

Supplementary Materials: Preparation of Nanoparticle Porous-Structured BiVO₄ Photoanodes by a New Two-Step Electrochemical Deposition Method for Water Splitting

SocMan Ho-Kimura 1,*, Wasusate Soontornchaiyakul 2, Yuichi Yamaguchi 2 and Akihiko Kudo 2

- ¹ Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau SAR, China.
- ² Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Tokyo 162-8601, Japan;
 - wasu_soon@rs.tus.ac.jp (W.S.); y-yama@rs.tus.ac.jp (Y.Y.); a-kudo@rs.tus.ac.jp (A.K.)

Figure S1. The ultraviolet–visible absorption spectra of (i) BiOI (orange), (ii) Bi₅O₇I (light blue) and (v) BiVO₄ (yellow) films. The numbers (i, ii and v) correspond to the samples in Figure 1. The UV-vis absorption spectra of the films were analysed on a spectrophotometer (JASCO V-780) with an integrating sphere that was operated in the transmission mode.

Figure S2. These photographs show the hydrophobicity of the film surface: (i) BiOI and (ii) Bi5O7I.

Figure S3. EDS elemental analysis spectrum of the pure BiVO₄ film in Figure 1-(v).

Figure S4. An enlarged view of the XRD patterns of BiVO₄ films obtained by Bi₅O₇I and V₂O₅ conversion reaction treated at several different temperatures, from the top to the bottom: 550, 500, 475, 450, 400 and 350 °C, as well as the FTO substrate. For reference, scheelite-structured monoclinic BiVO₄ (JCPDS No. 00-044-0081) and scheelite-structured tetragonal BiVO₄ (JCPDS No. 01-074-4892) are cited. These films were prepared according to the procedure in Figure 1.

Figure S5. Top view SEM images of BiVO₄ films prepared with Bi–V–O conversion reaction processed at several different temperatures: 350 °C, 400 °C, 450 °C, 475 °C, 500 °C, and 550 °C. These films were prepared according to the procedure in Figure 1.

Figure S6. The ultraviolet–visible absorption spectra of BiVO₄ films by Bi–V–O conversion process at 350 °C to 550 °C according to Figure 1. The absorption spectra of the films were analysed on a spectrophotometer (JASCO V-780) with an integrating sphere that was operated in the transmission mode.

Figure S7. Open circuit potential (**A**) in the dark and illuminated, (**B**) the difference between light and dark of the films in Figure S7-A. Data were collected in 0.5 mol/L potassium borate aqueous solution (pH 9.5). Light source: solar simulated light irradiation with light intensity of 100 mW/cm².

Figure S8. XRD patterns of (**a**) Ru/SrTiO₃:Rh–BiVO₄ sheet, (**b**) FTO substrate, (**c**) reference scheelite-structured monoclinic BiVO₄ (JCPDS no.00-044-0081) and (**d**) reference SrTiO₃ (JCPDS no. 01-081-9509).