electron transfer catalyst.

The stability of Ru3 is well documented to increase at lower pH. Therefore, the cyclic
voltammetry (CV) was recorded at a slightly lower pH of 7.2. The CV of Ru3/Ru2 has
an almost ideal shape with an anodic-cathodic peak separation of 69 mV and a ratio of
anodic and cathodic current close to 1; E1/2 = 1.26 V (versus SHE) in 80 mM sodium
phosphate buffer at pH 7.2. The addition of 15 µM of Ru4POM to 1.0 mM Ru2 results
in a slight increase in anodic current (Figure 1), indicating that the reaction between
Ru3 and Ru4POM takes place. At higher concentration, Ru4POM forms an insoluble
adduct with Ru2, which does not allow CV measurements over a broad range of catalyst
concentrations. A foot of the wave analysis cannot be applied, as no catalytic current is
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seen in this system [17]. The CV simulation with the SIM4YOU software package using
the heterogeneous electron transfer reaction rate constant 0.065 cm s−1 (measured in 0.1 M
H2SO4) [18] for Ru3 and a glassy carbon electrode (surface area is 0.0668 cm2) is in good
agreement with the experiment under the assumption of irreversible oxidation of Ru3
at the electrode at a potential of 1840 mV vs. SHE (Figure 1). The simulation results in
the presence of Ru4POM is also in reasonable agreement with the experiment when the
reaction mechanism and rate constants described below are applied. Clearly, simple cyclic
voltammograms do not provide much information on Ru4POM redox potentials.
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2.3. Linear Sweep Voltammetry

Linear sweep voltammetry (LSV) at very low scan rate with vigorous stirring of the
solution is commonly used to obtain the dependence of the potential as a function of
the logarithm of the current (Tafel equation). The experimental LSV curves are shown in
Figure 2a. We then plotted the applied potential (in the range 900–1200 mV) as a function
of the current normalized per concentration of added [Ru4POM] (an analog of TOF) in
Figure 2b.
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The “Tafel slope” in the range of potentials between 900 and 1200 mV is ~120 mV/decade
(Figure 2) for three different Ru4POM concentrations. Based on the formal interpretation of
the Tafel equation, this slope is consistent with α = 0.5 and a one-electron process. However,
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as the theory of such measurements is not yet developed for a homogeneous WOC system,
the meaning of this slope value is unclear.

2.4. Tafel Plot from Kinetic Curves in Homogeneous Systems

The kinetics of water oxidation by Ru3 can be followed either by measuring oxygen
formation or by the consumption/formation of Ru3/Ru2. The consumption of Ru3 can be
followed by a decrease in absorbance at 670–680 nm (ε = 420 M−1cm−1) [14]. The reaction
is fast and requires a stopped-flow instrument to collect high-quality kinetics data. The
experimental details were described in our previous publications [14,19]. Both Ru2 and
Ru4POM slightly absorb light at 680 nm, which must and can be taken into account for
quantitative analysis of raw experimental data. Here for simplicity, a kinetic curve of [Ru3]
consumption versus time is the decrease in absorbance at 680 nm. At a given time t, the
reaction rate can be approximated as d[Ru3]/dt ≈ ([Ru3](t − ∆t) − [Ru3]t + ∆t))/2∆t and
TOFap = (d[Ru3]/dt)/[Ct] can be quantified ([Ct] is the total concentration of Ru4POM). We
make the reasonable assumption, based on our earlier studies, that the reaction mechanism
is Equations (5)–(9). If reversible reactions are in equilibrium and [Ct] << [Ru3], then the
electrochemical solution potential at time t can be calculated from the Nernst equation
E = E′0 + 0.059 × log10(([Ru3]t/([Ru3]0 − [Ru3]t)), where E′0 = 1.26 V is the standard re-
duction potential of the [Ru3]/[Ru2] couple, and [Ru3]0 is the initial concentration of Ru3.
As Ru3/Ru2 and Ru4POM have large and opposite charges, their reduction potentials and
the rates of their intermolecular reactions are ionic-strength-dependent. In order to keep
pH constant, the use of buffered solutions is required. However, even low concentrations of
sodium phosphate buffer (e.g., 25 mM) create a high ionic strength (µ ~ 75 mM). Therefore,
in this work, we use the experimentally determined value of the reduction potential for
the Ru2/Ru3 couple as the reference point in all calculations (e.g., 1.06 V versus 3.0 M
NaCl Ag/AgCl reference electrode). We define TOF as (d[Ru3]/dt)/[Ct]. This procedure
converts a single kinetic curve to the dependence of TOF on applied potentials.

The self-decomposition of Ru3 is relatively slow at pH 7.0–8.0, and the O2 yield
approaches 80% of the theoretical value at [Ru4POM] > 5 µM. Therefore, the kinetics
of [Ru(bpy)3]3+ consumption can be considered as the kinetics of water oxidation. The
beginning of kinetic curves (up to 15% conversion) has the highest Ru3/Ru2 ratio, which
quickly changes with time and makes the rate measurements problematic.

The typical kinetic curves and the corresponding Tafel-like plots are shown on Figure 3.
The initial rates are commonly used to study the reaction kinetics. In this work, we did not
use this approach, due to two major problems. First, if Ru2 is not added in the reaction
mixture, the rate quickly changes at very low conversions, creating uncertainty in the
definition of the initial rate. Secondly, in the early stage, small experimental uncertainties
in Ru2 concentration will lead to significant errors in [Ru3]/[Ru2] ratio.

The experimental log10(TOF) dependence on the electrochemical solution potential
is weakly dependent on catalyst concentration and is not linear. In order to interpret
the data, we build a kinetic model of homogeneous processes, performed the fitting of
kinetics curves, and then simulated the Tafel plot. It appeared that the simulated Tafel
plots are weakly dependent on parameters obtained from fitting. Therefore, we had to
narrow the ranges of variable parameters using additional sets of experimental data. In this
respect, differential pulse voltammetry could be helpful to estimate the oxidation potentials
of Ru4POM.
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Figure 3. (a) The kinetics of [Ru(bpy)3]3+ consumption measured at 670 nm. Sodium borate buffer (25 mM) at pH 8.0,
0.85 mM [Ru(bpy)3]3+, Ru4POM—0 (orange), 2.5 (blue), 5.0 (red), and 10 µM (green). The fitting using Copasi software to
the mechanism in Equations (15)–(21) is in solid lines [20]; (b) turnover frequency (TOF) and potential are calculated as
described in the text. The brown line is calculated using Equation (15). The black line is generated by Copasi software with
the same parameters as in (a).

2.5. Differential Pulse Voltammetry

Differential pulse voltammetry (DPV) has two features: The effect of the charging
current can be minimized and only faradaic current is extracted. This technique is well
suited for electrochemical examination of Ru4POM, which has a low rate constant of
electron transfer to electrode; however, like other electroanalytic techniques, DPV requires
the use of a high electrolyte concentrations. Indeed, the DPV peaks significantly increase
with an increase in NaNO3 electrolyte concentration in 80 mM sodium borate buffer at
pH 8.0 and also shift to lower potentials (Figure 4). The first peak becomes visible at 0.5 M
NaNO3 at ~0.65 V and shifts to a lower potential at 0.75 M NaNO3. The width of the peak is
around 90 mV, which is consistent with the one-electron transfer process (theoretical value
90 mV). The second peak has a width of about 45 mV and thus is very likely a two-electron
process. At low ionic strength, the potential of the second peak is in the range of 1.0–1.1 V
vs. Ag/AgCl.
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Figure 4. Differential pulse voltammetry curves of 1.0 mM Ru4POM in 80 mM sodium borate buffer
at pH 8.0 at varying concentrations of NaNO3: 0.15 M (blue), 0.25 M (red), 0.5 M (green), and 0.75 M
(black). Differential pulse voltammetry (DPV) parameters: V (mV/s) = 20, sample width (ms) = 17,
pulse amplitude (mV) = 50, pulse width (ms) = 50, pulse period (ms) = 200, quiet time (s) = 2.

We considered studying the kinetics of water oxidation at elevated concentrations of
electrolyte in order to have the similar conditions to those used in electrochemical studies.
However, the rate of water oxidation by Ru3 decreases with an increase in electrolyte
concentration due to ionic strength effects, but the rate of Ru3 self-decomposition remains
unchanged and becomes the predominant kinetic event. As such, the redox potentials
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measured by DPV could be extrapolated to low ionic strength to estimate the possible
range of Ru4POM potentials.

2.6. Kinetic Model of Homogeneous Water Oxidation by [Ru(bpy)3]3+ Catalyzed by Ru4POM

Having information on the range of redox potentials of Ru4POM and making minimal
assumptions, the mechanism in Equations (16)–(22) is proposed:

C0 + Ru3
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C0 − e ⇄ C1  Eo1 (5)

C1 − e ⇄ C2  Eo2 (6)

 C2 − e ⇄ C3    Eo3  (7)

C3 − e ⇄ C4   Eo4 (8)

C4 + 2 H2O ⟶ C0 + O2 + 4 H+ ko (9)

If the equilibria are fast, then an applied and electrochemical solution potential, E, is 
linked via the Nernst equation, Equation (10): 

C1 + Ru2 k1 = 1 × 1010; k−1 = 10 M−1s−1; K1 = 1 × 109; ∆E1 = −0.61V (16)

C1 + Ru3
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C4 + 2 H2O ⟶ C0 + O2 + 4 H+ ko (9)

If the equilibria are fast, then an applied and electrochemical solution potential, E, is 
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C2 + Ru2 k2 = 1 × 1010; k−2 = (4.6 ± 8) × 105 M−1s−1; K2 = 2.2 × 104; ∆E2 = −0.26 V (17)

C2 + Ru3
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2. Results and Discussion 
2.1. Theoretical Considerations  

Here, we assume that water oxidation in homogeneous conditions proceeds through 
four fast Nernstian reversible electron transfer steps followed by the irreversible O2 for-
mation step, Equations (5–8), where C0 is the resting oxidation state of the catalyst, C, and 
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C0 − e ⇄ C1  Eo1 (5)
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 C2 − e ⇄ C3    Eo3  (7)

C3 − e ⇄ C4   Eo4 (8)

C4 + 2 H2O ⟶ C0 + O2 + 4 H+ ko (9)

If the equilibria are fast, then an applied and electrochemical solution potential, E, is 
linked via the Nernst equation, Equation (10): 

C3 + Ru2 k3 = 1 × 1010; k−3 = (5.4 ± 9) × 105 M−1s−1; K3 = 1.8 × 104; ∆E3 = −0.26 V (18)

C3 + Ru3
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lecular redox systems have been conducted previously, many aspects still need to be pre-
cisely addressed [9]. Generally speaking, the Tafel-like plot is one among multiple ap-
proaches that link the kinetic and thermodynamic properties of such a catalytic system. 

Both half reactions, Equations (1) and (2), are complex multielectron processes cata-
lyzed by transition metal complexes. Each one is routinely studied individually [6,10–12]. 
Stable homogeneous molecular catalysts are ideally suited for studies of the reaction 
mechanism and the relationship between reaction kinetics and thermodynamics. Indeed, 
previous studies on redox and chemical catalysts in different catalytic systems have al-
ready provided theoretical tools for mechanistic analyses [9]. More recently, Costentin 
and Savéant thoroughly analyzed the applicability of the Tafel equation to the homoge-
neous molecular catalysis of electrochemical CO2 and O2 reduction [13]. In this work, we 
describe a protocol for deriving a Tafel-like plot based on theoretical and experimental 
grounds to relate the reaction rate with the solution electrochemical potential for homo-
geneous water oxidation by [Ru(bpy)3]3+, catalyzed by the stable molecular tetraruthe-
nium polyoxometalate [Ru4O4(OH)2(H2O)4(γ-SiW10O36)2]10−, Ru4POM. This POM was the 
first fully inorganic (carbon-free), thus oxidatively robust, water oxidation catalyst 
(WOC), which is also hydrolytically stable over a wide pH range (pH 1–9) [14,15]. Detailed 
electrochemical studies of this complex showed that the rates of electron exchange be-
tween an electrode and the complex is sluggish under typical catalytic turnover conditions 
[14,16]. As a result, neither the Tafel plot nor the exchange current density, i0, can be meas-
ured experimentally. At the same time, the catalyst shows excellent activity in homogene-
ous aqueous solutions when stoichiometric oxidants such as Ce(IV) or [Ru(bpy)3]3+ are 
used. The question was posed as to whether data collected in homogeneous multielectron 
processes can be used to obtain a Tafel-like plot. This study addresses that question and 
aims to focus on the adaptation of an analog of traditional Tafel plots to the four-electron 
water oxidation process specific to homogeneous species. 

2. Results and Discussion 
2.1. Theoretical Considerations  

Here, we assume that water oxidation in homogeneous conditions proceeds through 
four fast Nernstian reversible electron transfer steps followed by the irreversible O2 for-
mation step, Equations (5–8), where C0 is the resting oxidation state of the catalyst, C, and 
C1–C4 are the one- to four-electron oxidized forms of the catalyst. 

C0 − e ⇄ C1  Eo1 (5)

C1 − e ⇄ C2  Eo2 (6)

 C2 − e ⇄ C3    Eo3  (7)

C3 − e ⇄ C4   Eo4 (8)

C4 + 2 H2O ⟶ C0 + O2 + 4 H+ ko (9)

If the equilibria are fast, then an applied and electrochemical solution potential, E, is 
linked via the Nernst equation, Equation (10): 

C4 + Ru2 k4 = (1.5±0.8) ×107; k−4 = (8.0 ± 4) × 108 M−1s−1; K4 = 0.2; ∆E4 = 0.10 V (19)

C4→ C0 + O2 k0 = 18 ± 2 s−1 (20)

Ru3→ Rux kd = 0.0023 ± 0.0005 s−1 (21)

10 Ru3 + Rux → 10 Ru2 + Pr kdd > 1 × 105 M−1s−1 (22)

The latter two reactions are added to describe the rate and stoichiometry of the Ru3
self-decomposition reaction in the absence of a catalyst. The values were determined
from the fitting of five kinetic curves and assuming the rate law for Equation (21) as
d[Ru3]/dt = −kdd[Ru3][Rux]. It appeared that the overall reaction rate and O2 yield are
independent of kdd, if kdd > 1× 105 M−1 s−1. We assumed that the very thermodynamically
favorable reactions between two reactants with opposite charges proceed with the diffusion-
controlled rate constants 1 × 1010 M−1s−1. The optical density at 670 nm was calculated as
A(670) = 420 × [Ru3] + 20 × [Ru2]). The results of the fitting are strongly dependent on
dioxygen yield over the reaction time. Therefore, we used an additional set of experimental
data. The dioxygen yield at 20 ± 2 s was measured to be 41, 60, and 85 µM in the presence
of 2.5, 5.0, and 10 µM Ru4POM, respectively. The calculated values of O2 were the same
as the experimental ones within a 5% range. For each concentration of Ru4POM, two
kinetic curves with different reaction times were used. The results of the fitting are given
in Figure 3 and the values of the parameters are given in Equations (16)–(22). The values of
the variable parameters are highlighted in italics. The standard deviations are generated
by the fitting software. As expected, the values of rate constants extracted by fitting have a
large error range due to the low number of experimental curves used in fitting. The increase
in the numbers of curves requires much longer computing time and results in only a slight
decrease in accuracy of the extracted parameters. As the focus of this work is not the study
of the explicit reaction mechanism, we did not fit a large set of experimental curves.

It is important to note that the Tafel-like plot cannot be used to confirm a specific
kinetic model. However, it can provide additional information about the activity of a
catalytic system.

2.7. Comparison of Different Homogeneous Catalytic Systems Using Tafel-Like Plots

First, we used the kinetic data on O2 evolution in water oxidation by Ce(IV) under
acidic conditions catalyzed by Ru4POM [15]. The experiment was performed in unbuffered
1.1 mM Ce(IV) solution. The estimated pH was 2.5. The standard redox potential of
the Ce(IV)/Ce(III) couple was taken to be 1.5 V [21–23]. The value of the overpotential
was calculated as a difference between the Nernstian electrochemical solution potential
(E = 1.5 + 0.059 × log([Ce(IV)]/[Ce(III)])) and the standard oxidation potential of water
(E = 1.24 −0.059 × pH). We digitized the data in Figure S10 from Ref. [15] and obtained
the Tafel plot in Figure 5 (blue circles). Based on our kinetic model, we simulated the
dependence of TOF for O2 formation as a function of overpotential at pH 8.0 (Figure 5 red
circles). As expected, both sets of data form almost a straight line with a slope of 67 mV per
decade, which describes the catalytic activity of Ru4POM over a wide range of conditions.
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Figure 5. Tafel-like plots for water oxidation catalyzed by soluble Ru4POM and Co4POM (com-
pletely homogeneous catalysts) derived using the described methodology compared to heterogenized
POM Tafel plots measured via electrochemistry. Conditions for Co4POM system: 80 mM sodium
borate buffer at pH 8.0, 0.34 mM Ru3, 2.5 (light blue), 5 (green), 10 (yellow) µM Co4POM, 24 oC.

Finally, we collected stopped-flow data for another well-established homogeneous
WOC, [Co4(H2O)2(PW9O34)2]10– (Co4POM) [24], in 80 mM sodium borate buffer at pH
8.0 under conditions similar to those for Ru4POM. The data were processed in the same
way as described above, where the TOF for O2 formation is equal to 1/4 of the TOF for
Ru3 consumption, and plotted in Figure 6. The Co4POM is more active than Ru4POM at
overpotentials lower than 0.44 V, while it is lower at overpotentials higher than 0.44 V. The
differences in Tafel slopes indicate that the rate-determining steps and/or the correspond-
ing WOC reaction mechanism are different in these two systems.
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Figure 6. Tafel plot of heterogenized Co4POM on glassy carbon electrodes with different coun-
terions. Conditions: 1 mV/s iR compensated chronoamperometry in 0.1 M pH 8 sodium borate
buffer and 0.1 M KNO3 electrolyte solution. Reference electrode, Ag/AgCl (1.0 M KCl); counter
electrode, graphite.

In order to understand how the reaction parameters in Equations (15)–(21) affect
the Tafel slope, we simulated the Tafel slope using Copasi and then observed the effects
of changing each of the parameters within a range of 104–106 from the fitted values of
Ru4POM. We have found that if the equilibrium of the reaction in Equation (19) is shifted
to the left side (corresponding to the condition that the first oxidation potential is very
high), then the Tafel slope becomes 30 mV/decade. This leads us to believe that the first
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oxidation potential of Co4POM is higher and the step depicted in Equation (19) becomes
rate-determining instead.

Here, it is worth mentioning that experimental slopes in Figure 3 are slightly higher
than the theoretical 30 and 60 mV/decade. The TOF was also calculated based on the rate
of Ru3 consumption, which includes the Ru3 self-decomposition side reaction that we
deemed negligible for our analysis.

2.8. Tafel Slope for Heterogeneous Co4POM Complex

One of the reasons for performing a Tafel-like analysis on the homogeneous catalysts
is to make comparisons to the analogous heterogeneous catalysts where accessible. Various
different counter-cation variants of Co4POM were heterogenized via a 5 wt% Nafion
mixture and drop-casted onto a glassy carbon electrode in order to measure their Tafel
behavior. These Tafel plots are shown in Figure 6. They all exhibit similar Tafel slopes of
about 80 mV/decade, which is greater than the 60 mV/decade observed for amorphous
cobalt oxides. This suggests either a different WOC mechanism or different cobalt-centered
active species are involved in with the two types of cobalt-containing WOCs. Nonetheless,
it is likely that all these variants of Co4POM have the same rate-determining step given
their similar Tafel slopes.

As the current in these electrochemical experiments can be directly converted to TOF
(four electrons per turnover), we can then compare the Tafel plots of the heterogenized
Co4POM to those of the homogeneous Co4POM (Figure 5). We note that these samples
have similar electroactive surface areas as measured by capacitive current. The differences
in exchange current density must therefore be a result of counterion effects. In this case,
as they follow the expected trend of lower Lewis acidity, giving rise to higher catalytic
currents, we can generally attribute the observed trend to their Lewis acid–base chemistry.

3. Materials and Methods

All common synthetic chemicals were reagent grade and purchased through com-
mercial sources such as Sigma-Aldrich and VWR and used without further purification.
Synthesis of Ru4POM and Co4POM was performed following exact literature procedures
and recrystallized from aqueous solution [14,24]. Synthesis of the [Ru(bpy)3]3+ source,
[Ru(bpy)3](ClO4)3, was obtained by oxidizing [Ru(bpy)3]Cl2 using PbO2 in 0.5M H2SO4
and precipitating by addition of HClO4 [25]. The product was then dried and stored in a
refrigerator (4 ◦C).

Stopped-flow UV-Vis spectroscopy was performed on a Hi-Tech KinetAsyst Stopped
Flow SF-61SX2 instrument equipped with a diode array detector operating between wave-
lengths ranging from 400 to 700 nm. One of the feeding syringes was filled with a solution
of [Ru(bpy)3]3+ and the second with a freshly prepared buffer solution containing the
catalyst. The consumption of [Ru(bpy)3]3+ was followed by a decrease in absorbance at
670 nm (ε670 = 4.2 × 102 M–1 cm–1) with an optical path length of 10 mm. The data were
acquired and treated using KinetAsystTM 3.0 software. Consequent analysis of the resulting
kinetic data were performed using Excel and the Copasi software package [20].

Electrochemical analyses were carried out using standard three-electrode measure-
ments on a Pine Research Instrument WaveDriver 20 bipotentiostat and a BAS CV-50W
potentiostat. All potentials were measured using glassy carbon electrodes against 1 M KCl
Ag/AgCl reference electrodes (+0.235 V vs. NHE) purchased from CH Instruments. The
counter electrodes were either a platinum wire or a graphite rod. Electrochemical cells were
either cylindrical or conical electrochemical glassware or three-necked round-bottom flasks.
All electrochemical measurements were done with the reference and working electrodes in
proximity and clear from obstructions that would hinder contact with the reaction solution.

4. Conclusions

We describe a protocol to obtain Tafel-like plots for two different homogeneous
catalytic systems based on kinetic and thermodynamic data. These plots visualize the
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activity of different catalysts under different solution overpotential conditions and allow
for the ready comparison of their activity with each other, as well as with heterogeneous
catalysts whose Tafel plots can be obtained using a traditional electrochemical setup. The
resulting Tafel slopes indicate that the reaction mechanisms in water oxidation catalyzed
by Ru4POM and Co4POM are likely different with distinct rate-determining steps.

This establishes a template with which molecularly discrete homogeneous WOCs can
be directly compared to each other, regardless of the oxidant used, and addresses one of
the biggest issues in WOC development: that of how to compare the catalytic reactivity
of homogeneous and heterogeneous systems. In the future, we hope to expand upon this
work and show further utilization of these protocols to elucidate the reaction mechanisms
of other WOC systems.
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