Supporting information

Electrospun active media based on PVDF-Graphene-TiO₂ nanocomposite materials for methanol and acetaldehyde gas-phase abatement.

Carlo Boaretti¹, Giuseppina Luciani², Michele Modesti¹, Alessandra Lorenzetti¹, Martina Roso¹*

* E-mail: martina.roso@unipd.it

Introduction

Photocatalytic testing station; FTIR spectra of G, GO and nanocomposite phocatalysts; SEM micrographs of the produced nanostructured mat; TGA analysis performed for of catalyst content determination and distribution evaluation over the membranes;

Figure S1 Photocatalytic testing station.

Figure S2. FTIR spectra of Graphene and GrapheneOxide. The spectrum of GO presents a first peak at 1050 cm⁻¹ which arises from the epoxide groups (C-O-C). The broad absorption band between 3100 and 3500 cm⁻¹ is associated to the -OH stretching vibration while the two peaks at 1720 and 1615 cm⁻¹ can be identified as C=O stretching of the

COOH groups and, respectively, the O-H bending vibration, epoxide groups and skeletal ring vibration [Error! Reference source not found.]

Figure S3. FTIR spectra of nanocomposite photocatalysts

Figure S4. SEM micrograph of nanostructured mat based on PVDF-TiO₂. Detail at higher magnification (bar scale 1 μ m)

TGA analysis

(a) PVDF-TiO₂

(b) PVDF-TiO₂-G

(c) PVDF-TiO₂-GO

Figure S5. Thermograms of electrospun mats: (a) PVDF-TiO2; (b) PVDF-TiO2-G; (c) PVDF-TiO2-GO