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Abstract: To achieve efficient bio-production of phospholipase D (PLD), PLDs from different organisms
were expressed in E. coli. An efficient secretory expression system was thereby developed for PLD.
First, PLDs from Streptomyces PMF and Streptomyces racemochromogenes were separately over-expressed
in E. coli to compare their transphosphatidylation activity based on the synthesis of phosphatidylserine
(PS), and PLDPMF was determined to have higher activity. To further improve PLDPMF synthesis,
a secretory expression system suitable for PLDPMF was constructed and optimized with different
signal peptides. The highest secretory efficiency was observed when the PLD * (PLDPMF with the
native signal peptide Nat removed) was expressed fused with the fusion signal peptide PelB-Nat in
E. coli. The fermentation conditions were also investigated to increase the production of recombinant
PLD and 10.5 U/mL PLD was ultimately obtained under the optimized conditions. For the application
of recombinant PLD to PS synthesis, the PLD properties were characterized and 30.2 g/L of PS was
produced after 24 h of bioconversion when 50 g/L phosphatidylcholine (PC) was added.
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1. Introduction

Phospholipase D (PLD, EC 3.1.4.4) catalyzes hydrolysis of the phosphodiester bond of
glycerophospholipids to generate phosphatidic acid and a free head-group. In addition to its hydrolytic
activity, PLD can also catalyze the transfer of acyl groups to directly synthesize valuable phospholipid
derivatives, such as phosphatidylethanolamine (PE), phosphatidylserine (PS) and phosphatidylglycerol
(PG) [1]. These phospholipids have wide applications in the food, cosmetics and pharmaceutical
industries [2]. PLD was first reported in 1947 and due to its special catalytic activity, research on PLD
has recently increased [3]. PLD has been identified from plants [4], mammals [5] and bacteria [6].
However, these natural sources produce low levels of PLD that cannot meet the industrial demand [7].
Therefore, the production of PLD by microbial fermentation has attracted great attention due to its
advantages of high unit activity and low cost.

PLD has been characterized in many microorganisms and is most commonly found in Streptomyces
strains, such as Streptomyces PMF [8], S. lividans [9], S. racemochromogenes [10] and Streptomyces sp.
YU100 [11]. Compared with PLD from Streptomyces, PLD coming from other organisms has the
transphosphatidylation activity, the activity is much lower [12]. For the production of PLD which has
great potential in the industrial synthesis of high-value-added phospholipids, Streptomyces strains
are most widely used due to the high transphosphatidylation activity of native PLD. For example,
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Saovanee et al. isolated Streptomyces sp. SC734 from soil-contaminated palm oil, and the PLD it
produced exhibited high activity with a conversion rate of phosphatidylcholine (PC) to PS of up to
94.7% in 100 min [13]. Ogino et al. constructed an overexpression system for secretory production of
PLD in S. lividans and the amount of PLD secreted reached a maximum level of 118 mg/L [14]. However,
the genetic transfer systems for Streptomyces remain largely inefficient, which limits efficient production
of PLD. Thus, the heterologous expression of Streptomyces PLDs in other model microorganisms,
such as yeast or E. coli is highly desired.

Using Pichia pastoris as the host, Liu et al. developed a yeast cell surface display system to
express PLD from S. chromofuscus, and the displayed PLD converted 67.5% of PC to PS within
10 h [15]. PLDs from different sources have also been successfully expressed in E. coli. For example,
Zambonelli et al. expressed the PLD from Streptomyces PMF in E. coli BL21(DE3)pLysS, and 5 mg/L
PLD was finally obtained with an enzyme activity of 15 mU/mL [16]. For the high-level and stable
production of PLD, several engineering strategies were carried out in E. coli, including optimizing
and tightly regulating promoter strength, optimizing codon usage and amino acid supplementation,
and maintaining the best cellular state by supplementing nutrition. Finally, a large amount of PLD
(81.5 mg/L) was obtained in batch culture [17]. Although there has been considerable progress in
heterologous production of PLD, it is still not enough for industrial applications of PLD. Developing an
efficient expression system for PLD production is urgently needed.

One of the biggest obstacles to efficient PLD production is that overexpressed PLD is toxic to
the host, which may cause plasmid instability, cell lysis and PLD leakage [17]. Secretory production
of heterologous proteins has great advantages compared with conventional cytosolic protein
production, especially when the heterologous proteins are toxic. In addition, the secretory production
of heterologous proteins could simplify the purification processes and reduce cost since cell
disruption is not required. Many reports have proposed strategies for improving the secretory
production of heterologous proteins, such as co-expression of the signal peptide [18], optimizing
the environmental conditions [19], constructing leaky strains [20] or co-expressing the secretory
pathway [21]. The production of PLD in the secretory form seems to be a promising approach to
address this issue.

In this study, PLDs from Streptomyces PMF and Streptomyces racemochromogenes were separately
overexpressed in E. coli to compare their transphosphatidylation activity based on synthesis of PS.
Recombinant PLDPMF exhibited higher activity. To further improve the synthesis of PLDPMF, a secretory
expression system suitable for PLDPMF was constructed and optimized with different signal peptides.
The highest secretory efficiency was observed when the PLD * was expressed fused with the fusion
signal peptide Nat-PelB. After optimizing induction conditions including induction temperature,
induction pH, IPTG concentration, induction time and addition of metal ions, 10.5 U/mL PLD was
detected in the fermentation medium. For the application of recombinant PLD to PS synthesis, the PLD
properties were characterized and 30.2 g/L of PS was produced after bioconversion for 24 h when
50 g/L PC was added.

2. Results

2.1. Intracellular Expression of PLD in E. coli

The host strain E. coli BL21(DE3) is an efficient expression system for various recombinant
proteins. Here we attempted to use it for the production of PLD. Two PLDs in the plasmids
pET28a-PLDPMF and pET28a-PLDSR were separately introduced into BL21(DE3). Enzyme production
was induced by the addition of IPTG and the activities of crude PLD extracts were compared.
As shown in Figure 1, both PLDs were functionally expressed in E. coli, and crude extracts of the strain
BL21(DE3)/pET28a-PLDPMF exhibited higher transphosphatidylation activity. Using the intracellular
fraction of the strain BL21(DE3)/pET28a-PLDPMF for the bioconversion of PC to PS, PS reached 0.37 g/L
after 8 h, which is 1.4-fold higher than that of BL21(DE3)/pET28a-PLDSR. Besides this, we also tested
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the catalytic activity of the extracellular fraction of these two strains. Unfortunately, there was no
PS detected. This result suggested that, almost all heterologous produced PLD was in the cell and
the signal peptide from Streptomyces could not guide the secretion of PLD when it was expressed in
E. coli. Relatively speaking, PLDPMF may be more suitable for expression in E. coli, although this may
be a comprehensive result caused by factors such as intrinsic enzyme catalytic activity and enzyme
production. Therefore, PLDPMF was applied to further optimize expression.
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2.2. Secretory Expression of PLD in E. coli by Optimizing Signal Peptides

To investigate the secretory expression of PLD, the signal peptides Nat (Native signal peptide
from PLDPMF), OmpA and the fusion signal peptide OmpA-Nat were fused-expressed with the
PLD * (Figure 2a). First, the effect of Nat and OmpA on the PLD secretory efficiency was compared.
No PS was detected using the extracellular fraction of the strain BL21(DE3)/pET22b-Nat-PLD *
for the conversion of PC to PS (Figure 2b), this result proved that signal peptide Nat could
not guide the secretion of PLD when it was expressed in E. coli again. In contrast, the PS
yield reached 40.68% after bioconversion for 24 h using the extracellular fraction of the strain
BL21(DE3)/pET22b-OmpA-PLD *, indicating that OmpA is functional for directing the secretion of
heterologous PLD in E. coli. Subsequently, to identify whether the cleavage of Nat sequence in the
N-terminus of PLDPMF affected PLD activity, PLD * was expressed after being fused with OmpA-Nat
in E. coli. Compared with PLD produced by BL21 (DE3)/pET22b-OmpA-PLD *, We found that the
PLD from the strain BL21(DE3)/pET22b-OmpA-Nat-PLD * exhibited higher transphosphatidylation
activity with PS yield of 45.72% after bioconversion for 24 h. This result indicated that the Nat signal
peptide may be important for maintaining the transphosphatidylation activity of recombinant PLD.
Thus, the fused signal peptide was more suitable for the secretory expression of PLD in E. coli.
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Figure 2. Effects of the Nat signal peptide on the transphosphatidyltion activity of recombinant PLDPMF

expressed by E. coli. (a) Structure of the plasmids Nat-PLD *, OmpA-PLD * and OmpA-Nat-PLD *.
(b) The conversion rates of phosphatidylcholine (PC) to phosphatidylserine (PS) catalyzed by the
extracellular PLD expressed by the strain: BL21(DE3)/Nat-PLD *, BL21(DE3)/OmpA-PLD * and
BL21(DE3)/OmpA-Nat-PLD *.

To further determine the optimum signal peptide for directing secretion expression of PLD in
E. coli, seven different signal peptides were employed to replace OmpA to form new fusion signal
peptides. (Figure 3a). As shown in Figure 3b, different signal peptides directed export of PLD with
varying efficiencies. Compared with OmpA-Nat, the fused signal peptides OmpF-Nat, OmpT-Nat,
LamB-Nat and MalE-Nat are less efficient and lower PS yield was observed. In contrast, more efficient
PLD secretion was obtained with the signal peptides OmpC-Nat, PhoA-Nat and PelB-Nat resulting in
higher PS yield. Among them, the highest level of extracellular PLD * was found after expressing the
plasmid PelB-Nat-PLD * in E. coli, where PS yield was increased by 86.51% compared to that from
OmpA-Nat. Thus, the recombinant strain BL21(DE3)/pET22b-PelB-Nat-PLD * with the highest PLD
secretory expression activity was selected for the following experiment.
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(a) Using different signal peptides from E. coli to replace OmpA to construct different fused
signal peptides. (b) The relative transphosphatidylation activity of recombinant PLD * when fused
expressed in E. coli with different fusion signal peptides. The activity of PLD expressed by the strain
BL21(DE3)/pET22b-OmpA-Nat-PLD * was the reference (100% relative activity).

2.3. Effect of Fermentation Conditions on the Secretory Expression of PLD

To further improve PLD synthesis, fermentation conditions, including induction temperature,
induction pH, cell density at induction and IPTG concentration were optimized. For the control group,
the induction temperature was 28 ◦C, IPTG concentration was 0.5 mm, original cultivation pH was 7.0,
no surfactant was added, induction time was 12 h and the induction OD600nm was 0.6. Compared with
the control group, each group of experiments has only one single variable. Induction temperature
is an important factor influencing heterologous protein expression in E. coli. The recombinant strain
was incubated at a temperature ranging from 16 ◦C to 36 ◦C, and the maximum PLD activity was
obtained at 20 ◦C with an increase of 19.4% compared to the control group (Figure 4a). The effect of the
concentration of IPTG was evaluated by varying the concentration from 0.4 mm to 0.8 mm. The highest
PLD activity was achieved when 0.7 mm IPTG was added, which resulted in a 68.2% increase in PS
yield (Figure 4b). The optimal induction OD600nm and time were also determined at the induction



Catalysts 2020, 10, 1057 6 of 15

OD600 of 1.4 after induction for 12 h (Figure 4c,d). Varying pH of the growth environment change
bacterial metabolic pathways, which might negatively affect the expression of heterologous protein in
E. coli. In addition, pH also affects the charge state on the cell surface, and thus the permeability of the
cell membrane, which has an important impact on the exchange of substances and the secretion of
recombinant proteins. When the engineered BL21(DE3)/pET22b-PelB-Nat-PLD * was cultivated at pH
ranging from 5.0 to 8.0, the most suitable original cultivation pH for the secretory expression of PLD
was 6.5 (Figure 4e).
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effect of induction temperature. (b) The effect of the concentration of β-d-1-thiogalactopyranoside
(IPTG). (c) The effect of the induction OD600nm. (d) The effect of the induction time. (e) The effect of the
original cultivation pH. (f) The effect of the addition of surfactants.

To further improve the secretory expression of recombinant PLD, the effects of surfactant addition
were evaluated. As shown in Figure 4f, seven different surfactants were separately added into
the fermentation medium. Compared to the control group, all surfactants benefitted the secretory
expression of PLD, among which, the group with 3 g/L Span60 added exhibited the best PLD activity.

2.4. Characterization of the Recombinant PLD Activity

To characterize the recombinant PLD activity, the effects of reaction temperature, pH and metal
ion additives were evaluated. The initial reaction was carried out under the following conditions:
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30 ◦C, pH 5.5, no metal ions addition, and the activity of PLD was used as the reference value (100%
relative activity). To determine the optimal reaction temperature, bioconversion was carried out at
20, 25, 30, 35 or 40 ◦C (Figure 5a). From 20 ◦C and 30 ◦C, the PLD activity clearly increased with
increasing temperature, and reached the highest level at 30 ◦C. When the temperature was higher than
30 ◦C, the PLD activity sharply decreased, indicating the temperature sensitivity of recombinant PLD.
The PLD activity increased with a rise in reaction pH (from 4.0 to 8.0) and reached a maximum at
pH 5.5 (Figure 5b).
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Several metal ions have been reported to play an important role in maintaining the activity of
PLD [22]. To evaluate the effect of metal ions on recombinant PLD activity, 10 mm metal ion (Co2+,
Ni2+, Zn2+, Cu2+, Ca2+, K+, Fe2+, Mg2+, Mn2+) was added into the aqueous phase. The reaction
performed without any metal ions served as the control group. The addition of Co2+, Ca2+ and Mg2+

showed positive effects on the PLD activity, and the addition of Ca2+ gave the highest level of PLD
activity (Figure 5c).
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2.5. The Application of Recombinant PLDPMF for the Bioconversion of PC to PS

The optimum expression system (PelB-Nat fused-expressed with PLD *), fermentation conditions
(induction temperature: 20 ◦C; IPTG concentration: 0.7 mm; induction OD600nm: 1.4; induction time:
12 h; original fermentation pH: 6.5; addition of surfactant: 3 g/L Span60) and PLD traits (catalytic
temperature: 30 ◦C; original catalytic pH: 5.5; addition of metal ions: 10 mm Ca2+) were determined
based on the above results. With the extracellular recombinant PLD produced by engineered E. coli,
the capacity of producing PS from PC by PLD was tested under the optimal reaction conditions.
The reaction was performed with PC substrate concentrations of 10 g/L, 30 g/L and 50 g/L. Samples were
taken at reaction times of 4 h, 8 h, 12 h and 24 h to detect the amount of product PS and substrate PC
(Figure 6). In the case of 10 g/L PC, after bioconversion of 24 h, the production of PS reached 9.2 g/L
with a molar yield of 88.05%. When the concentration of PC was increased to 30 g/L, the final PS titer
of 18.2 g/L was obtained with a molar yield of 58.02% after bioconversion of 24 h. Further increasing
PC concentration to 50 g/L, increased PS titer to 30.2 g/L with a molar yield of 57.81%.
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3. Discussion

Phospholipase has achieved significant attention in recent years for its applications in the
production of various high value rare phospholipids [23]. To achieve high production of PLD,
overexpression of native PLD or heterologous expression of various PLDs in model microorganisms,
including E. coli [24], yeast [25] and Bacillus subtilis [26] have been performed. Among them, E. coli is the
most frequently used host strain for the expression of heterologous proteins due to its well-characterized
genetics, high protein expression levels and rapid growth rate [27]. However, the toxicity from
overexpressing PLD has limited its production in E. coli. In this work, after screening PLD sources,
a secretory PLD expression system was developed and optimized by investigating the effects of
different signal peptides for efficient PLD production.

After determining a suitable source of PLD, OmpA, a signal peptide that has been reported to guide
the secretory expression of heterologous proteins with high efficiency in E. coli [28], was first employed
to direct the secretory production of recombinant PLD. The effect of native signal peptide (Nat) in
PLDPMF sequence was also evaluated. Fortunately, the PLD production efficiency was largely enhanced
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with the secretory expression system. Moreover, the presence of Nat signal peptides resulted in a higher
extracellular PLD activity, suggesting that the Nat sequence might contribute to the correct fold of
recombinant PLD in E. coli. It is well known that the N-terminal signal sequence can guide the protein
to the Sec-translocon through the post-translational SecB-targeting pathway or the co-translational
signal recognition particle (SRP)-targeting pathway and then fold correctly [29]. However, there is
currently no general rule in selecting a proper signal sequence for a given recombinant protein [30].
To identify a more efficient signal peptide to direct PLD secretion in E. coli, seven other signal peptides
including OmpF-Nat, OmpT-Nat, OmpC-Nat, LamB-Nat, MalE-Nat, PhoA-Nat and PelB-Nat were
compared. The highest secreted PLD activity occurred with PelB-Nat (Figure 3b), indicating the
important role of signal peptide for the efficient production of recombinant PLD.

For the secretory production of recombinant proteins, membrane permeability might be a limiting
factor since the cellular membrane often retards the entry of substrate into the cellular systems and
prevents the product from being released from the cellular system for an easy recovery [31]. With the
addition of 3 g/L Span60, the extracellular PLD activity was increased by 97.1%, indicating that cell
membrane permeability is one of the key factors affecting secretory expression of recombinant PLD
in E. coli. To address this issue, co-expression of the key secretion components, construction of leaky
strains and utilization of different secretion pathways to enhance secretory production of heterologous
PLD could be further carried out in future studies.

For applying PLD to the synthesis of high-value-added phospholipid, the properties of recombinant
PLD were also characterized. As shown in Figure 5a, recombinant PLD is sensitive to temperature
changes. The best pH for PLD activity was observed under pH 5.5, which coincides with other reports
in which PLD exerted high transphosphatidylation activity in a weak acid environment [32]. For the
metal ion additives, the highest PLD activity was observed with the addition of Ca2+ [12]. Ca2+ binding
to PLD has been reported to cause a conformational change in the PLD that enhances binding of protein
to zwitterionic interfaces [13]. Ca2+ is also an activator when other soluble substrates are used [33].
Ca2+ possibly coordinates with enzymes, improving their stability. Finally, the recombinant PLD was
applied for the bioconversion of PC to PS.

Previous reports on the enzymatic synthesis of PS focused on the use of PLDs expressed in
Streptomyces. PS synthesis with a conversion rate of 88% was documented using the PLD from
S. racemochromogenes [10]. Duan and Hu compared five commercial PLDs in the synthesis of PS, and PLD
derived from S. chromofuscus achieved 90% yield of PS after 12 h of bioconversion [34]. In our work,
the recombinant PLD converted 88.05% of PC into PS with a concentration of 10 g/L PC, indicating the
high transphosphatidylation activity of the recombinant PLD expressed by E. coli. Under optimized
conditions, 30.2 g/L PS was obtained with a yield of 57.81%. The recombinant PLDs obtained in E. coli
are summarized in Table 1, and the highest PS concentration so far was obtained in our study.

Table 1. Production of recombinant PLD in E. coli and synthesis of PS.

PLD Origin Expression Host PS (g/L) References

Streptomyces mobaraensis E. coli 0.2 [12]
Streptomyces chromofuscus E. coli 3.94 [35]
Streptomyces sp. YU100 E. coli ND [11]
Streptomyces antibioticus E. coli ND [17]

Streptomyces PMF E. coli 30.2 This study

4. Materials and Methods

4.1. Microorganisms and Media

The strains used and constructed in this paper are listed in Table 2. The E. coli strains were
cultured in Luria–Bertani medium (tryptone 10 g/L, NaCl 5 g/L and yeast extract 5 g/L) containing
appropriate antibiotics at the following concentrations: 50 mg/L kanamycin (kana) and 100 mg/L
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ampicillin (Amp). Plasmid pET28a was used as the original plasmid. L-serine, phosphatidylserine (PS)
and phosphatidylcholine (PC) were purchased from Aladdin Ind. Co., Ltd. (China). CoCl2·6 H2O,
KCl, CaCl2, MgCl2·6 H2O, FeCl2, MnCl2·4 H2O, NiCl2·6 H2O and ZnCl2 were purchased from Xilong
Chemical Company (China).

Table 2. Strains and plasmids used in this study.

Strains or Plasmids Characteristics Sources

Strains - -
Streptomyces PMF Source of PLDPMF gene ATCC

Streptomyces racemochromogenes Source of PLDSR gene ATCC
E. coli DH5α Used as cloning vector Invitrogen

E. coli BL21(DE3) Used as expression host Invitrogen
BL21(DE3)/pET28a-PLDPMF Express plasmid: pET28a-PLDPMF This study
BL21(DE3)/pET28a-PLDSR Express plasmid: pET28a-PLDSR This study

BL21(DE3)/pET22b-PLDPMF Express plasmid: pET22b-PLDPMF This study
BL21(DE3)/Nat-PLD * Express plasmid: Nat-PLD * This study

BL21(DE3)/OmpA-PLD * Express plasmid: OmpA-PLD * This study
BL21(DE3)/OmpA-Nat-PLD * Express plasmid: OmpA-Nat-PLD * This study
BL21(DE3)/OmpC-Nat-PLD * Express plasmid: OmpC-Nat-PLD * This study
BL21(DE3)/OmpF-Nat-PLD * Express plasmid: OmpF-Nat-PLD * This study
BL21(DE3)/OmpT-Nat-PLD * Express plasmid: OmpT-Nat-PLD * This study
BL21(DE3)/LamB-Nat-PLD * Express plasmid: LamB-Nat-PLD * This study
BL21(DE3)/PhoA-Nat-PLD * Express plasmid: PhoA-Nat-PLD * This study
BL21(DE3)/MalE-Nat-PLD * Express plasmid: MalE-Nat-PLD * This study
BL21(DE3)/PelB-Nat-PLD * Express plasmid: PelB-Nat-PLD * This study

Plasmids - -
pET28a pBR322 ori, PT7, KanR Our lab
pET22b pBR322 ori, PT7, OmpA signal peptide, AmpR Our lab

pET28a-PLDPMF pET28a derivative; PT7-lacO-PLDPMF This study
pET28a-PLDSR pET28a derivative; PT7-lacO-PLDSR This study

pET22b-PLDPMF pET22b derivative; PT7-lacO-OmpA-PLDPMF This study
Nat-PLD * pET22b derivative; PT7-lacO-Nat-PLD * This study

OmpA-PLD * pET22b derivative; PT7-lacO-OmpA-PLD * This study
OmpA-Nat-PLD * pET22b derivative; PT7-lacO-OmpA-Nat-PLD * This study
OmpC-Nat-PLD * pET22b derivative; PT7-lacO-OmpC-Nat-PLD * This study
OmpF-Nat-PLD * pET22b derivative; PT7-lacO-OmpF-Nat-PLD * This study
OmpT-Nat-PLD * pET22b derivative; PT7-lacO-OmpT-Nat-PLD * This study
LamB-Nat-PLD * pET22b derivative; PT7-lacO-LamB-Nat-PLD * This study
PhoA-Nat-PLD * pET22b derivative; PT7-lacO-PhoA-Nat-PLD * This study
MalE-Nat-PLD * pET22b derivative; PT7-lacO-MalE-Nat-PLD * This study
PelB-Nat-PLD * pET22b derivative; PT7-lacO-PelB-Nat-PLD * This study

PLD *: the PLDPMF with the native signal peptide (Nat) removed.

4.2. Plasmid Construction

All the primers used in this study are listed in Table 3. Two PLD gene fragments, PLDPMF and
PLDSR were amplified from genomic DNA of Streptomyces PMF and Streptomyces racemochromogenes,
respectively. The signal peptide genes OmpC, OmpF, OmpT, LamB, PhoA, MalE and pelB were
synthesized by Sprin GenBioTech Co. LTD (Nanjing, China). The codon optimization procedure for
the two PLD genes were conducted by Sprin GenBioTech Co. LTD (Nanjing, China). We used the
primers P1 and P2 to amplify the PLDPMF gene and inserted it into the plasmid pET28a between the
NcoI and EcoRI sites, yielding the recombinant plasmid pET28a-PLDPMF. The PLDSR fragment was
amplified using the primer P3 with a NcoI restriction site and primer P4 with an EcoRI restriction site,
and was ligated into pET-28a vector, yielding the plasmid pET28a-PLDSR.
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Table 3. Primers used in this study.

Name Primers Sequences (5′–3′)

P1 NcoI-PLDPMF-F CATGCCATGGCAGCTGACTCTGCTACCCCG
P2 EcoRI-PLDPMF-R CCGGAATTCTCAGGCGTTGCAGATCCC
P3 NcoI-PLDSR-F CATGCCATGGGTGCGGAGGTGTGGTCGTAC
P4 EcoRI-PLDSR-R CCGGAATTCTCAGGCCTGGCAGAGG
P5 NdeI-Nat-PLD * GGAATTCCATATGCTACATGGGTCACACCT
P6 XhoI-Nat-PLD * CTCGAGCGGAGCGTTGCAGATACCAC
P7 NcoI-OmpA-Nat-PLD * CCATGGGCTACATGGGTCACA
P8 XhoI-OmpA-Nat-PLD * CTCGAGCGGAGCGTTGCAGATACCAC
P9 NcoI-OmpA-PLD * CATGCCATGGCAGCTGACTCTGCTACCCCG
P10 XhoI-OmpA-PLD * CTCGAGCGGAGCGTTGCAGATACCAC
P11 LamB-F GGAATTCCATATGATTACTCTGCGCAAACTTCCTCTGGCGGTTGCCGTCGCAGCGGGCGTAATGTCTGCTCAGGCAATGGCTCCATGGGCTACATGGGTCACA
P12 MalE-F GGAATTCCATATGAAAATAAAAACAGGTGCACGCATCCTCGCATTATCCGCATTAACGACGATGATGTTTTCCGCCTCGGCTCTCGCCCCATGGGCTACATGGGTCACA
P13 OmpC-F GGAATTCCATATGAAAGTTAAAGTACTGTCCCTCCTGGTCCCAGCTCTGCTGGTAGCAGGCGCAGCAAACGCTCCATGGGCTACATGGGTCACA
P14 OmpF-F GGAATTCCATATGAAGCGCAATATTCTGGCAGTGATCGTCCCTGCTCTGTTAGTAGCAGGTACTGCAAACGCTCCATGGGCTACATGGGTCACA
P15 OmpT-F GGAATTCCATATGCGGGCGAAACTTCTGGGAATAGTCCTGACAACCCCTATTGCGATCAGCTCTTTTGCTCCATGGGCTACATGGGTCACA
P16 PhoA-F GGAATTCCATATGAAACAAAGCACTATTGCACTGGCACTCTTACCGTTACTGTTTACCCCTGTGACAAAAGCCCCATGGGCTACATGGGTCACA
P17 PelB-F GGAATTCCATATGAAATACCTGCTGCCGACCGCTGCTGCTGGTCTGCTGCTCCTCGCTGCCCAGCCGGCGATGGCCATGGGCTACATGGGTCACA
P18 General reverse primer CTCGAGCG+GAGCGTTGCAGATACCAC

PLD *: the PLDPMF with the native signal peptide (Nat) removed.
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For secretory expression of PLD, PLDPMF was cloned into plasmid pET22b together with
different signal peptides. Primers P5/P6 were used for PCR amplification of the PLDPMF gene
containing the native signal peptide (Nat), while the primers P7/P8 were used to obtain the fragment
OmpA-Nat-PLD *, and primers P9/P10 were used to obtain the fragment OmpA-PLD *. These three
fragments were inserted into NcoI/XhoI sites of plasmid pET22b to yield the plasmids pET22b-Nat-PLD *,
pET22b-OmpA-Nat-PLD *, and pET22b-OmpA-PLD * respectively. To optimize the secretory efficiency,
seven other signal peptides OmpC, OmpF, OmpT, LamB, PhoA, MalE and PelB were amplified using
appropriate primers listed in Table 3 to replace OmpA of plasmid pET22b-OmpA-Nat-PLD *.

4.3. Protein Expression and Cell Fractionation

The engineered E. coli was cultivated in 100 mL LB medium with 0.1 mm of appropriate antibiotics
at 37 ◦C on a rotatory shaker (200 rpm). When the cell-culture density at 600 nm (OD600) reached 0.6,
0.5 mm β-d-1-thiogalactopyranoside (IPTG) was added into the culture. Then the cells were incubated
at 28 ◦C for 12 h. As shown in Figure 7a, cells were harvested by centrifugation at 8000 rpm for
10 min. The supernatant was used as the extracellular fraction to test the activity of extracellular PLD
secreted into the culture medium. The collected cells were washed twice with deionized water and was
resuspended in water to an OD600nm of 20 for the preparation of intracellular fraction. Intracellular
fraction was prepared on ice by ultrasonication: 20 min pulsing (0.3 ms, 0.2 ms pause) at 40% input
power and insoluble fraction of the lysate was removed by centrifugation (8000 rpm for 30 min at 4 ◦C).
The intracellular fraction was used to evaluate the intracellular PLD activity.
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4.4. Enzyme Assay

The transphosphatidylation activity of PLD was measured according to the production of PS.
One unit (U) was defined as 1 µmol PS produced per 1 min. To determine the PLD activity, a catalytic
reaction was carried out in a two-phase system (Figure 7b). The aqueous phase with or without 10 mm
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metal ions (Co2+, Ni2+, Zn2+, Cu2+, Ca2+, K+, Fe2+, Mg2+, Mn2+) containing 13 mm L-serine consists of
1 mL enzyme solution (intracellular fraction or extracellular fraction containing 0.4 mg crude enzymes)
and 1 mL acetic acid–sodium acetate buffer (0.2 M, pH 5.5). The organic phase was 2 mL methylene
chloride containing 0.22 mm PC. The reaction mixture was incubated in a 200 rpm shaker at 30 ◦C for
4 h. Then, the reaction mixture was centrifuged (8000 rpm, 4 ◦C, 10 min) and the organic phase was
retained. After that, a 100 µL organic sample was taken from the methylene chloride solution and
diluted 10 times with a mixture containing chloroform and methanol with a volume ratio of 2:1. Then,
the diluted sample was determined by HPLC.

4.5. Analytical Methods

The samples were analyzed by high-performance liquid chromatography (HPLC) (Agilent 1260,
Palo Alto, California, USA) equipped with a CHROMA-CHEM evaporative light scattering detector
(ELSD). The separation of PS and PC was performed on a ZORBAX Rx-SIL silica gel column (5 µm,
250 mm × 4.6 mm, Agilent). Mobile phase A contained 85% methanol, 14.5% water, 0.45% acetic acid
and 0.05% trimethylamine; mobile phase B contained 20% n-hexane, 48% isopropanol and 32% mobile
phase A. The flow rate was 1.0 mL min−1. The elution conditions were as follows: initially mobile
phase was 2% A and 98% B; 10% A and 90% B elute for 5 min; 30% A and 70% B elute for 4 min; 10% A
and 90% B elute for 5 min; finally, 2% A and 98% B elute for 3 min. The column temperature, nebulizing
temperature and evaporating temperature were controlled at 38 ◦C, 72 ◦C and 72 ◦C, respectively,
and nitrogen was used as the nebulizing gas. The nitrogen gas flow rate was 2.0 SLPM (standard liters
per minute). Each phospholipid was determined from the retention time using calibration solutions
of corresponding phospholipids, and the concentrations of the phospholipids in the samples were
calculated from the peak areas by integration.

5. Conclusions

In this study we cloned and expressed the PLD from Streptomyces PMF in E. coli; the strain
BL21(DE3)/pET28a-PLDPMF only exhibited intracellular PLD activity. In order to release the negative
effects caused by the toxicity of PLD we constructed the strain BL21 (DE3)/pET22b-PLDPMF to secrete
the PLD into the culture medium and the supernatant of the culture exhibited PLD activity producing
1.23 g/L PS in 8 h. Then, we investigated the effects of signal peptides and adding surfactants on the
secretory production of PLD. Strain BL21(DE3)/PelB-Nat-PLD * showed the highest extracellular PLD
activity. With the addition of 3 g/L Span60, the extracellular fraction was used for catalytic reaction,
and the concentration of PS reached 4.51 g/L, 3.67-fold higher than strain BL21 (DE3)/pET22b-PLDPMF.
After optimizing the induction conditions and catalytic situations, the recombinant PLD of the strain
BL21 (DE3)/PelB-Nat-PLD * produced 30.2 g/L PS in 24 h. With the advantages of simple operations,
low cost of recycling the PLD and high activity of the enzyme, our work makes large-scale production
of PLD and PS feasible.
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