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Abstract: Enzymatic methods for the oxidation of alcohols are critically reviewed. Dehydrogenases
and oxidases are the most prominent biocatalysts, enabling the selective oxidation of primary alcohols
into aldehydes or acids. In the case of secondary alcohols, region and/or enantioselective oxidation is
possible. In this contribution, we outline the current state-of-the-art and discuss current limitations
and promising solutions.
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1. Introduction

1.1. Why Use Biocatalysis for Alcohol Oxidations

The (catalytic) oxidation of alcohols is a mature yet still very active field of chemical research.
Within the scope of Green Chemistry, well-established textbook methods are substituted with more
efficient catalytic methods, shifting from problematic oxidants such as AgNO3, K2CrO4 or KMnO4 to
environmentally more acceptable oxidants such as O2 or H2O2 [1,2].

Biocatalysis could play a major role in this transition. Arguments frequently used in favor of
biocatalysis are the mild reaction conditions and the renewable origin and biodegradability of enzymes.
More importantly, however, enzymes are very selective catalysts enabling precision chemistry avoiding
tedious protection group chemistry. At the same time, large parts of the chemical community tend to
ignore enzymes as potential tools for synthesis planning, which is due to perceived and real limitations
of enzyme catalysis.

In this contribution, we will briefly outline the current state-of-the-art in biocatalytic alcohol
oxidations, highlighting synthetic opportunities but also critically discussing current limitations.

1.2. Biocatalysis for Alcohol Oxidation: Perceived and Real Limitations

Arguments frequently held against biocatalysis in general are its limited availability,
narrow product scope, poor stability of the catalysts, and high price [3]. While this situation
may have been true two decades ago, there has been tremendous progress alleviating or even solving
many of the issues held against enzymes. Some of these will be discussed in the following sections.

1.2.1. Availability of Oxidative Enzymes

Some 30 years ago, oxidative biocatalysis was largely restricted to natural diversity, i.e., enzymes
available from natural resources. The famous alcohol dehydrogenase from horse liver (HLADH) [4,5]
is just one prominent example of this. Then, HLADH was indeed obtained from horse liver resulting
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in ethical issues and variations of availability and quality. With the rise of recombinant protein
expression technology, cost-efficient and scalable enzyme production has become possible [6–8].
Various commercial enzyme suppliers offer oxidoreductases in quantities ranging from small to bulk.

In addition, the diversity of natural enzymes has been increasing (and continues doing so)
considerably with new oxidative enzymes identified from metagenome libraries [9–12] and new
habitats and organisms [13–16].

1.2.2. Substrate Scope

Natural enzymes have been optimized by natural evolution to serve the host organisms’ purpose,
which does not necessarily coincide with the needs of an organic chemist aiming at the selective
oxidation of a given target molecule. Next to screening natural diversity for more suitable enzymes,
protein engineering has become a very powerful tool to tailor the properties of a given enzyme such as
cofactor specificity, thermo and solvent stability, (enantio)selectivity, and more [17–33].

For example, vanillyl alcohol oxidase has been engineered intensively by the groups of van
Berkel and Fraaije to e.g., engineer the substrate specificity or the stereoselectivity of the hydroxylation
reaction [34–38].

Another nice example exemplifying the power of protein engineering comes from the Alcalde
lab [39]. Here, the aryl alcohol oxidase is from Pleurotus eryngii. Directed evolution resulted in enzyme
mutants with higher stability and activity but also increased expression levels [21,40]. The wild-type
enzyme shows only little activity toward secondary benzylic alcohols, which can be overcome by
semi-rational design [20,41]; the resulting oxidase mutants were highly selective in the kinetic resolution
of a range of secondary benzyl alcohols.

1.2.3. Stability

Compared to common chemical catalysts, the thermal stability of biocatalysts indeed is generally
much lower. However, considering the high catalytic efficiency of enzymes at temperatures below
100 ◦C, the question arises as to why this should be an issue at all. High temperatures are generally
applied to accelerate chemical transformations. However, a (bio)catalytic reaction proceeds sufficiently
fast already; at more ambient temperatures, highly thermostable catalysts (operating at temperature
ranges between 100 and 500 ◦C as commonly applied in chemical transformations) are not necessary.

Nevertheless, if activity and stability at elevated temperatures is desired, oxidoreductases from
(hyper)thermophilic host organisms [13] such as Pyrococcus [42], Thermus [43,44], or Sulfolobus [45]
are available.

1.2.4. Biocatalyst Costs

Finally, the seemingly high costs are spuriously held against enzymes. If purchased from a
specialty chemical supplier, enzymes are indeed very expensive due to the usually small production
scale. However, it should be kept in mind that enzyme production costs are subject to economy of scale
and typical enzyme costs if produced at large scale are as low as 250 € kg−1 enzyme [46]! A simple
calculation reveals the catalyst performance needed to achieve a given cost contribution of the enzyme
to the final product (Figure 1). For example, using an enzyme cost of 250 € kg−1, only 100,000 turnovers
are needed to attain an enzyme cost contribution of less than 1 € kg−1

product. Obviously, this is an
over-simplistic view, and other factors contribute to the cost structure of a given production process.
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Figure 1. Cost contribution of a biocatalyst to the final product depending on the number of catalytic 
cycles performed (turnover number, TN = molproduct × mol−1enzyme). Assumptions: molecular weight of 
the product: 200 g × mol−1; molecular weight of the enzyme: 200 kDa, green: enzyme costs = 250 € kg−1, 
blue: enzyme costs = 1000 € kg−1, red: enzyme costs = 10,000 € kg−1. 

Amongst the real limitations of biocatalysis is the still very common use of aqueous reaction 
mixtures. As the majority of reactants of interest are rather hydrophobic, aqueous reaction media 
support only concentrations in the lower millimolar range. Such low reagent concentrations are very 
unattractive from an economical point of view (Figure 2) as they also imply high operational costs 
(and follow-up cost for downstream processing handling of large volumes). Furthermore, large 
amounts of contaminated waste water will be generated, which have to be treated prior release into 
the environment, causing further costs and consuming energy and resources. 

Figure 2. Estimation of the cost contribution of a reactor cost contribution (black) and waste water 
formed (red, based on a simple E-factor calculation). Assumptions: full conversion of the starting 
material into the product (Mw = 200 g mol−1) and generic reactor costs of 1 € L−1 reaction volume. 

Figure 1. Cost contribution of a biocatalyst to the final product depending on the number of catalytic
cycles performed (turnover number, TN = molproduct ×mol−1

enzyme). Assumptions: molecular weight of
the product: 200 g×mol−1; molecular weight of the enzyme: 200 kDa, green: enzyme costs = 250 € kg−1,
blue: enzyme costs = 1000 € kg−1, red: enzyme costs = 10,000 € kg−1.

Amongst the real limitations of biocatalysis is the still very common use of aqueous reaction
mixtures. As the majority of reactants of interest are rather hydrophobic, aqueous reaction media
support only concentrations in the lower millimolar range. Such low reagent concentrations are
very unattractive from an economical point of view (Figure 2) as they also imply high operational
costs (and follow-up cost for downstream processing handling of large volumes). Furthermore,
large amounts of contaminated waste water will be generated, which have to be treated prior release
into the environment, causing further costs and consuming energy and resources.
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Fortunately, concepts such as non-aqueous or biphasic reaction mixtures are increasingly used,
rendering biocatalytic oxidations more attractive from a preparative point of view.

1.3. The Catalysts Used

Various enzyme systems are available for the oxidation of alcohols. Next to the widely used
alcohol dehydrogenases (ADHs) and alcohol oxidases (AlcOxs), so-called laccase-mediator systems
(LMS) are worth mentioning also.

Alcohol dehydrogenases (also frequently denoted as ketoreductases, KREDs) utilize the oxidized
nicotinamide cofactors (NAD(P)+) as a hydride acceptor for the oxidation of alcohols (Scheme 1).
The catalytic mechanism starts with the (reversible) binding of the oxidized nicotinamide cofactor
(not shown) followed by the (likewise reversible) coordination of the alcohol starting material to the
enzyme active site (Scheme 1, step (1)) and its deprotonation [47]. Coordination of the alcohol and
NAD(P)+ to a metal ion (often Zn2+) ensures precise positioning of the alcohol–C–H bond to the
pyridinium ring of NAD(P)+ facilitating the hydride transfer (Scheme 1, step (2)). Finally, the carbonyl
product leaves the enzyme active site (Scheme 1, step (3)), leaving the bound, reduced NAD(P)H
behind (which can diffuse out of the enzyme active site or stay for a reductive round, which is the
reversal of the just described oxidation reaction).
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Scheme 1. Simplified mechanism of alcohol dehydrogenases (ADH)-catalyzed alcohol oxidation
(a) all reaction steps are fully reversible. (b) Structure of the oxidized nicotinamide cofactors (NAD+

and NADP+).

The reversibility of the single reaction steps also explains the fact that ADHs can be used in both
directions. In fact, the majority of ADH reports deal with the (enantioselective) reduction of prochiral
ketones [27,48].

Cofactor Regeneration Strategies

The catalytic mechanism shown in Scheme 1 also implies that the oxidation of one equivalent
of alcohol also results in the consumption of one equivalent of the oxidized nicotinamide (NAD(P)+)
yielding its reduced form (NAD(P)H). The still relatively high costs and frequently observed inhibitory
effects (by both the oxidized and the reduced cofactor) on the biocatalysts prohibit their use in
stoichiometric amounts. Therefore, over the years, a range of in situ NAD(P)+ regeneration methods
have been developed (Table 1). In essence, they allow using the costly nicotinamide cofactor in catalytic
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amounts only as its active, oxidized form is continuously regenerated at the expense of a cosubstrate
being reduced. In principle, two regeneration approaches can be distinguished: (1) the so-called
substrate-coupled approach and the (2) enzyme-coupled approach.

The substrate-coupled approach exploits the reversibility of the ADH-catalyzed oxidation reaction
by using the production ADH for NAD(P)+ regeneration (driven by the ADH-catalyzed reduction of
a cosubstrate, as shown in Figure 3a). Overall, this approach represents a biocatalytic variant of the
chemical Oppenauer oxidation [49–52].
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Figure 3. Substrate-coupled oxidation of alcohols. (a) Overall reaction using acetone as oxidant;
(b) dependency of the equilibrium substrate conversion on the molar surplus of the cosubstrate
(acetone) assuming an equilibrium constant K of 1.

Advantages of the substrate-coupled alcohol oxidation approach are that (1) the production
enzyme also serves as a regeneration enzyme (no need for a second NAD(P)+ regeneration catalyst),
(2) the nicotinamide cofactor does not have to leave the enzyme active site for regeneration and thereby
is less exposed to buffer-related degradation [53]. This also implies that ADH-catalyzed oxidation can
principally be performed under non-aqueous conditions.

A disadvantage of the substrate-coupled approach is the low thermodynamic driving force of the
overall reaction as the chemical composition of the products (alcohol and ketone) is essentially the
same as that of the starting materials (alcohol and ketone). As a result of this, the equilibrium of the
reaction is rather unfavorable, and additional measures are needed to shift the equilibrium. In some
cases, removing one of the reaction products via extraction or distillation is possible. However, more
common is to supply the (usually cheaper) cosubstrate in excess (Figure 3b). On the one hand, the
surplus cosubstrate can be seen as a cosolvent, facilitating the solubilization of hydrophobic reagents.
However, on the other hand, this surplus also represents an environmental burden and generates
additional wastes [54].

A promising solution has been proposed by Kroutil and coworkers by using α-halo ketones as
cosubstrates (Scheme 2) [55]. For example, chloroacetone enabled the authors to quasi-irreversibly
oxidize a range of racemic alcohols using just 1.5 equivalents of the ‘smart cosubstrate’. The authors
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hypothesized that the coproduct was stabilized by intramolecular hydrogen bonding, thereby shifting
the equilibrium. Unfortunately, chloroacetone is a strong lachrymator (e.g., used in pepper spray),
rendering it unattractive for many applications (such as the synthesis of consumer products).
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The enzyme-coupled regeneration approach relies on the cooperation of two catalysts,
the NAD(P)+-dependent ADH (production enzyme) and an NAD(P)+-regenerating catalyst. At first
sight, this approach seems more complicated than the above-discussed substrate-coupled approach.
However, it allows us to make use of molecular oxygen as a terminal electron acceptor, thereby making
use of the high thermodynamic driving force of oxygen reduction (Table 1). Hydrogen peroxide
(which is generally dismutated into O2 and H2O by the addition of a catalase) or water is formed as a
by-product, which from a waste perspective is very attractive. To facilitate the aerobic oxidation of
NAD(P)H, a range of enzymatic and non-enzymatic systems have been developed (Table 1).

For example, NADH oxidases directly re-oxidize NADH into NAD+ while reducing molecular
oxygen to H2O2 or H2O [56–64].

The so-called laccase mediator systems (LMSs) comprise combinations of laccases and chemical
redox dyes to aerobically regenerate NAD(P)+ from NAD(P)H. Compared to the aforementioned NADH
oxidases, LMSs excel by their indifference with respect to the cofactor (NADP+ or NAD+) regenerated,
since the NAD(P)H oxidation step is performed by an unselective chemical mediator (Scheme 3) [65–71].
Quite often, the reduced mediator itself reacts with molecular oxygen, making co-catalysis by laccase
superfluous [72–77].

Table 1. Selection of aerobic NAD(P)+ regeneration systems to drive ADH-catalyzed oxidation reactions.
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Scheme 3. Electron transport chain of a Laccase-mediator-system-promoted alcohol oxidation.
The ADH catalyzes the NAD(P)+-dependent oxidation reaction, yielding (NAD(P)H). The latter
is spontaneously oxidized by a chemical mediator (a selection is shown on the bottom). The oxidized
form of the mediator itself is re-formed by laccase-mediated aerobic oxidation.

Using molecular oxygen as a terminal electron acceptor is attractive from a thermodynamic
driving force point of view as well as an environmental point of view, as only water is formed as a
by-product. However, a major challenge of this approach originates from the very poor solubility of O2

in aqueous media (under ambient conditions approximately 0.2–0.25 mM). As a consequence, the O2

pool available is consumed, rapidly necessitating external provision with O2 to drive the oxidation
reaction [78,83,87,88]. Oxygen supply by bubbling air or O2 through the reaction mixture represents
a straightforward solution. The oxygen transfer rate is proportional to the gas–liquid interface area,
which means that in principle, heavy sparking with small bubbles should be advantageous. However,
many enzymes are inactivated at the liquid–gas interface [89–91]. A generally applicable solution is
still elusive. It is also worth mentioning that strict regulations apply e.g., in the preparation of products
used in natural foodstuffs and consumer care, excluding pressurized reactor setups.

Alcohol oxidases represent the second preparatively relevant class of enzymes useful for the
oxidation of alcohols. In contrast to ADHs, AlcOXs do not rely on the nicotinamide cofactors but
transfer the reducing equivalents liberated in the course of the alcohol oxidation reaction to molecular
oxygen, yielding H2O2 as a stoichiometric by-product. Two main classes of AlcOxs are predominantly
investigated: flavin-dependent AlcOxs and Cu2+-dependent AlcOxs. As shown in Schemes 4 and 5,
they differ significantly with respect to the oxidation mechanism.
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Scheme 4. Simplified mechanism of flavin-dependent oxidase-catalyzed oxidation of alcohols.
The alcohol starting material binds to the enzyme active site and is oxidized by deprotonation/hydride
transfer to the oxidized flavin cofactor. The resulting reduced flavin cofactor re-oxidized by molecular
oxygen is a cascade of single electron transfer steps.
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Scheme 5. Simplified mechanism of Cu-dependent oxidases. O2 binds to the (Cu+) resting state of
the enzyme, resulting in a double oxidation by simultaneous electron transfer from Cu+ and H-atom
abstraction from a phenolic active site amino acid. Next, the Cu+-bound H2O2 is substituted by the
alcohol starting material which undergoes H-atom abstraction (reforming the phenolic amino acid) and
electron transfer to the Cu2+ site, resulting in a Cu+-coordinated carbonyl product that diffuses out of
the enzyme active site to close the catalytic cycle.

In flavin-dependent oxidases, an oxidized flavin-cofactor abstracts the hydride from the alcohol
C–H bond, yielding a reduced flavin. The oxidized cofactor is regenerated by re-oxidation with O2 via
a complex sequence of electron transfer steps, eventually yielding H2O2 as the by-product [92,93].

Cu-dependent oxidases follow a mechanism wherein a Cu2+/phenoxy radical pair binds the
alcohol starting material followed by a hydrogen atom abstraction step (to the phenoxy radical), yielding
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the coordinated carbonyl product [94,95]. After dissociation of the product from the enzyme-active
site, the reactive form is restored via O2 reduction to H2O2.

Laccase-mediator systems essentially are organocatalytic alcohol oxidation reactions using
oxammonium species as an oxidant. The stable N-oxide radical TEMPO (or its analogues) is oxidized
by the blue-copper enzyme laccase (at the expense of O2 being reduced to H2O) to the reactive
oxammonium special, forming a covalent adduct with the alcohol starting material. After the
oxidation step, a hydroxylamine is formed that synproportionates with another oxammonium molecule,
forming the TEMPO catalyst (Scheme 6) [96–99].
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2. Oxidation of Primary Alcohols

2.1. Oxidation of Primary Alcohols to Aldehydes

The selective oxidation of primary alcohols to the aldehyde level is generally not an issue using
isolated enzymes. The catalytic mechanisms of ADHs and oxidases imply a hydride abstraction
step, which precludes the ADH- or oxidase-catalyzed oxidation of aldehydes. However, if whole cell
preparations are used, the presence of endogenous aldehyde dehydrogenases (vide infra) may impair the
chemoselectivity of the oxidation reaction. In this case, the two liquid phase system (2LPS, Scheme 7)
approach represents an elegant solution. A hydrophobic organic phase serves as a substrate reservoir
(also enabling high reagent payloads) and simultaneously as a sink for the hydrophobic aldehyde
product, extracting it from the aqueous, biocatalysts-containing phase and thereby protecting it from
further oxidation to the acid.

For example, Schmid and coworkers used the two liquid phase system (2LPS) approach to control
the multi-step oxidation of pseudocumene to 3, 4-dimethyl benzaldehyde [100,101]. As catalyst,
recombinant E. coli overexpressing the xylose monooxygenase (XylM) from Pseudomonas putida was
used [102,103]. In aqueous media, this catalyst performs through oxidation to the carboxylic acid;
however, in the presence of dioctyl phthalate, the hydrophobic aldehyde intermediate preferentially
partitions into the organic layer and thereby is removed from the catalyst, preventing the undesired
final oxidation step.
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Similarly, Molinari and coworkers have shown that the selectivity of acetic acid bacteria-catalyzed
oxidation of primary alcohols can be controlled to either the aldehyde or acid level by performing
the oxidation either in the presence or absence of isooctane as a hydrophobic organic phase
(Table 2) [104–107].

Table 2. Controlling the selectivity of the whole-cell catalyzed oxidation of primary alcohols.
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The ADH-catalyzed oxidation of primary alcohols selectively to the aldehyde stage is rather
scarce, even though the reaction is rather commonly used to assess ADH activity. AlcOxs are more
frequently used as catalysts for the selective oxidation of primary alcohols to aldehydes.

Recently, we applied the 2LPS concept for the selective oxidation of (2E)-hex-2-enal into
the corresponding aldehyde using the aryl alcohol oxidase from Pleurotus eryngii [108,109].
Product concentrations of up to 2.5 M in the organic phase and turnover numbers of the biocatalyst of
more than 2 million could be achieved [110,111].

The selective oxidation of ethylene glycol to glycolaldehyde (Scheme 8) was achieved using
oxidases from Pichia pastoris or Aspergillus japonicus [112,113]. Using the enzymes co-immobilized
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with catalase (to eliminate H2O2), molar product concentrations were achieved. The selectivity of the
reaction was very high with less than 1% of the acid overoxidation product being formed.
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In addition, the above-mentioned laccase-mediator system enjoys some popularity for the
oxidation of primary alcohols [114–118]. Particularly, TEMPO is a commonly used organocatalyst
enabling efficient oxidation of the alcohol starting materials. On the downside, so far, TEMPO is used
in relatively high loadings (0.5–10 mol%), impairing the economic and environmental attractiveness of
LMS oxidation systems.

Aldehydes are valuable reactive building blocks for further transformations. Therefore, a range
of catalytic cascade reactions have been reported in which the in situ generated aldehyde is further
transformed into a valuable product. Such one-pot cascades bear the advantage of circumventing
at least one downstream processing, product isolation, and product purification step. This not only
saves time but also resources and therefore is attractive not only from an economic but also from an
environmental point of view [54].

For example, DiCosimo and coworkers reported the oxidation of glycolic acid to the corresponding
aldehyde (glyoxylic acid) using methylotrophic yeasts such as Hansenula polymorpha or Pichia pastoris
overexpressing spinach glycolate oxidase (GlycOx) in the presence of aminomethyl phosphonic
acid (Scheme 9) [119]. The aldehyde spontaneously underwent imine formation with aminomethyl
phosphonic acid, yielding N-(phosphonomethyl)glycine (glyphosate) after catalytic hydrogenation.
The product was isolated and purified by simple acid precipitation and recrystallization.
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Aldehydes are also attractive reagents for further C–C bond formation reactions. For example,
Siebum and coworkers combined the oxidation of pent-4-en-1-ol using a commercial AlcOx and
aldolase-catalyzed aldol reaction with acetone in a one-pot two-step procedure (Scheme 10) [120].
In their proof-of-concept study, the desired β-hydroxy ketone was obtained in 30% isolated yield and
70% optical purity.

Wong and coworkers reported the combination of galactose oxidase (GalOx) with
rhamnulose-1-phosphate aldolase (RhaD) to generate fructose (3 chiral centers) from simple glycerol
and dihydroxy acetone phosphate (Scheme 11) [121]. An optimized reaction procedure comprising
heat inactivation of the oxidase prior to aldolase addition and pH adjustment between the aldolase
and the dephosphorylation step gave a respectable overall yield of 55%.
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Scheme 11. Multi-enzyme cascade combining galactose oxidase (GalOx), rhamnulose-1-phosphate
aldolase, and alkaline phosphatase to synthesize fructose from glycerol and dihydroxy
acetone phosphate.

More recently, Turner and coworkers used a similar cascade of an engineered galactose oxidase
and rabbit muscle aldolase to produce amino sugars [122].

Acyloins become available from simple alcohols if the oxidation step is coupled to a lyase-catalyzed
benzoin condensation [123–126]. The in situ generation of reactive aldehydes such as formaldehyde
alleviated the toxic effect of the aldehyde on the lyase (Scheme 12) [125,126].
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(Scheme 14) [129–131]. Starting e.g., from 1-butanol, 2-ethyl hexenal can be obtained representing an
interesting approach to upgrade bio-based alcohols.
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2.2. Oxidation of Primary Alcohols to Acids

As mentioned above, whole cell preparations often suffer from poor selectivity if oxidation of
primary alcohols to the aldehyde stage is desired. However, since through oxidation to the carboxylic
acid is desired, whole cell preparations have been used from an early stage onwards. Table 3 gives a
representative overview over some reported through oxidations.
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As mentioned above, ADHs and AlcOxs are generally not capable of oxidizing aldehydes,
because the aldehyde proton is not abstractable as a hydride. This mechanistic limitation can be
solved by nucleophilic attack to the carbonyl group transiently turning it into an alcohol containing a
hydridically abstractable proton. Aldehyde dehydrogenases utilize this approach via a cysteine moiety
in the enzyme active site (Scheme 15) [143].
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Scheme 15. Simplified mechanism of aldehyde dehydrogenases (AldDHs). A cysteine within the active
site nucleophilically attacks the aldehyde group. The resulting hemithioacetal can transfer a hydride to
the enzyme-bound oxidized nicotinamide cofactor yielding a thioester, which upon hydrolysis releases
the acid product.

Preparative applications of AldDHs have been reported by several groups recently [144–147].
An early example for the through oxidation of alcohols to carboxylic acids was reported by Wong and
coworkers, who combined an ADH with an AldDH for this purpose (Scheme 16) [148].

Activated aldehydes, due to a favorable aldehyde-gem diol equilibrium, can also be converted
quite efficiently by ADHs and AlcOxs to the corresponding acids [80,149–151].

Next to water, further nucleophiles have been reported such as alcohols or amines. Especially γ-
and δ-diols form hemiacetals upon aldehyde formation, which can be further oxidized to the
corresponding lactones (Scheme 17) [63,68,75–77,151–157]. The hemiacetal formation is kinetically and
thermodynamically favored.
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Recently, also amines have caught researchers’ attention as nucleophiles. For example, Turner
and coworkers reported a bienzymatic cascade to transform amino alcohols into lactames via a
spontaneously formed cyclic imine (Scheme 18) [122,158]. The reaction was highly pH-responsive
giving higher yields at more alkaline values, which probably reflects the protonation state of the amine
functionality and its tendency to nucleophilically attack the intermediate aldehyde. Similar observations
have been made in case of the ADH-catalyzed oxidative lactamization [63].
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A very interesting further development of this concept was reported recently by Mutti and
coworkers [150]. By performing the GalOx-catalyzed oxidation of benzylic alcohols in the presence of
ammonium buffers, they were able to obtain the corresponding nitriles in satisfactory to high yields
(Scheme 19). Although a fairly broad range of alcohols could be converted in decent yields, the catalyst
turnover numbers are still moderate, calling for improvement; also, the catalytic mechanism remains to
be elucidated. Overall, we are convinced that this interesting reaction (and possible further cascades)
will gain more attention in the near future.

The oxidation of hydroxymethyl furfural (HMF) to furan dicarboxylic acid (FDCA) has been
receiving particular attention in the past years. FDCA is a potential bio-based (HMF can be obtained
from glucose/fructose) substitute for terephthalic acid as building block for polyesters. Therefore,
significant research efforts have been devoted to the development of biocatalytic routes to oxidize
HMF to FDCA (Scheme 20). In principle, all steps of this cascade can be performed by a single oxidase
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catalyst [159]. However, seemingly, the last oxidation step appears to be particularly difficult, which is
why enzyme cascades are most promising (now) to attain an economically feasible full oxidation of
HMF to FDCA [160,161].
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Scheme 20. Biocatalytic conversion of hydroxymethyl furfural (HMF) to furan dicarboxylic acid
(FDCA). For reasons of simplicity, the various enzymes reported have been denominated generically as
biocatalysts, and cosubstrates/coproducts have been omitted.

3. Oxidation of Secondary Alcohols

Compared to the reverse reaction (i.e., reduction of ketones), biocatalytic oxidations of secondary
alcohols are far less common. This can be attributed to the destruction of chirality while transforming
sp3-hybridized alcohols into sp2-hybridized carbonyl groups. Hence, value-added chiral alcohols
are converted into (mostly less valuable) ketones. Nevertheless, some preparative applications of
biocatalytic oxidations of secondary alcohols are known and will be discussed in the following sections.

3.1. Complete Oxidation of Racemic Secondary Alcohols

The complete oxidation of racemic alcohols necessitates non-stereoselective catalysts. However,
non-stereoselectivity is a property seldom strived for in biocatalysis. As a consequence, identifying a
suitable enzyme for the complete oxidation of racemic secondary alcohols can be a challenge.

Whole cells containing various enantiocomplementary ADHs are one option for the complete
oxidation of racemic alcohols. For example, baker’s yeast is principally capable of oxidizing both
enantiomers of 2-heptanol [162] using two different ADHs. The expression level of both enzymes
(depending on the growth phase) influenced the enantioselectivity of the S. cerevisiae-catalyzed oxidation
and thereby makes a reproducible application difficult.

Another possibility for the complete oxidation of racemic alcohols would be to apply two
enantiocomplementary biocatalysts; however, this will complicate the reaction scheme.

Ideally, non-selective ADHs would close the gap for the complete oxidation of racemic alcohols.
Unfortunately, reports here are scarce (probably also because generally high enantioselectivity is desired,
hence, seemingly negative results are not communicated clearly). One exception is the ADH from
Sphingobium yanoikuyae (SyADH) reported by Kroutil and coworkers [55]. These authors purposely
screened natural diversity for the non-selective oxidation of a range of racemic alcohols identifying
SyADH (Scheme 21). In addition, this ADH also exhibited very high substrate tolerance, making it a
very promising candidate for preparative-scale oxidations of a broad range of racemic alcohols.



Catalysts 2020, 10, 952 17 of 30

Catalysts 2020, 10, x FOR PEER REVIEW 17 of 30 

 

enantiomers of 2-heptanol [162] using two different ADHs. The expression level of both enzymes 
(depending on the growth phase) influenced the enantioselectivity of the S. cerevisiae-catalyzed 
oxidation and thereby makes a reproducible application difficult.  

Another possibility for the complete oxidation of racemic alcohols would be to apply two 
enantiocomplementary biocatalysts; however, this will complicate the reaction scheme. 

Ideally, non-selective ADHs would close the gap for the complete oxidation of racemic alcohols. 
Unfortunately, reports here are scarce (probably also because generally high enantioselectivity is 
desired, hence, seemingly negative results are not communicated clearly). One exception is the ADH 
from Sphingobium yanoikuyae (SyADH) reported by Kroutil and coworkers [55]. These authors 
purposely screened natural diversity for the non-selective oxidation of a range of racemic alcohols 
identifying SyADH (Scheme 21). In addition, this ADH also exhibited very high substrate tolerance, 
making it a very promising candidate for preparative-scale oxidations of a broad range of racemic 
alcohols. 

 
Scheme 21. Non-stereoselective oxidation of racemic alcohols using the ADH from Sphingobium 
yanoikuyae (SyADH). 

In addition, an ADH from Thermus thermophilius may be an interesting candidate for the 
complete oxidation of racemic alcohols [163]. 

Finally, also the laccase-TEMPO system is worth mentioning here as the organocatalytic nature 
of the actual oxidation agent (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl, TEMPO) also implies non-
enantioselectivity and therefore is well-suited for the full oxidation of racemic alcohols (Scheme 22) 
[96,164–171].  

Scheme 21. Non-stereoselective oxidation of racemic alcohols using the ADH from Sphingobium
yanoikuyae (SyADH).

In addition, an ADH from Thermus thermophilius may be an interesting candidate for the complete
oxidation of racemic alcohols [163].

Finally, also the laccase-TEMPO system is worth mentioning here as the organocatalytic
nature of the actual oxidation agent (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl, TEMPO) also implies
non-enantioselectivity and therefore is well-suited for the full oxidation of racemic alcohols
(Scheme 22) [96,164–171].Catalysts 2020, 10, x FOR PEER REVIEW 18 of 30 
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Especially activated benzylic, allylic, or propargylic alcohols are readily converted into the
corresponding ketones. Provided, the still rather low turnover numbers of the oxidation catalyst
(TEMPO, ranging below 100) have been improved, this method bears some potential for the full
oxidation of racemic alcohols.

3.2. Regioselective Oxidation of Polyols

In addition to stereoselectivity, (oxidative) enzymes also frequently exhibit regioselectivity,
enabling them to perform selective transformations on poly-functionalized starting materials.
Such regioselectivity is particularly interesting in the case of carbohydrate oxidations; here, a selective
oxidation catalyst can avoid extensive protection and deprotection chemistry. A range of oxidases
and dehydrogenases catalyzing highly regioselective oxidations of polyols are known today [172,173].
Table 4 displays some representative examples.

Table 4. Selection of biocatalytic oxidations of secondary alcohols.

Catalysts 2020, 10, x FOR PEER REVIEW 18 of 30 

 

 

Scheme 22. Laccase-TEMPO (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl) system for the full oxidation of 

racemic alcohols. 

Especially activated benzylic, allylic, or propargylic alcohols are readily converted into the 

corresponding ketones. Provided, the still rather low turnover numbers of the oxidation catalyst 

(TEMPO, ranging below 100) have been improved, this method bears some potential for the full 

oxidation of racemic alcohols. 

3.2. Regioselective Oxidation of Polyols  

In addition to stereoselectivity, (oxidative) enzymes also frequently exhibit regioselectivity, 

enabling them to perform selective transformations on poly-functionalized starting materials. Such 

regioselectivity is particularly interesting in the case of carbohydrate oxidations; here, a selective 

oxidation catalyst can avoid extensive protection and deprotection chemistry. A range of oxidases 

and dehydrogenases catalyzing highly regioselective oxidations of polyols are known today 

[172,173]. Table 4 displays some representative examples. 

Table 4. Selection of biocatalytic oxidations of secondary alcohols. 

 

Product Biocatalyst Yield [%] Reference 

 

GluOx Up to >99 [174] 

 

P2O Up to >99 [175–178] 

 CBOx Up to >99 [179–183] 

 

POlDH >99 [184,185] 

Product Biocatalyst Yield [%] Reference

Catalysts 2020, 10, x FOR PEER REVIEW 20 of 31 

 

(TEMPO, ranging below 100) have been improved, this method bears some potential for the full 
oxidation of racemic alcohols. 

3.2. Regioselective Oxidation of Polyols  

In addition to stereoselectivity, (oxidative) enzymes also frequently exhibit regioselectivity, 
enabling them to perform selective transformations on poly-functionalized starting materials. Such 
regioselectivity is particularly interesting in the case of carbohydrate oxidations; here, a selective 
oxidation catalyst can avoid extensive protection and deprotection chemistry. A range of oxidases 
and dehydrogenases catalyzing highly regioselective oxidations of polyols are known today 
[172,173]. Table 4 displays some representative examples. 

Table 4. Selection of biocatalytic oxidations of secondary alcohols. 

 

Product Biocatalyst Yield [%] Reference 

 

 

GluOx Up to >99 [174] 

 

 

P2O Up to >99 [175–178] 

 CBOx Up to >99 [179–183] 

 

 

POlDH >99 [184,185] 

 

 

AldO >99 (10 mM) [186–188] 

GluOx: glucose oxidase; P2O: pyranose-2-oxidase; CBOx: cellobiose oxidase; POlDH: polyol 
dehydrogenase; ADH-A: ADH from Rhodococcus ruber; ADH-9: commercial ADH; AldO: alditol 
oxidase from Streptomyces coelicolor. 

Although the scope of these enzymes still is rather limited today, they exhibit a significant 
potential particularly in carbohydrate chemistry for protection-group independent functionalization 
reactions. 

In the context of regioselective carbohydrate oxidation, the Reichstein process from 1934 
(originally from Hoffmann–La Roche) for the transformation of glucose to ascorbic acid (vitamin C) 
is worth mentioning, as it still is used industrially (Scheme 23) [189].  

GluOx Up to >99 [174]

Catalysts 2020, 10, x FOR PEER REVIEW 20 of 31 

 

(TEMPO, ranging below 100) have been improved, this method bears some potential for the full 
oxidation of racemic alcohols. 

3.2. Regioselective Oxidation of Polyols  

In addition to stereoselectivity, (oxidative) enzymes also frequently exhibit regioselectivity, 
enabling them to perform selective transformations on poly-functionalized starting materials. Such 
regioselectivity is particularly interesting in the case of carbohydrate oxidations; here, a selective 
oxidation catalyst can avoid extensive protection and deprotection chemistry. A range of oxidases 
and dehydrogenases catalyzing highly regioselective oxidations of polyols are known today 
[172,173]. Table 4 displays some representative examples. 

Table 4. Selection of biocatalytic oxidations of secondary alcohols. 

 

Product Biocatalyst Yield [%] Reference 

 

 

GluOx Up to >99 [174] 

 

 

P2O Up to >99 [175–178] 

 CBOx Up to >99 [179–183] 

 

 

POlDH >99 [184,185] 

 

 

AldO >99 (10 mM) [186–188] 

GluOx: glucose oxidase; P2O: pyranose-2-oxidase; CBOx: cellobiose oxidase; POlDH: polyol 
dehydrogenase; ADH-A: ADH from Rhodococcus ruber; ADH-9: commercial ADH; AldO: alditol 
oxidase from Streptomyces coelicolor. 

Although the scope of these enzymes still is rather limited today, they exhibit a significant 
potential particularly in carbohydrate chemistry for protection-group independent functionalization 
reactions. 

In the context of regioselective carbohydrate oxidation, the Reichstein process from 1934 
(originally from Hoffmann–La Roche) for the transformation of glucose to ascorbic acid (vitamin C) 
is worth mentioning, as it still is used industrially (Scheme 23) [189].  

P2O Up to >99 [175–178]

CBOx Up to >99 [179–183]

Catalysts 2020, 10, x FOR PEER REVIEW 20 of 31 

 

(TEMPO, ranging below 100) have been improved, this method bears some potential for the full 
oxidation of racemic alcohols. 

3.2. Regioselective Oxidation of Polyols  

In addition to stereoselectivity, (oxidative) enzymes also frequently exhibit regioselectivity, 
enabling them to perform selective transformations on poly-functionalized starting materials. Such 
regioselectivity is particularly interesting in the case of carbohydrate oxidations; here, a selective 
oxidation catalyst can avoid extensive protection and deprotection chemistry. A range of oxidases 
and dehydrogenases catalyzing highly regioselective oxidations of polyols are known today 
[172,173]. Table 4 displays some representative examples. 

Table 4. Selection of biocatalytic oxidations of secondary alcohols. 

 

Product Biocatalyst Yield [%] Reference 

 

 

GluOx Up to >99 [174] 

 

 

P2O Up to >99 [175–178] 

 CBOx Up to >99 [179–183] 

 

 

POlDH >99 [184,185] 

 

 

AldO >99 (10 mM) [186–188] 

GluOx: glucose oxidase; P2O: pyranose-2-oxidase; CBOx: cellobiose oxidase; POlDH: polyol 
dehydrogenase; ADH-A: ADH from Rhodococcus ruber; ADH-9: commercial ADH; AldO: alditol 
oxidase from Streptomyces coelicolor. 

Although the scope of these enzymes still is rather limited today, they exhibit a significant 
potential particularly in carbohydrate chemistry for protection-group independent functionalization 
reactions. 

In the context of regioselective carbohydrate oxidation, the Reichstein process from 1934 
(originally from Hoffmann–La Roche) for the transformation of glucose to ascorbic acid (vitamin C) 
is worth mentioning, as it still is used industrially (Scheme 23) [189].  

POlDH >99 [184,185]

Catalysts 2020, 10, x FOR PEER REVIEW 20 of 31 

 

(TEMPO, ranging below 100) have been improved, this method bears some potential for the full 
oxidation of racemic alcohols. 

3.2. Regioselective Oxidation of Polyols  

In addition to stereoselectivity, (oxidative) enzymes also frequently exhibit regioselectivity, 
enabling them to perform selective transformations on poly-functionalized starting materials. Such 
regioselectivity is particularly interesting in the case of carbohydrate oxidations; here, a selective 
oxidation catalyst can avoid extensive protection and deprotection chemistry. A range of oxidases 
and dehydrogenases catalyzing highly regioselective oxidations of polyols are known today 
[172,173]. Table 4 displays some representative examples. 

Table 4. Selection of biocatalytic oxidations of secondary alcohols. 

 

Product Biocatalyst Yield [%] Reference 

 

 

GluOx Up to >99 [174] 

 

 

P2O Up to >99 [175–178] 

 CBOx Up to >99 [179–183] 

 

 

POlDH >99 [184,185] 

 

 

AldO >99 (10 mM) [186–188] 

GluOx: glucose oxidase; P2O: pyranose-2-oxidase; CBOx: cellobiose oxidase; POlDH: polyol 
dehydrogenase; ADH-A: ADH from Rhodococcus ruber; ADH-9: commercial ADH; AldO: alditol 
oxidase from Streptomyces coelicolor. 

Although the scope of these enzymes still is rather limited today, they exhibit a significant 
potential particularly in carbohydrate chemistry for protection-group independent functionalization 
reactions. 

In the context of regioselective carbohydrate oxidation, the Reichstein process from 1934 
(originally from Hoffmann–La Roche) for the transformation of glucose to ascorbic acid (vitamin C) 
is worth mentioning, as it still is used industrially (Scheme 23) [189].  

AldO >99 (10 mM) [186–188]

GluOx: glucose oxidase; P2O: pyranose-2-oxidase; CBOx: cellobiose oxidase; POlDH: polyol dehydrogenase;
ADH-A: ADH from Rhodococcus ruber; ADH-9: commercial ADH; AldO: alditol oxidase from Streptomyces coelicolor.

Although the scope of these enzymes still is rather limited today, they exhibit a significant potential
particularly in carbohydrate chemistry for protection-group independent functionalization reactions.

In the context of regioselective carbohydrate oxidation, the Reichstein process from 1934
(originally from Hoffmann–La Roche) for the transformation of glucose to ascorbic acid (vitamin C) is
worth mentioning, as it still is used industrially (Scheme 23) [189].

Gluconobacter oxydans has also been investigated intensively for the oxidation of glycerol to
dihydroxy acetone [190] to valorize the by-product from biodiesel synthesis into a building block for
further chemical syntheses.

Other examples of regioselective oxidation deal with the conversion of steroids using selective
hydroxysteroid dehydrogenases [191].
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3.3. Kinetic Oxidative Resolution and Deracemization of Racemic Secondary Alcohols

The stereoselective oxidation of only one alcohol enantiomer is a possibility for obtaining
enantiomerically pure alcohols from racemic alcohols. To mention just one example, Kroutil and
coworkers used the stereoselective ADH from Rhodococcus ruber (ADH-A, Scheme 24) for the kinetic
resolution of a broad range of racemic alcohols [192].Catalysts 2020, 10, x FOR PEER REVIEW 20 of 30 
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Scheme 24. Using the ADH from Rhodococcus ruber (ADH-A) for the oxidative kinetic resolution of
racemic alcohols.

However, kinetic resolution reactions are hampered by their intrinsic maximal yield of 50%.
Deracemization reactions circumvent this drawback by recycling the unwanted ketone product
back into the starting alcohol [193]. Early examples used chemical reductants such as NaBH3CN
yielding racemic alcohol from the ketone, which underwent further cycles of enzymatic kinetic
resolution (Scheme 25a). More elegantly, Kroutil and coworkers introduced a bienzymatic reaction
concept combining two enantiocomplementary ADHs wherein the first ADH catalyzes the kinetic
resolution and the second ADH reduces the intermediate ketone into the desired alcohol enantiomer
(Scheme 25b) [194,195].
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Scheme 25. Deracemization of alcohols combining (a) stereoselective kinetic resolution of the alcohol
and non-selective re-reduction back into the racemate and (b) stereoselective oxidation combined with
stereoselective re-reduction.

This principle is also applied for the stereoinversion of steroid alcohols [191,196]. The epimerization
of e.g., cholic acid to chenodeoxycholic acid was possible using two enantiocomplementary
hydroxysteroid dehydrogenases (Scheme 26) [196]. In contrast to the deracemization reactions
described above, this reaction proceeded smoothly to almost full conversion even in the absence of
any cofactor regeneration system, which was attributed to a lower energy content of the product and
thereby resulting in a shifted equilibrium of the overall reaction.
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4. Concluding Remarks

Biocatalysis offers manifold practical solutions for the oxidation of alcohols. Compared to many
traditional chemical alternatives, selectivity is certainly the main feature of interest. Biocatalytic
oxidation remains a very active field of research that has already solved issues such as the limited
substrate scope of cofactor regeneration issues. Various promising approaches have been brought
forward to solve the current issue of low substrate loadings. Hence, we are convinced that the
importance of biocatalysis in alcohol oxidation will grow in the near future.
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