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Abstract: The use of toxic solvents, high energy consumption, the production of waste and the
application of traditional processes that do not follow the principles of green chemistry are problems
for the pharmaceutical industry. The organic synthesis of chemical structures that represent the
starting point for obtaining active pharmacological compounds, such as benzimidazole derivatives,
has become a focal point in chemistry. Benzimidazole derivatives have found very strong applications
in medicine. Their synthesis is often based on methods that are not convenient and not very respectful
of the environment. A simple montmorillonite K10 (MK10) catalyzed method for the synthesis of
benzimidazole derivatives has been developed. The use of MK10 for heterogeneous catalysis provides
various advantages: the reaction yields are decidedly high, the work-up procedures of the reaction
are easy and suitable, there is an increase in selectivity and the possibility of recycling the catalyst
without waste formation is demonstrated. The reactions were carried out in solvent-free conditions
and in a short reaction time using inexpensive and environmentally friendly heterogeneous catalysis.
It has been shown that the reaction process is applicable in the industrial field.
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1. Introduction

Benzimidazole is a hetero bicyclic aromatic organic compound consisting in the fusion of benzene
and imidazole. The benzimidazole ring is very well known in nature thanks to its various therapeutic
applications. Its “nucleus” is present in many important molecules such as, for example, vitamin B12 [1].

In the early nineties, various benzimidazole derivatives were synthesized, obtaining fluorine,
propylene and tetrahydroquinoline derivatives with greater stability and biological activity [2,3],
while derivatives with an electron-donating group have proven to have good antiulcer activity [4,5],
such as omeoprazole.

Recently, the therapeutic effects of benzimidazole derivatives in diseases such as ischemia-reperfusion
injury or hypertension have been demonstrated [6].

Thanks to their various pharmacological properties, various synthetic methodologies have been
developed in the field of organic synthesis.

The first synthetic methodologies reported in the literature are based on the reaction between
o-phenylenediamine and carboxylic acids or their derivatives [7,8].

Subsequently, the reaction process was made easier by replacing the carboxylic acids with
aldehydes, obtaining 2-substituted and 1,2-substituted benzimidazole derivatives. Numerous methods
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are reported for the condensation of substituted o-phenylenediamine with aldehydes catalyzed by
metal triflate such as Sc(OTf)3 or Yb (OTf)3 [9], TiCl3OTf [10], different oxidizing agents [11–14] and
lanthanides such as Lewis acid catalysts [15,16]. However, these protocols present several problems
that make the methods less convenient due to long reaction times and the use of expensive reagents
and toxic organic solvents. Furthermore, non-recoverable, difficult to prepare and poorly selective
catalysts are often used [17–22].

Since the development of new synthetic methods to produce potential drug compounds has
always played a relevant role in scientific research, in recent years, the use of recyclable heterogeneous
catalysts has become very important. Their use is favored because of their particularly versatile
properties, low cost and thermal stability. In addition, reactions catalyzed by solid supports or in a
solid state provide better selectivity in the products, compared to solution phase reactions.

These heterogeneous catalysts have found widespread application in eco-sustainable organic
synthesis, showing higher activity than homogeneous catalysts [23,24]. Their use in the pharmaceutical
industry is favored because of their easy recovery and stability and their ability to minimize
waste. The synthesis of Lewis acid heterogeneous catalysts from waste materials has become
increasingly popular over recent years [25], such as in the case of sulfonic-acid-functionalized activated
carbon prepared from matured tea leaf, tested for synthesis of 2-substituted benzimidazole and
benzothiazole [26].

The use of toxic solvents in the pharmaceutical industry is a serious problem for the environment
and human health, but in recent years, green chemistry principles have influenced the activities of the
drug industry, introducing less use of classic organic solvents [27–30], cuts in waste production with
the use of recyclable reagents [31–35] and the use of environmental organic synthetic methods.

Various research studies have been conducted on the use of “green” solvents [36], principally
bio-solvents [37–42], ionic liquids [43–45], deep eutectic solvents [46–51], supercritical fluids [52,53] or
water [54–62]. Certainly, the use of experimental methods based on solvent-free or solid state reaction
conditions may reduce pollution. Green reactions may be also carried out using the reactants alone.
Often the same reactions involve the use of solid supports (clays, zeolites, silica, alumina or other
matrices), easing the experimental and work-up procedures, improving yields, increasing the reaction
rate and considerably lowering the environmental impact [63–65]. In this context, therefore, solid
Lewis acid catalysts are widely used and thermal process [66,67] can be employed to lead the reactions.

The use of microwaves (MW) in solvent-free reactions [68–71] has been particularly important
for industrial production. MW irradiation increases the rate of chemical reactions, thus showing
great potential in innovative chemical reaction processes [72]. This improvement is particularly
demonstrated in heterogeneous catalytic systems, compared with conventional heating under identical
temperature conditions, presumably due to interaction(s) between the MW radiation fields and the
catalyst itself. For the above reason, it has given rise, over the years, to a strong interest in the field of
the synthesis of pharmaceutical compounds [73–83].

In this regard, montmorillonite represents an ideal heterogeneous eco-sustainable catalyst thanks
to its low cost, ease of handling, easy recovery by filtration method and possibility of use in chemical
reactions in solvent-free conditions under microwaves or ultrasound irradiation [84]. Like other clay
catalysts, it is widely available and has a high surface area containing both Brønsted and Lewis acid
sites catalyzing organic reactions [85–88].

Recently, a simple and eco-friendly protocol for the synthesis of some novel substituted
2-arylbenzimidazoles was developed using ZrOCl2·nH2O supported on montmorillonite K10 [89,90].
The synthetic process involves only the formation of the 2-benzimidazole derivative, and requires
the preparation of a catalyst and the use of water as a solvent. Moreover, acid treated modified
montmorillonite clay was used as a catalyst precursor for the synthesis of benzimidazoles, but the
pretreatment of the catalyst and the use of toluene as a solvent makes the synthetic process
unsustainable [91]. Other zeolites have been tested for the synthesis of benzimidazoles, but the
experimental procedures do not show selectivity [92–94].
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Considering the stability, catalytic activity and selectivity of MK10 tested in the synthesis
reactions of bifunctionalized cyclopentenones [95] and our experience in developing environmental
reactions for the synthesis of pharmaceutical azo-compounds [96–100], we present a new and selective
synthetic method to obtain benzimidazole derivatives in a solvent-free reaction, testing MK10 as a
heterogeneous catalyst.

2. Results

In our preliminary experiment, we choose o-phenylenediamine, o-PDA, (1 mmol) and
benzaldehyde as starting materials to selectively obtain 1,2-disubstituted benzimidazole derivative 1a
(Table 1).

Table 1. Optimization of the reaction conditions. a
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Molar Ratio
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Benzaldehyde

Temp (◦C) Time (min) Conversion (%)c Selectivity (%) d

1 10 1:1 rt 120 19.3 12.0
2 10 1:2 rt 120 20.9 53.0
3 10 1:2 60 120 79.6 65.1
4 10 1:1 80 120 80.9 33.3
5 10 1:1 100 60 99.9 38.3
6 10 1:2 100 60 99.9 75.0
7 - 1:2 100 90 45.0 49.0

8 e 20 1:1 60 5 99.9 18.2
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a General reaction conditions: o-PDA (1 mmol) and benzaldehyde (1 or 2 mmol) were stirred for 5–120 min at
different temperatures and different wt (%) of MK10. b wt % with respect to amine. c Percent conversion of the
o-PDA calculated from GC/MS data. d Percent yield calculated from GC/MS data of the corresponding disubstituted
benzimidazole derivative. By-product obtained is constituted by 2-phenyl-benzimidazole (1b). e Reaction mixture
under MW irradiation; the temperature was controlled in the microwave reactor.

Initially, we tested the effect of MK10 on the model reaction by performing the reaction (Table 1,
entry 1) using 10 wt% of MK10 with respect to o-phenylendiamine. The reaction mixture, stirred
at room temperature for 2 h, consists of diamine and benzaldehyde in a 1:1 and 1:2 molar ratio,
respectively (Table 1, entries 1 and 2). The reaction is monitored by thin layer chromatography (TLC)
and gas chromatography/mass spectrometry (GC/MS) analysis.

The GC/MS analysis showed the low conversion of the reagents within 120 min and low selectivity
even when using 2 mmol benzaldehyde (Table 1, entry 2). At the higher temperature, 60 ◦C,
the 1,2-disubstituted benzimidazole derivative 1a was favored (65.1% yields), but the 2-substituted
benzimidazole derivative 1b in 34.9% yields was also obtained (Table 1, entry 3), thus not improving
selectivity. The selectivity was worsened using 1 mmol benzaldehyde at 80 ◦C (Table 1, entry 4).
The GC-MS analysis showed the presence of the corresponding 2-phenyl-benzimidazole by-product
(66.7% yield) in 2 h. The model reaction showed the complete conversion of o-phenilendiammine
when the same reaction was performed at higher temperatures (100 ◦C) (Table 1, entries 5 and 6) in 1 h.
By increasing the molar ratio of benzaldeide (2 mmol) at the same temperature in the same reaction
time (60 min), a better selectivity was observed (Table 1, entry 6). When the same reaction was carried
out in the absence of a catalyst and in a longer reaction time (90 min), no complete conversion of o-PDA
and more by-product formation were observed (Table 1, entry 7).

We obtained the complete conversion when the amount of catalyst was increased to 20 wt% of
MK10 at 60 ◦C under MW irradiation (Table 1, entry 8), achieving 2-phenyl-benzimidazole as the
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principal product (81.2% yield) and using 1 mmol of benzaldehyde. Surprisingly, we gained the desired
product, 1-benzyl-2-phenyl-benzimidazole 1a, in 98.5% yield and in only 5 min at 60 ◦C (Table 1,
entry 9) using 2 mmol of benzaldehyde.

The use of the heterogeneous catalyst has made the reaction process even more eco-sustainable
than the previously developed methodologies, in terms of both faster reaction times and greater
selectivity of product formation.

The fundamental contribution that a heterogeneous catalyst makes to the sustainability of a
reaction process is its being recyclable.

To demonstrate this, after testing MK10 in the reaction model system using the best reaction
conditions (Table 1, entry 9), the final reaction mixture was treated with ethyl acetate. The MK10 was
recovered from the organic solution by filtration, washed with ethyl acetate (3 mL) four times and dried
in an oven (40 ◦C). The combined organic phases were concentrated by vacuum rotary evaporation.

The percent conversion and selectivity were analyzed by GC/MS. The recovered catalyst was
used directly for the next run, adding new, fresh reagents following the procedures reported in the
literature [91] (Figure 1).
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Figure 1. Cycling performance of MK10 in synthesis of 1-benzyl-2-phenyl-benzimidazole 1a under
MW irradiation.

In order to demonstrate the potential industrial applicability as a green procedure, the model
reaction was tested on a large scale using 10 mmol of o-phenylendiammine, 20 mmol of benzaldehyde
and the respective amount of MK10. The reaction was completed in 25 min with excellent yield (95%)
after simple extraction with ethyl acetate.

The experimental method was applied using o-PDA and different aldehydes to obtain
1,2-disubstituted benzimidazole derivatives. Quantitative yields superior to 90% were obtained
in cases of aldehydes containing electron-donor groups (Table 2, entries 1–3 and entries 6 and 7).

The reactions performed with aldehydes containing electron-withdrawing groups such as p-chloro
or p-nitro benzaldehyde (Table 2, entries 4 and 5) did not afford the disubstituted derivative, but did
afford the corresponding 2-monosubstituted benzimidazoles (4b and 5b) in good yields (detected by
GC/MS). In this case, the monosubstituted product can be separated from the excess of benzaldehyde
through chromatographic separation.

The same reactions performed using 1 molar amount of aldehydes afforded the corresponding
2-monosubstituted benzimidazoles (1b–8b) in good yields demonstrating, once again, the selectivity
of the adopted reaction process (Table 3). This result was in accordance with the data reported in the
literature [50,99].
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Table 2. Synthesis of 1,2-disubstituted benzimidazoles. a

Entry Aldehyde Product Conversion (%) Yield (%) b

1
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In conclusion, in the development of a green procedure, the recyclability of the heterogeneous
catalyst MK10 is an essential feature. All reactions were performed in short reaction times (5 min) and
with reaction yields of 90% to 99% (Tables 2 and 3).

Unlike the reaction procedures reported in the literature, the described method does not require
the use of solvents [99] or the synthesis of deep eutectic solvents [50] essential to perform the complete
reaction process. The proposed method reduces energy consumption and reaction time, making the
process industrially acceptable.

3. Materials and Methods

3.1. General Methods

Montmorillonite K10 clay and all chemical reagents were obtained from Sigma-Aldrich.
The chemical composition (wt%) of the clay (main elements) was SiO2: 67.6; Al2O3: 14.6; Fe2O3: 2.9;
MgO: 1.8.

All reactions were monitored by a GC-MS Shimadzu workstation. It is constituted by a GC
2010 (equipped with a 30 m QUADREX 007-5MS capillary column, operating in the “split” mode,
1 mL min−1 flow of He as carrier gas, (Shimadzu Corporation, Kyoto, Japan).
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1H-NMR and 13C-NMR spectra were recorded at 300 MHz and at 75 MHz, respectively, using a
Bruker WM 300 system, (Bruker Corporation, Massachusetts, USA). The samples were solubilized in
CDCl3 using tetramethylsilane (TMS) as a reference (δ 0.00). Chemical shifts are given in parts per
million (ppm), and coupling constants (J) are given in hertz. For 13C-NMR, the chemical shifts are
relative to CDCl3 (δ 77.0).

A Synthos 3000 instrument from Anton Paar, (Minoh City, Osaka, Japan), equipped with a
4 × 24MG5 rotor, was used for the MW-assisted reactions. An external IR sensor monitored the
temperature at the base of each reaction vessel.

3.2. General Procedure for the Synthesis of 1,2-Substituted Benzimidazoles 1a–8a

The aldehyde (2 mmol) was added to the o-PDA (1 mmol) and MK10 (20 mg). The obtained mixture
was reacted for 5 min under microwave heating, at a temperature of 60 ◦C (IR limit). After complete
conversion of o-phenilendiammine, the MK10 was separated from the reaction mixture by filtration
and washed with ethyl acetate (4 × 3 mL). The products were isolated after evaporation of the solvent
to afford compounds in 90–99% yields. The NMR spectral data were in accordance with those reported
in the literature [50] (See Supplementary Materials).

3.3. General Procedure for the Synthesis of 2-Substituted Benzimidazoles 1b–8b

The synthesis procedure of the mono-substituted imidazoles derived was carried out under the
same conditions used for the synthesis of the 1,2-substituted benzimidazoles. In this case, however,
the aldehydes were used in an amount equal to 1mmol. After complete conversion of o-PDA in
the 2-monosubstituted benzimidazoles (5 min), the products were isolated as previously described.
The NMR spectral data were in accordance with those reported in the literature [50] (See Supplementary
Materials).

3.4. Catalyst Recycling

The MK10 was separated from the reaction mixture by rapid filtration, then washed with ethyl
acetate (3 mL) four times and dried in an oven (50 ◦C).

4. Conclusions

A fast, cheap, simple and environmentally sustainable method has been developed for the
synthesis of 1,2-bisubstituted benzimidazoles and 2-substituted benzimidazoles. Microwave assistance
was crucial to obtain the products in only five minutes.

Moreover, this proposed method produces very low quantities of reaction waste. MK10 was
recycled and reused for four consecutive cycles without any significant loss in catalytic activity,
as previously demonstrated [92].

Furthermore, compared to recently reported procedures, the proposed method does not require a
previous treatment for the preparation of deep eutectic solvents (DESs) as eco-friendly and sustainable
solvent and catalytic systems (the procedure of preparation of DESs requires 2 h at 80 ◦C), necessary to
perform the subsequent synthesis reaction of benzimidazoles [50].

All this means that the use of the heterogeneous catalyst MK10 provides a synthetic procedure
that considerably reduces reaction times and energy costs, further promoting industrial application.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/10/8/845/s1.
Experimental Section, General Procedure for the Synthesis of 1,2-Substituted Benzimidazoles 1a–8a, General
Procedure for the Synthesis of 2-Substituted Benzimidazoles 1b–8b, Catalyst recycling, 1H NMR and 13C NMR of
compounds 1a–3a, 6a–8a, 1H NMR and 13C NMR of compounds 1b–8b.
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