

Supplementary Materials

Iron Based Core-shell Structures as Versatile Materials: Magnetic Support & Solid Catalyst

Christian Zambrzycki ¹, Runbang Shao ², Archismita Misra ³, Carsten Streb ³, Ulrich Herr ² and Robert Güttel ^{1,*}

- ¹ Institute of Chemical Engineering, Ulm University, 89081 Ulm, Germany; christian.zambrzycki@uni-ulm.de (C.Z.)
- ² Institute of Functional Nanosystems, Ulm University, 89081 Ulm, Germany; runbang.shao@uni-ulm.de (R.S.); ulrich.herr@uni-ulm.de (U.H.)
- ³ Institute of Inorganic Chemistry I, Ulm University, 89081 Ulm, Germany; archismita.misra@uni-ulm.de (A.M.); carsten.streb@uni-ulm.de (C.S.)
- * Correspondence: robert.guettel@uni-ulm.de

Table S1. Average core size of as-made Fe@SiO₂ core-shell particles and the respective SiO₂ shell thickness measured from TEM micrographs; iron content and specific surface area calculated from measured values.

Material	Fe-oxide	shell	iron content	specific Fe	
	core size	thickness		surface area	
	$\overline{d}_{ m core}$	$\overline{d}_{ ext{shell}}$	W _{Fe}	a_{Fe}	
	/ nm	/ nm	/ wt%	/ m ² g ⁻¹	
6Fe(4)@SiO ₂	4.2 ± 1.1	4.8 ± 0.4	6	352	
a-13Fe(4)@SiO2	4.3 ± 1.1	3.3 ± 0.6	13	344	
b-13Fe(4)@SiO2	4.3 ± 1.1	3.4 ± 0.6	13	344	
15Fe(4)@SiO2	4.2 ± 1.0	3.1 ± 0.7	15	352	
20Fe(4)@SiO2	4.3 ± 1.2	2.7 ± 0.9	20	343	
15Fe(6)@SiO2	5.8 ± 0.9	3.8 ± 0.4	15	254	
a-34Fe(6)@SiO2	5.7 ± 0.9	2.2 ± 0.6	34	259	
b-34Fe(6)@SiO2	5.8 ± 0.9	2.1 ± 0.7	34	255	
42Fe(6)@SiO ₂	5.7 ± 0.9	1.8 ± 0.8	42	259	
13Fe(8)@SiO ₂	7.8 ± 1.1	6.1 ± 0.6	13	189	
20Fe(8)@SiO ₂	7.7 ± 1.5	5.1 ± 0.3	20	192	
37Fe(8)@SiO ₂	8.0 ± 1.2	3.2 ± 0.9	37	185	
46Fe(8)@SiO ₂	7.8 ± 1.1	2.2 ± 1.0	46	188	

Material	Fe	Mass	Mass	Mass	Concentration	Volume	hydrolyzatio	metal
	core	Brij	Brij	FeCl ₃	FeCl3, aq	TEOS	n time	loading
	size	C10	58					
	$ar{d}_{ ext{Fe}}$	m_{C10}	m_{58}	$m_{\rm FeCl3}$	С	$V_{\rm TEOS}$	t	Wgrav
	/ nm	/ g	/ g	/ g	/ mol L-1	/ mL	/ h	/ wt%
6Fe(4)@SiO2	4	34.2		0.6755	0.5	21.4	2	6.5
a-13Fe(4)@SiO2	4	34.2		0.6755	0.5	10.7	2	13
b-13Fe(4)@SiO2	4	34.2		0.6755	0.5	21.4	1	13
15Fe(4)@SiO ₂	4	34.2		0.6755	0.5	17.8	1	15
20Fe(4)@SiO ₂	4	34.2		0.6755	0.5	14.3	1	18
15Fe(6)@SiO ₂	6	34.2		1.351	1	21.4	2	16
a-34Fe(6)@SiO ₂	6	34.2		1.351	1	10.7	2	34
b-34Fe(6)@SiO2	6	34.2		1.351	1	21.4	1	34
42Fe(6)@SiO ₂	6	34.2		1.351	1	14.3	1	42
13Fe(8)@SiO ₂	8		56.3	1.351	1	21.4	2	13
20Fe(8)@SiO2	8		28.1	1.351	1	21.4	2	20
37Fe(8)@SiO2	8		28.1	2.702	2	21.4	2	37
46Fe(8)@SiO ₂	8		28.1	2.702	2	32.1	2	46

Table S2. Mass of surfactants, concentration of FeCl₃ solution and volume of TEOS for defined synthesis of Fe based core-shell particles.

Table S3. Derivation Equation (3): specific surface area of Fe cores a_{Fe} derived from Fe₂O₃ core diameter $d_{\rm c}\,$ (measured via TEM).

Molar amount of spherical Fe cores

Molar amount of spherical Fe₂O₃ cores

Specific surface area of reduced Fe cores

Material balance (molar basis) before and after reduction

Fe core diameter $d_{\rm Fe}$ as a function of Fe₂O₃ core diameter

 $d_{\rm c}$ from material balance

$$n_{\rm Fe} = \frac{m_{\rm Fe}}{M_{\rm Fe}} = \frac{V_{\rm Fe}\rho_{\rm Fe}}{M_{\rm Fe}} = \frac{\pi}{6}d_{\rm Fe}^{3}\frac{\rho_{\rm Fe}}{M_{\rm Fe}}$$

$$n_{\rm Fe_2O_3} = \frac{\pi}{6}d_c^{3}\frac{\rho_{\rm Fe_2O_3}}{M_{\rm Fe_2O_3}}$$

$$n_{\rm Fe} = 2 n_{\rm Fe_2O_3}$$

$$d_{\rm Fe} = d_c \left(2\frac{M_{\rm Fe}}{M_{\rm Fe_2O_3}}\frac{\rho_{\rm Fe_2O_3}}{\rho_{\rm Fe}}\right)^{-\frac{1}{3}}$$

$$a_{\rm Fe} = \frac{A_{\rm Fe}}{m_{\rm Fe}} = \frac{6}{d_{\rm Fe}}\frac{1}{\rho_{\rm Fe}}$$

$$= \left(2\frac{M_{\rm Fe}}{M_{\rm Fe_2O_3}}\frac{\rho_{\rm Fe_2O_3}}{\rho_{\rm Fe}}\right)^{-\frac{1}{3}}\frac{6}{d_c\rho_{\rm Fe}}$$

π

Density of Fe ₂ O ₃ core	$\rho_{\rm c} = 5240 \rm kg m^{-3}$
Density of Fe core	$ ho_{\mathrm{Fe}}$ = 7870 kg m ⁻³
Molar mass of Fe ₂ O ₃ core	$M_{\rm Fe_2O_3}$ = 159.7 g mol ⁻¹
Molar mass of Fe core	$M_{\rm Fe}$ = 55.8 g mol ⁻¹
	 cores consist of one single spherical particle
Main assumptions	 as made core consists of Fe₂O₃ only
	 bulk density applies for nanoparticles

Figure S1. TEM micrographs of as-made core-shell particles with an average core diameter of 4 nm; left: overview micrographs; right: detail micrographs.

Figure S2. TEM micrographs of as-made core-shell particles with an average core diameter of 6 nm; left: overview micrographs; right: detail micrographs.

Figure S3. TEM micrographs of as-made core-shell particles with an average core diameter of 8 nm; left: overview micrographs; right: detail micrographs.

Figure S4. Time resolved product formation rates during CO₂ hydrogenation on 13Fe(8)@SiO₂ (top) with CO (**a**), CH₄ (**b**), C₂H₄ (**c**, red), and C₃₊ (**c**, blue) and 15Fe(4)@SiO₂ (bottom) with CO (**d**), CH₄ (**e**), C₂H₄ (**f**, red) and C₃₊ (**f**, blue).

Figure S5. Pore size distribution for corresponding mesopore regime ($p/p^0 > 0.5$) calculated from desorption isotherm using Barrett-Joyner-Halenda (BJH) method.

Figure S6. *M* - *H* curves of as-made Fe@SiO₂ core-shell particles measured by vibrating sample magnetometer (VSM) together with fitted curves with a superposition of Langevin functions.

Figure S7. Core magnetic susceptibility vs external magnetic fields of as-made Fe@SiO₂ core-shell particles fitted from the corresponding M-H curve with a superposition of Langevin functions.