

Total Oxidation of Toluene and Propane over Co₃O₄ Catalysts: Influence of Precipitating pH and Washing

Imane Driouch ¹, Weidong Zhang ¹, Michèle Heitz ², Jose Luis Valverde ³ and Anne Giroir-Fendler ^{1,*}

Catalysts	Yield (%) ^a	SSA (m ² g ⁻¹) ^b	V _p (cm ³ g ⁻¹) ^b	D _p (nm) ^b
Co-pH 8.5-1	77	20.2	0.040	7.7
Co-pH 8.5-24 h-1	71	25.9	0.086	12.7
Co-pH 8.5-80 °C-1	68	15.9	0.044	10.4

^a Product yields estimated by assuming that all Co was converted into Co₃O₄.

^b Specific surface areas, total pore volumes and average pore sizes obtained from N₂ adsorption isotherms.

Figure S1. Variation of (A) toluene conversion (B) propane conversion to CO₂ with the reaction temperature during three consecutive cooling cycles over Co-pH 9.0 catalyst.

Figure S2. (A) N₂ adsorption–desorption isotherms and (B) pore size distributions of cobalt oxides prepared at different conditions.